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Preface

All models are wrong but some are useful.

George E. P. Box1

[Data analysis] is a tool for extracting the jewel of truth from the slurry of data.

Jean-Paul Benz�ecri2

This book is concerned with data mining, which is the application of the methods of statistics,

data analysis and machine learning to the exploration and analysis of large data sets, with the

aim of extracting new and useful information for the benefit of the owner of these data.

An essential component of decision assistance systems in many economic, industrial,

scientific andmedical fields, datamining is being applied in an increasing variety of areas. The

most familiar applications include market basket analysis in the retail and distribution

industry (to find out which products are bought at the same time, enabling shelf arrangements

and promotions to be planned accordingly), scoring in financial establishments (to predict the

risk of default by an applicant for credit), consumer propensity studies (to target mailshots and

telephone calls at customers most likely to respond favourably), prediction of attrition (loss of

a customer to a competing supplier) in the mobile telephone industry, automatic fraud

detection, the search for the causes of manufacturing defects, analysis of road accidents,

assistance to medical prognosis, decoding of the genome, sensory analysis in the food

industry, and others.

The present expansion of data mining in industry and also in the academic sphere, where

research into this subject is rapidly developing, is ample justification for providing an accessible

general introduction to this technology, which promises to be a rich source of future employ-

ment and which was presented by the Massachusetts Institute of Technology in 2001 as one of

the ten emerging technologies expected to ‘change the world’ in the twenty-first century.3

This book aims to provide an introduction to data mining and its contribution to

organizations and businesses, supplementing the description with a variety of examples.

It details the methods and algorithms, together with the procedures and principles, for

implementing data mining. I will demonstrate how the methods of data mining incorporate

and extend the conventional methods of statistics and data analysis, which will be described

reasonably thoroughly. I will therefore cover conventional methods (clustering, factor

analysis, linear regression, ridge regression, partial least squares regression, discriminant

1 Box, G.E.P. (1979) Robustness in the strategy of scientific model building. In R.L. Launer and G.N. Wilkinson

(eds), Robustness in Statistics. New York: Academic Press.
2 Benz�ecri, J.-P. (1976) Histoire et Pr�ehistoire de l’Analyse des Donn�ees. Paris: Dunod.
3 In addition to data mining, the other nine major technologies of the twenty-first century according to MIT are:

biometrics, voice recognition, brain interfaces, digital copyright management, aspect-oriented programming,

microfluidics, optoelectronics, flexible electronics and robotics.



analysis, logistic regression, the generalized linear model) as well as the latest techniques

(decision trees, neural networks, support vector machines and genetic algorithms). We will

take a look at recent and increasingly sophisticated methods such as model aggregation by

bagging and boosting, the lasso and the ‘elastic net’. The methods will be compared with each

other, revealing their advantages, their drawbacks, the constraints on their use and the best

areas for their application. Particular attention will be paid to scoring, which is still the most

widespread application of predictive data mining methods in the service sector (banking,

insurance, telecommunications), and fifty pages of the book are concerned with a compre-

hensive credit scoring case study. Of course, I also discuss other predictive techniques, as well

as descriptive techniques, ranging frommarket basket analysis, in other words the detection of

association rules, to the automatic clustering method known in marketing as ‘customer

segmentation’. The theoretical descriptions will be illustrated by numerous examples using

SAS, IBMSPSS and R software, while the statistical basics required are set out in an appendix

at the end of the book.

The methodological part of the book sets out all the stages of a project, from target setting

to the use of models and evaluation of the results. I will indicate the requirements for the

success of a project, the expected return on investment in a business setting, and the errors to

be avoided.

This survey of new data analysis methods is completed by an introduction to text mining

and web mining.

The criteria for choosing a statistical or data mining program and the leading programs

availablewill bementioned, and I will then introduce and provide a detailed comparison of the

three major products, namely the free R software and the two market leaders, SAS and SPSS.

Finally, the book is rounded off with suggestions for further reading and an index.

This is intended to be both a reference book and a practical manual, containing more

technical explanations and a greater degree of theoretical underpinning than works oriented

towards ‘business intelligence’ or ‘database marketing’, and including more examples and

advice on implementation than a volume dealing purely with statistical methods.

The book has been written with the following facts in mind. Pure statisticians may be

reluctant to use data mining techniques in a context extending beyond that of conventional

statistics because of its methods and philosophy and the nature of its data, which are

frequently voluminous and imperfect (see Section A.1.2 in Appendix A). For their part,

database specialists and analysts do not always make the best use of the data mining tools

available to them, because they are unaware of their principles and operation. This book is

aimed at these two groups of readers, approaching technical matters in a sufficiently

accessible way to be usable with a minimum of mathematical baggage, while being

sufficiently precise and rigorous to enable the user of these methods to master them and

exploit them fully, without disregarding the problems encountered in the daily use of statistics.

Thus, being based on both theoretical and practical knowledge, this book is aimed at a wide

range of readers, including:

. statisticians working in private and public businesses, whowill use it as a referencework

alongside their statistical or data mining software manuals;

. students and teachers of statistics, econometrics or engineering, who can use it as a

source of real applications of their statistical learning;

xviii PREFACE



. analysts and researchers in the relevant departments of companies, who will discover

what data mining can do for them and what they can expect from data miners and other

statisticians;

. chief executive and IT managers which may use it a source of ideas for productive

investment in the analysis of their databases, together with the conditions for success in

data mining projects;

. any interested reader, who will be able to look behind the scenes of the computerized

world in which we live, and discover how our personal data are used.

It is the aim of this book to be useful to the expert and yet accessible to the newcomer.

My thanks are due, in the first place, to David Hand, who found the time to carefully read

my manuscript, give me his precious advice on several points and write a very interesting and

kind foreword for the English edition, and to Gilbert Saporta, who has done me the honour of

writing the foreword of the original French edition, for his support and the enlightening

discussions I have had with him. I sincerely thank Jean-Pierre Nakache for his many kind
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Foreword

It is a real pleasure to be invited to write the foreword to the English translation of St�ephane
Tuff�ery’s book Data Mining and Statistics for Decision Making.

Data mining represents the merger of a number of other disciplines, most notably statistics

and machine learning, applied to the problem of squeezing illumination from large databases.

Although also widely used in scientific applications – for example bioinformatics, astrophys-

ics, and particle physics – perhaps the major driver behind its development has been the

commercial potential. This is simply because commercial organisations have recognised the

competitive edge that expertise in this area can give – that is, the business intelligence it

provides - enabling such organisation to make better-informed and superior decisions.

Data mining, as a unique discipline, is relatively young, and as with other youngsters, it is

developing rapidly. Although originally it was secondary analysis, focusing solely on large

databases which had been collated for some other purpose, nowadays we find more such

databases being collected with the specific aim of subjecting them to a data mining exercise.

Moreover, we also see formal experimental design being used to decide what data to collect

(for example, as with supermarket loyalty cards or bank credit card operations, where

different customers receive different cards or coupons).

This book presents a comprehensive view of the modern discipline, and how it can be used

by businesses and other organizations. It describes the special characteristics of commercial

data from a range of application areas, serving to illustrate the extraordinary breadth of

potential applications. Of course, different application domains are characterised by data with

different properties, and the author’s extensive practical experience is evident in his detailed

and revealing discussion of a range of data, including transactional data, lifetime data,

sociodemographic data, contract data, and other kinds.

As with any area of data analysis, the initial steps of cleaning, transforming, and generally

preparing the data for analysis are vital to a successful outcome, and yet many books gloss

over this fundamental step. I hate to think how many mistaken conclusions have been drawn

simply because analysts ignored the fact that the data had missing values! This book gives

details of these necessary first steps, examining incomplete data, aberrant values, extreme

values, and other data distortion issues.

In terms of methodology, as well as the more standard and traditional tools, the book

comes up to date with extensive discussions of neural networks, support vector machines,

bagging and boosting, and other tools.

The discussion of eight common misconceptions in Chapter 13 will be particularly useful

to newcomers to the area, especially business users who are uncertain about the legitimacy of

their analyses. And I was struck by the observation, also in this chapter, that for a successful

business data mining exercise, the whole company has to buy into the exercise. It is not

something to be undertaken by geeks in a back room. Neither is it a one-off exercise, which

can be undertaken and then forgotten about. Rather it is an ongoing process, requiring

commitment from a wide range of people in an organisation. More generally, data mining is



not a magic wand, which can be waved over a miscellaneous and disorganised pile of data, to

miraculously extract understanding and insight. It is an advanced technology of painstaking

analysis and careful probing, using highly sophisticated software tools. As with any

other advanced technology, it needs to be applied with care and skill if meaningful results

are to be obtained. This book very nicely illustrates this in its mix of high level coverage of

general issues, deep discussions of methodology, and detailed explorations of particular

application areas.

An attractive feature of the book is its discussion of some of the most important data

mining software tools and its illustrations of these tools in practice. Other data mining books

tend to focus either on the technical methodological aspects, or on a more superficial

presentation of the results, often in the form of screen shots, from a particular software

package. This book nicely intertwines the two levels, in a way which I am sure will be

attractive to readers and potential users of the technology.

The detailed case study of scoring methods in Chapter 12 is excellent, as are the other

two application areas discussed in some depth – text mining and web mining. Both of these

have become very important areas in their own right, and hold out great promise for

knowledge discovery.

This book will be an eye-opener to anyone approaching data mining for the first time. It

outlines the methods and tools, and also illustrates very nicely how they are applied, to very

good effect, in a variety of areas. It shows how data mining is an essential tool for the data

based businesses of today. More than that, however, it also shows how data mining is the

equivalent of past centuries’ voyages of discovery.

David J. Hand

Imperial College, London, and Winton Capital Management
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Foreword from the French
language edition

It is a pleasure for me to write the foreword to the third edition of this book, whose popularity

shows no sign of diminishing. It is most unusual for a book of this kind to go through three

editions in such a short time. It is a clear indication of the quality of thewriting and the urgency

of the subject matter.

Once again, St�ephane Tuff�ery has made some important additions: there are now almost

two hundred pages more than in the second edition, which itself was practically twice as long

as the first. More than ever, this book covers all the essentials (and more) needed for a clear

understanding and proper application of data mining and statistics for decision making.

Among the new features in this edition, I note that more space has been given to the free R

software, developments in support vector machines and new methodological comparisons.

Data mining and statistics for decision making are developing rapidly in the research and

business fields, and are being used in many different sectors. In the twenty-first century we are

swimming in a flood of statistical information (economic performance indicators, polls,

forecasts of climate, population, resources, etc.), seeing only the surface froth and unaware of

the nature of the underlying currents.

Data mining is a response to the need to make use of the contents of huge business

databases; its aim is to analyse and predict the individual behaviour of consumers. This aspect

is of great concern to us as citizens. Fortunately, the risks of abuse are limited by the law. As in

other fields, such as the pharmaceutical industry (in the development of new medicines, for

example), regulation does not simply rein in the efforts of statisticians; it also stimulates their

activity, as in banking engineering (the new Basel II solvency ratio). It should be noted that

this activity is one of those which is still creating employment and that the recent financial

crisis has shown the necessity for greater regulation and better risk evaluation.

So it is particularly useful that the specialist literature is now supplemented by a clear,

concise and comprehensive treatise on this subject. This book is the fruit of reflection,

teaching and professional experience acquired over many years.

Technical matters are tackled with the necessary rigour, but without excessive use of

mathematics, enabling any reader to find both pleasure and instruction here. The chapters are

also illustrated with numerous examples, usually processed with SAS software (the author

provides the syntax for each example), or in some cases with SPSS and R.

Although there is an emphasis on established methods such as factor analysis, linear

regression, Fisher’s discriminant analysis, logistic regression, decision trees, hierarchical or

partitioning clustering, the latest methods are also covered, including robust regression, neural

networks, support vector machines, genetic algorithms, boosting, arcing, and the like.

Association detection, a data mining method widely used in the retail and distribution

industry for market basket analysis, is also described. The book also touches on some less



familiar, but proven, methods such as the clustering of qualitative data by similarity

aggregation. There is also a detailed explanation of the evaluation and comparison of scoring

models, using the ROC curve and the lift curve. In every case, the book provides exactly the

right amount of theoretical underpinning (the details are given in an appendix) to enable the

reader to understand the methods, use them in the best way, and interpret the results correctly.

While all these methods are exciting, we should not forget that exploration, examination

and preparation of data are the essential prerequisites for any satisfactory modelling. One

advantage of this book is that it investigates these matters thoroughly, making use of all the

statistical tests available to the user.

An essential contribution of this book, as compared with conventional courses in statistics,

is that it provides detailed examples of how data mining forms part of a business strategy, and

how it relates to information technology and the marketing of databases or other partners.

Where customer relationship management is concerned, the author correctly points out that

data mining is only one element, and the harmonious operation of the whole system is a vital

requirement. Thus he touches on questions that are seldom raised, such as: What do we do if

there are not enough data (there is an entertaining section on ‘forename scoring’)? What is a

generic score? What are the conditions for correct deployment in a business? How do we

evaluate the return on investment? To guide the reader, Chapter 2 also provides a summary of

the development of a data mining project.

Another useful chapter deals with software; in addition to its practical usefulness, this

contains an interesting comparison of the three major competitors, namely R, SAS and SPSS.

Finally, the reader may be interested in two new data mining applications: text mining and

web mining.

In conclusion, I am sure that this very readable and instructive book will be valued by all

practitioners in the field of statistics for decision making and data mining.

Gilbert Saporta

Chair of Applied Statistics

National Conservatory of Arts and Industries, Paris
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1

Overview of data mining

This first chapter defines data mining and sets out its main applications and contributions to

databasemarketing, customer relationshipmanagementandotherfinancial, industrial,medical

and scientific fields. It also considers the position of data mining in relation to statistics, which

provides it with many of its methods and theoretical concepts, and in relation to information

technology, which provides the raw material (data), the computing resources and the commu-

nication channels (the output of the results) to other computer applications and to the users.We

will also look at the legal constraints on personal data processing; these constraints have been

established to protect the individual liberties of people whose data are being processed.

The chapter concludes with an outline of the main factors in the success of a project.

1.1 What is data mining?

Datamining and statistics, formerly confined to the fields of laboratory research, clinical trials,

actuarial studiesandriskanalysis,arenowspreadingtonumerousareasofinvestigation, ranging

from the infinitely small (genomics) to the infinitely large (astrophysics), from themost general

(customer relationship management) to the most specialized (assistance to pilots in aviation),

from themost open (e-commerce) to themost secret (preventionof terrorism, frauddetection in

mobile telephony and bank card applications), from the most practical (quality control,

production management) to the most theoretical (human sciences, biology, medicine and

pharmacology), and from themostbasic (agricultural and foodscience) to themost entertaining

(audience prediction for television). From this list alone, it is clear that the applications of data

mining and statistics cover a verywide spectrum.Themost relevant fields are thosewhere large

volumes of data have to be analysed, sometimeswith the aimof rapid decisionmaking, as in the

case of someof the examples given above.Decision assistance is becoming an objective of data

miningandstatistics;wenowexpect these techniques todomore thansimplyprovideamodelof

reality tohelpus tounderstandit.Thisapproach isnotcompletelynew,andisalreadyestablished

in medicine, where some treatments have been developed on the basis of statistical analysis,

even though the biological mechanism of the disease is little understood because of its
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complexity, as in thecaseof somecancers.Dataminingenablesus to limithumansubjectivity in

decision-makingprocesses,and tohandle largenumbersoffileswith increasingspeed, thanks to

the growing power of computers.

A survey on the www.kdnuggets.com portal in July 2005 revealed the main fields where

data mining is used: banking (12%), customer relationship management (12%), direct

marketing (8%), fraud detection (7%), insurance (6%), retail (6%), telecommunications

(5%), scientific research (4%), and health (4%).

In view of the number of economic and commercial applications of data mining, let us

look more closely at its contribution to ‘customer relationship management’.

In today’s world, the wealth of a business is to be found in its customers (and its

employees, of course). Customer share has replaced market share. Leading businesses have

been valued in terms of their customer file, on the basis that each customer is worth a certain

(large) amount of euros or dollars. In this context, understanding the expectations of

customers and anticipating their needs becomes a major objective of many businesses that

wish to increase profitability and customer loyalty while controlling risk and using the right

channels to sell the right product at the right time. To achieve this, control of the information

provided by customers, or information about them held by the company, is fundamental. This

is the aim of what is known as customer relationship management (CRM). CRM is composed

of two main elements: operational CRM and analytical CRM.

The aim of analytical CRM is to extract, store, analyse and output the relevant information

to provide a comprehensive, integrated view of the customer in the business, in order to

understand his profile and needs more fully. The raw material of analytical CRM is the data,

and its components are the data warehouse, the data mart, multidimensional analysis (online

analytical processing1), data mining and reporting tools.

For its part, operational CRM is concerned with managing the various channels (sales force,

call centres, voice servers, interactive terminals,mobile telephones, Internet, etc.) andmarketing

campaigns for the best implementation of the strategies identified by the analytical CRM.

OperationalCRMtoolsare increasinglybeing interfacedwithbackofficeapplications, integrated

managementsoftware,andtoolsformanagingworkflow,agendasandbusinessalerts.Operational

CRM is based on the results of analytical CRM, but it also supplies analytical CRMwith data for

analysis. Thus there is a data ‘loop’ between operational and analytical CRM (see Figure 1.1),

reinforced by the fact that the multiplication of communication channels means that customer

information of increasing richness and complexity has to be captured and analysed.

The increase in surveys and technical advances make it necessary to store ever-greater

amounts of data to meet the operational requirements of everyday management, and the

global view of the customer can be lost as a result. There is an explosive growth of reports

and charts, but ‘too much information means no information’, and we find that we have less

and less knowledge of our customers. The aim of data mining is to help us to make the most

of this complexity.

It makes use of databases, or, increasingly, data warehouses,2 which store the profile of

each customer, in other words the totality of his characteristics, and the totality of his past and

1 Data storage in a cubewith n dimensions (a ‘hypercube’) in which all the intersections are calculated in advance,

so as to provide a very rapid response to questions relating to several axes, such as the turnover by type of customer and

by product line.
2 A data warehouse is a set of databases with suitable properties for decision making: the data are thematic,

consolidated from different production information systems, user-oriented, non-volatile, documented and

possibly aggregated.
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present agreements and exchanges with the business. This global and historical knowledge of

each customer enables the business to consider an individual approach, or ‘one-to-one

marketing’,3 as in the case of a corner shop owner ‘who knows his customers and always

offers them what suits them best’. The aim of this approach is to improve the customer’s

satisfaction, and consequently his loyalty, which is important because it is more expensive (by

a factor of 3–10) to acquire a new customer than to retain an old one, and the development of

consumer comparison skills has led to a faster customer turnover. The importance of customer

loyalty can be appreciated if we consider that an average supermarket customer spends about

D200 000 in his lifetime, and is therefore ‘potentially’ worth D200 000 to a major retailer.

Knowledge of the customer is even more useful in the service industries, where products

are similar from one establishment to the next (banking and insurance products cannot be

patented), where the price is not always the decisive factor for a customer, and customer

relations and service make all the difference.

However, if each customer were considered to be a unique case whose behaviour was

irreducible to any model, he would be entirely unpredictable, and it would be impossible to

establish any proactive relationship with him, in other words to offer him whatever may

interest him at the time when he is likely to be interested, rather than anything else. We may

therefore legitimately wish to compare the behaviour of a customer whom we know less well

(for a first credit application, for example) with the behaviour of customers whom we know

better (thosewho have already repaid a loan). To do this, we need two types of data. First of all,

we need ‘customer’ data which tell us whether or not two customers resemble each other.

Secondly, we need data relating to the phenomenon to be predicted, which may be, for

example, the results of early commercial activities (for what are known as propensity scores)

or records of incidents of payment and other events (for risk scores). A major part of data

mining is concernedwithmodelling the past in order to predict the future: wewish to find rules

concealed in the vast body of data held on former customers, in order to apply them to new

customers and take the best possible decisions. Clearly, everything I have said about the

customers of a business is equally applicable to bacterial strains in a laboratory, types of

channel 
management → collection of customer

information

↑ ↓
campaign 

management ← analysis of customer 
information

OPERATIONAL CRM ANALYTICAL CRM

Figure 1.1 The customer relationship circuit.

3 Or, more modestly and realistically, ‘one-to-few’.
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fertilizer in a plantation, chemical molecules in a test tube, patients in a hospital, bolts on an

assembly line, etc. So the essence of data mining is as follows:

Data mining is the set of methods and techniques for exploring and analysing data sets

(which are often large), in an automatic or semi-automaticway, in order to find among these

data certain unknown or hidden rules, associations or tendencies; special systems output

the essentials of the useful information while reducing the quantity of data.

Briefly, datamining is the art of extracting information– that is, knowledge – fromdata.

Data mining is therefore both descriptive and predictive: the descriptive (or explor-

atory) techniques are designed to bring out information that is present but buried in a

mass of data (as in the case of automatic clustering of individuals and searches for

associations between products or medicines), while the predictive (or explanatory)

techniques are designed to extrapolate new information based on the present information,

this new information being qualitative (in the form of classification or scoring4) or

quantitative (regression).

The rules to be found are of the following kind:

. Customers with a given profile are most likely to buy a given product type.

. Customers with a given profile are more likely to be involved in legal disputes.

. People buying disposable nappies in a supermarket after 6 p.m. also tend to buy beer (a

example which is mythical as well as apocryphal).

. Customers who have bought product A and product B aremost likely to buy product C at

the same time or n months later.

. Customers who have behaved in a given way and bought given products in a given time

interval may leave us for the competition.

This can be seen in the last two examples: we need a history of the data, a kind of moving

picture, rather than a still photograph, of each customer. All these examples also show that

data mining is a key element in CRM and one-to-one marketing (see Table 1.1).

1.2 What is data mining used for?

Many benefits are gained by using rules and models discovered with the aid of data mining, in

numerous fields.

1.2.1 Data mining in different sectors

It was in the banking sector that risk scoring was first developed in the mid-twentieth century,

at a time when computing resources were still in their infancy. Since then, many data mining

techniques (scoring, clustering, association rules, etc.) have become established in both retail

and commercial banking, but data mining is especially suitable for retail banking because of

4 The statistical technique is called ‘classification’ or ‘discrimination’; the application of this technique to certain

business problems such as the selection of customers according to certain criteria is called ‘scoring’.
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the moderate unitary amounts, the large number of files and their relatively standard form. The

problems of scoring are generally not very complicated in theoretical terms, and the

conventional techniques of discriminant analysis and logistic regression have been extremely

successful here. This expansion of data mining in banking can be explained by the

simultaneous operation of several factors, namely the development of new communication

technology (Internet, mobile telephones, etc.) and data processing systems (datawarehouses);

customers’ increased expectations of service quality; the competitive challenge faced by retail

banks from credit companies and ‘newcomers’ such as foreign banks, major retailers and

insurance companies, which may develop banking activities in partnership with traditional

banks; the international economic pressure for higher profitability and productivity; and of

course the legal framework, including the current major banking legislation to reform the

solvency ratio (see Section 12.2), which has been a strong impetus to the development of risk

models. In banks, loyalty development and attrition scoring have not been developed to the

same extent as in mobile telephones, for instance, but they are beginning to be important as

awareness grows of the potential profits to be gained. For a time, they were also stimulated by

the competition of on-line banks, but these businesses, which had lower structural costs but

higher acquisition costs than branch-based banks, did not achieve the results expected, and

have been bought up by insurance companies wishing to gain a foothold in banking, by foreign

banks, or by branch-based banks aiming to supplement their multiple-channel banking

system, with Internet facilities coexisting with, but not replacing, the traditional channels.

The retail industry is developing its own credit cards, enabling it to establish very large

databases (of several million cardholders in some cases), enriched by behavioural information

obtained from till receipts, and enabling it to compete with the banks in terms of customer

knowledge. The services associated with these cards (dedicated check-outs, exclusive

promotions, etc.) are also factors in developing loyalty. By detecting product associations

on till receipts it is possible to identify customer profiles, make a better choice of products and

arrange them more appropriately on the shelves, taking the ‘regional’ factor into account in

Table 1.1 Comparison between traditional and one-to-one marketing.

Traditional marketing One-to-one marketing

Anonymous customer Individually identified customer

Standard product Personalized product and service

Serial production Bespoke production

Mass advertising Individual message

Unilateral communication Interactive communication

Achievement of a sale, high take-up Development of customer loyalty, low attrition rate

Market share Customer share

Broad targets Profitable niches

Segmentation by job and RFM Statistical, behavioural segmentation

Traditional distribution channels,

disconnected from each other

New, interconnected channels (telephone

platforms, Internet, mobile telephones)

Product-oriented marketing Customer-oriented marketing
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the analyses. The most interesting results are obtained when payments are madewith a loyalty

card, not only because this makes it possible to cross-check the associations detected on the till

receipts with sociodemographic information (age, family circumstances, socio-occupational

category) provided by the customer when he joins the card scheme, but also because the use of

the card makes it possible to monitor a customer’s payments over time and to implement

customer-targeted promotions, approaching the customer according to the time intervals and

themes suggested by the model. Market baskets can also be segmented into groups such as

‘clothing receipt’, ‘large trolley receipt’, and the like.

In property and personal insurance, studies of ‘cross-selling’, ‘up-selling’ and attrition,

with the adaptation of pricing to the risks incurred, are the main themes in a sector where

propensity is not stated in the same terms as elsewhere, since certain products (motor

insurance) are compulsory, and, except in the case of young people, the aim is either to attract

customers from competitors, or to persuade existing customers to upgrade, by selling them

additional optional cover, for example. The need for data mining in this sector has increased

with the development of competition from new entrants in the form of banks offering what is

known as ‘bancassurance’ (bank insurance), with the advantage of extended networks,

frequent customer contact and rich databases. The advantages of this offer are especially

great in comparison with ‘traditional’ non-mutual insurance companies which may encounter

difficulties in developing marketing databases from information which is widely diffused and

jealously guarded by their agents. Furthermore, the customer bases of these insurers, even if

not divided by agent, are often structured according to contracts rather than customers. And

yet these networks, with their lower loyalty rates than mutual organizations, have a real need

to improve their CRM, and consequently their global knowledge of their customers. Although

the propensity studies for insurance are similar to those for banking, the loss studies show

some distinctive features, with the appearance of the Poisson distribution in the generalized

linear model for modelling the number of claims (loss events). The insurers have one major

asset in their holdings of fairly comprehensive data about their customers, especially in the

form of home and civil liability insurance contracts which provide fairly accurate information

on the family and its lifestyle.

The opening of the landline telephone market to European competition, and the

development of the mobile telephone market through maturity to saturation, have revived

the problems of ‘churning’ (switching to competing services) among private, professional and

business customers. The importance of loyalty in this sector becomes evident when we

consider that the average customer acquisition cost in the mobile telephone market is more

than D200, and that more than a million users change their operator every year in some

countries. Naturally, therefore, it is churn scoring that is themain application of data mining in

the telephone business. For the same reasons, operators use text mining tools (see Chapter 14)

for automatic analysis of the content of customers’ letters of complaint. Other areas of

investigation in the telephone industry are non-payment scoring, direct marketing optimiza-

tion, behavioural analysis of Internet users and the design of call centres. The probability of a

customer changing his mobile telephone is also under investigation.

Datamining is also quitewidespread in themotor industry. A standard theme is scoring for

repeat purchases of a manufacturer’s vehicles. Thus, Renault has constructed a model which

predicts customers who are likely to buy a new Renault car in the next six months. These

customers are identified on the basis of data from concessionaires, who receive in return a list

of high-scoring customers whom they can then contact. In the production area, data mining is

used to trace the origin of faults in construction, so that these can be minimized. Satisfaction
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studies are also carried out, based on surveys of customers, with the aim of improving the

design of vehicles (in terms of quality, comfort, etc.). Accidents are investigated in the

laboratories of motor manufacturers, so that they can be classified in standard profiles and

their causes can be identified. A large quantity of data is analysed, relating to the vehicle, the

driver and the external circumstances (road condition, traffic, time, weather, etc.).

The mail-order sector has been conducting analyses of data on its customers for many

years, with the aim of optimizing targeting and reducing costs, which may be very

considerable when a thousand-page colour catalogue is sent to several tens of millions of

customers. Whereas banking was responsible for developing risk scoring, the mail-order

industry was one of the first sectors to use propensity scoring.

The medical sector has traditionally been a heavy user of statistics. Quite naturally, data

mining has blossomed in this field, in both diagnostic and predictive applications. The first

category includes the identification of patient groups suitable for specific treatment protocols,

where each group includes all the patients who react in the sameway. There are also studies of

the associations between medicines, with the aim of detecting prescription anomalies, for

example. Predictive applications include tracing the factors responsible for death or survival

in certain diseases (heart attacks, cancer, etc.) on the basis of data collected in clinical trials,

with the aim of finding the most appropriate treatment to match the pathology and the

individual. Of course, use is made of the predictive method known as survival analysis, where

the variable to be predicted is a period of time. Survival data are said to be ‘censored’, since the

period is precisely known for individuals who have died, while it is only theminimum survival

time that is known for those who remain.We can, for example, try to predict the recovery time

after an operation, according to data on the patient (age, weight, height, smoker or non-

smoker, occupation, medical history, etc.) and the practitioner (number of operations carried

out, years of experience, etc.). Image mining is used in medical imaging for the automatic

detection of abnormal scans or tumour recognition. Finally, the deciphering of the genome is

based onmajor statistical research for detecting, for example, the effect of certain genes on the

appearance of certain pathologies. These statistical analyses are difficult, as the number of

explanatory variables is very high with respect to the number of observations: there may be

several tens of millions of genes (genome) or pixels (image mining) relating to only a few

hundred individuals. Methods such as partial least squares (PLS) regression or regularized

regression (ridge, lasso) are highly valued in this field. The tracing of similar sequences

(‘sequence analysis’) is widely used in genomics, where the DNA sequence of a gene is

investigated with the aim of finding similarities between the sequences of a single ancestor

which have undergone mutations and natural selection. The similarity of biological functions

is deduced from the similarity of the sequences.

In cosmetics, Unilever has used data mining to predict the effect of new products on

human skin, thus limiting the number of tests on animals, and L’Or�eal, for example, has used it

to predict the effects of a lotion on the scalp.

The food industry is also a major user of statistics. Applications include ‘sensory analysis’

in which sensory data (taste, flavour, consistency, etc.) perceived by consumers are correlated

with physical and chemical instrumental measurements and with preferences for various

products. Discriminant analysis and logistic regression predictive models are also used in the

drinks industry to distinguish spirits from counterfeit products, based on the analysis of about

ten molecules present in the beverage. Chemometrics is the extraction of information from

physical measurements and from data collected in analytical chemistry. As in genomics, the

number of explanatory variables soon becomes very great and may justify the use of PLS
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regression. Health risk analysis is specific to the food industry: it is concerned with

understanding and controlling the development of microorganisms, preventing hazards

associated with their development in the food industry, and managing use-by dates. Finally,

as in all industries, it is essential to manage processes as well as possible in order to improve

the quality of products.

Statistics are widely used in biology. They have been applied for many years for the

classification of living species;wemay, for example, quote the standard example of Fisher’s use

of his linear discriminant analysis to classify three species of iris. Agronomy requires statistics

for an accurate evaluation of the effects of fertilizers or pesticides. Another currently

fashionable use of data mining is for the detection of factors responsible for air pollution.

1.2.2 Data mining in different applications

In the field of customer relationshipmanagement, we can expect to gain the following benefits

from statistics and data mining:

. identification of prospects most likely to become customers, or former customers most

likely to return (‘winback’);

. calculation of profitability and lifetime value (see Section 4.2.2) of customers;

. identification of the most profitable customers, and concentration of marketing activi-

ties on them;

. identification of customers likely to leave for the competition, and marketing operations

if these customers are profitable;

. better rate of response in marketing campaigns, leading to lower costs and less customer

fatigue in respect of mailings;

. better cross-selling;

. personalization of the pages of the company website according to the profile of

each user;

. commercial optimization of the company website, based on detection of the impact of

each page;

. management of calls to the company’s switchboard and direction to the correct support

staff, according to the profile of the calling customer;

. choice of the best distribution channel;

. determination of the best locations for bank or major store branches, based on the

determination of store profiles as a function of their location and the turnover generated

by the different departments;

. in the retail industry, determination of consumer profiles, the ‘market basket’, the effect

of sales or advertising; planning of more effective promotions, better prediction of

demand to avoid stock shortages or unsold stock;
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. telephone traffic forecasting;

. design of call centres;

. stimulating the reuse of a telephone card in a closely identified group of customers, by

offering a reduction on three numbers of their choice;

. winning on-line customers for a telephone operator;

. analysis of customers’ letters of complaint (using text data obtained by text mining – see

Chapter 14);

. technology watching (use of text mining to analyse studies, specialist papers, patent

filings, etc.);

. competitor monitoring.

In operational terms, the discovery of these rules enables the user to answer the questions

‘who’, ‘what’, ‘when’ and ‘how’ – who to sell to, what product to sell, when to sell it, how to

reach the customer.

Perhaps the most typical application of data mining in CRM is propensity scoring, which

measures the probability that a customer will be interested in a product or service, and which

enables targeting to be refined in marketing campaigns. Why is propensity scoring so

successful? While poorly targeted mailshots are relatively costly for a business, with the

cost depending on the print quality and volume of mail, unproductive telephone calls are even

more expensive (at least D5 per call). Moreover, when a customer has received several

mailings that are irrelevant to him, hewill not bother to open the next one, andmay even have a

poor image of the business, thinking that it pays no attention to its customers.

In strategic marketing, data mining can offer:

. help with the creation of packages and promotions;

. help with the design of new products;

. optimal pricing;

. a customer loyalty development policy;

. matching of marketing communications to each segment of the customer base;

. discovery of segments of the customer base;

. discovery of unexpected product associations;

. establishment of representative panels.

As a general rule, data mining is used to gain a better understanding of the customers, with a

view to adapting the communications and sales strategy of the business.

In risk management, data mining is useful when dealing with the following matters:

. identifying the risk factors for claims in personal and property insurance, mainly motor

and home insurance, in order to adapt the price structure;
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. preventing non-payment of bills in the mobile telephone industry;

. assisting payment decisions in banks, for current accounts where overdrafts exceed the

authorized limits;

. using the risk score to offer the most suitable credit limit for each customer in banks and

specialist credit companies, or to refuse credit, depending on the probability of

repayment according to the due dates and conditions specified in the contract;

. predicting customer behaviour when interest rates change (early credit repayment

requests, for example);

. optimizing recovery and dispute procedures;

. automatic real-time fraud detection (for bank cards or telephone systems);

. detection of terrorist profiles at airports.

Automatic fraud detection can be used with a mobile phone which makes an unusually long

call from or to a location outside the usual area. Real-time detection of doubtful bank

transactions has enabled the Amazon on-line bookstore to reduce its fraud rate by 50% in 6

months. Chapter 12 will deal more fully with the use of risk scoring in banking.

A recent and unusual application of data mining is concerned with judicial risk. In the

United Kingdom, the OASys (Offenders Assessment System) project aims to estimate the

risk of repeat offending in cases of early release, using information on the family

background, place of residence, educational level, associates, criminal record, social

workers’ reports and behaviour of the person concerned in custody and in prison. The

British Home Secretary and social workers hope that OASys will standardize decisions on

early release, which currently vary widely from one region to another, especially under the

pressure of public opinion.

The miscellaneous applications of data mining and statistics include the following:

. road traffic forecasting, day by day or by hourly time slots;

. forecasting water or electricity consumption;

. determining whether a person owns or rents his home, when planning to offer insulation

or installation of a heating system (Électricit�e de France);

. improving the quality of a telephone network (discovering why some calls are

unsuccessful);

. quality control and tracing the causes of manufacturing defects, for example in the

motor industry, or in companies such as the one which succeeded in explaining the

sporadic appearance of defects in coils of steel, by analysing 12 parameters in 8000 coils

during 30 days of production;

. use of survival analysis in industry, with the aim of predicting the life of a manu-

factured component;

. profiling of job seekers, in order to detect unemployed persons most at risk of long-term

unemployment and provide prompt assistance tailored to their personal circumstances;
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. pattern recognition in large volumes of data, for example in astrophysics, in order to

classify a celestial object which has been newly discovered by telescope (the SKICAT

system, applied to 40 measured characteristics);

. signal recognition in the military field, to distinguish real targets from false ones.

A rather more entertaining application of data mining relates to the prediction of the

audience share of a television channel (BBC) for a new programme, according to

the characteristics of the programme (genre, transmission time, duration, presenter, etc.),

the programmes preceding and following it on the same channel, the programmes broadcast

simultaneously on competing channels, the weather conditions, the time of year (season,

holidays, etc.) and any major events or shows taking place at the same time. Based on a

data log covering one year, a model was constructed with the aid of a neural network. It is

able to predict audience share with an accuracy of �4%, making it as accurate as the best

experts, but much faster.

Data mining can also be used for its own internal purposes, by helping to determine the

reliability of the databases that it uses. If an anomaly is detected in a data element X, a variable

‘abnormal data element X (yes/no)’ is created, and the explanation for this new variable is

then found by using a decision tree to test all the data except X.

1.3 Data mining and statistics

In the commercial field, the questions to be asked are not only ‘how many customers have

bought this product in this period?’ but also ‘what is their profile?’, ‘what other products are

they interested in?’ and ‘when will they be interested?’. The profiles to be discovered are

generally complex: we are not dealing with just the ‘older/younger’, ‘men/women’, ‘urban/

rural’ categories, which we could guess at by glancing through descriptive statistics, but with

more complicated combinations, in which the discriminant variables are not necessarily what

we might have imagined at first, and could not be found by chance, especially in the case of

rare behaviours or phenomena. This is true in all fields, not only the commercial sector. With

data mining, we move on from ‘confirmatory’ to ‘exploratory’ analysis.5

Data mining methods are certainly more complex than those of elementary descriptive

statistics. They are based on artificial intelligence tools (neural networks), information theory

(decision trees), machine learning theory (see Section 11.3.3), and, above all, inferential

statistics and ‘conventional’ data analysis including factor analysis, clustering and discrimi-

nant analysis, etc.

There is nothing particularly new about exploratory data analysis, even in its advanced

forms such as multiple correspondence analysis, which originated in thework of theoreticians

such as Jean-Paul Benz�ecri in the 1960s and 1970s and Harold Hotelling in the 1930s and

1940s (see Section A.1 in Appendix A). Linear discriminant analysis, still used as a scoring

method, first emerged in 1936 in the work of Fisher. As for the evergreen logistic regression,

5 In an article of 1962 and a book published in 1977, J.W. Tukey, the leading American statistician, contrasts

exploratory data analysis, in which the data take priority, with confirmatory data analysis, in which the model takes

priority. See Tukey, J.W. (1977) Exploratory Data Analysis. Reading, MA: Addison-Wesley.
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Pierre-François Verhulst anticipated this in 1838 and Joseph Berkson developed it from 1944

for biological applications.

The reasons why data mining has moved out of universities and research laboratories

and into the world of business include, as we have seen, the pressures of competition

and the new expectations of consumers, as well as regulatory requirements in some cases,

such as pharmaceuticals (where medicines must be trialled before they are marketed),

or banking (where the equity must be adjusted according to the amount of exposure and

the level of risk incurred). This development has been made possible by three major

technical advances.

The first of these concerns the storage and calculation capacity offered by modern

computing equipment and methods: data warehouses with capacities of several tens of

terabytes, massively parallel architectures, increasingly powerful computers.

The second advance is the increasing availability of ‘packages’ of different kinds of

statistical and data mining algorithms in integrated software. These algorithms can be

automatically linked to each other, with a user-friendliness, a quality of output and options

for interactivity which were previously unimaginable.

The third advance is a step change in the field of decision making: this includes the use of

data mining methods in production processes (where data analysis was traditionally used only

for single-point studies), which may extend to the periodic output of information to end users

(marketing staff, for example) and automatic event triggering.

These three advances have been joined by a fourth. This is the possibility of processing data

of all kinds, including incomplete data (by using imputation methods), some aberrant data (by

using ‘robust’ methods), and even text data (by using ‘text mining’). Incomplete data – in other

words, thosewithmissing values – are found less commonly in science, where all the necessary

data are usually measured, than in business, where not all the information about a customer is

always known, either because the customer has not provided it, or because the salesman has not

recorded it.

A fifth element has played a part in the development of data mining: this is the

establishment of vast databases to meet themanagement requirements of businesses, followed

by an awareness of the unexploited riches that these contain.

1.4 Data mining and information technology

An IT specialist will see a data mining model as an IT application, in other words a set of

instructions written in a programming language to carry out certain processes, as follows:

. providing an output data element which summarizes the input data (e.g. a

segment number);

. or providing an output data element of a new type, deduced from the input data and used

for decision making (e.g. a score value).

As we have seen, the first of these processes corresponds to descriptive data mining, where the

archetype is clustering: an individual’s membership of a cluster is a summary of all of its

present characteristics. The second example corresponds to predictive data mining, where the

archetype is scoring: the new variable is a probability that the individual will behave in a

certain way in the future (in respect of risk, consumption, loyalty, etc.).
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Like all IT applications, a data mining application goes through a number of phases:

. development (construction of the model) in the decision-making environment;

. testing (verifying the performance of the model) in the decision-making environment;

. use in the production environment (application of the model to the production data to

obtain the specified output data).

However, data mining has some distinctive features, as follows:

. The development phase cannot be completed in the absence of data, in contrast to an IT

development which takes place according to a specification; the development of amodel

is primarily dependent on data (even if there is a specification as well).

. Development and testing are carried out in the same environment, with only the data sets

differing from each other (as they must do!).

. To obtain an optimal model, it is both normal and necessary to move frequently between

testing and development; some programs control these movements in a largely

automatic way to avoid any loss of time.

. The data analysis for development and testing is carried out using a special-purpose

program, usually designed by SAS, SPSS (IBM group), KXEN, Statistica or SPAD, or

open source software (see Chapter 5).

. All these programs benefit from graphic interfaces for displaying results which justify

the relevance of the developments and make them evident to users who are neither

statisticians nor IT specialists.

. Some programs also offer the use of the model, which can be a realistic option if

the program is implemented on a server (which can be done with the programs

mentioned above).

. The conciseness of the data mining models: unlike the instructions of a computer

program, which are often relatively numerous, the number of instructions in a data

mining model is nearly always small (if we disregard the instructions for collecting the

data to which the model is applied, since these are related to conventional data

processing, even though there are special purpose tools), and indeed conciseness (or

‘parsimony’) is one of the sought-after qualities of a model (since it is considered to

imply readability and robustness).

To some extent, the last two points are the inverse of each other. On the one hand, data

mining models can be used in the same decision-making environment and with the same

software as in the development phase, provided that the production data are transferred into

this environment. On the other hand, the conciseness of the models means that they can be

exported to a production environment that is different from the development environment, for

example an IBM and DB2 mainframe environment, or Unix and Oracle. This solution may

provide better performance than the first for the periodic processing of large bodies of data

without the need for bulky transfers, or for calculating scores in real time (with inputting face

to face with the customer), but it requires an export facility. The obvious advantage of the first
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solution is a gain in time in the implementation of the data mining processes. In the first

solution, the data lead to the model; in the second, the model leads to the data (see Figure 1.2).

Somemodels are easily exported and reprogrammed in any environment. These are purely

statistical models, such as discriminant analysis and logistic regression, although the latter

requires the presence of an exponential function or the power function at least (which, it

should be noted, is provided even in Cobol). These standard models are concise and high-

performing, provided that they are used with care. In particular, it is advisable to work with a

few carefully chosen variables, and to apply these models to relatively homogeneous

populations, provided that a preliminary segmentation is carried out.

Here is an example of a logistic regressionmodel, which supplies the ‘score’ probability of

being interested in purchasing a certain product. The ease of export of this type of model will

be obvious.

logit = 0.985 - (0.005*variable_W) + (0.019* variable_X) +

(0.122* variable_Y) - (0.002* variable_Z);

score = exponential(logit) / [1 + exponential(logit)];

Such a model can also be converted to a scoring grid, as shown in Section 12.8.

Another verywidespread type ofmodel is the decision tree. Thesemodels are very popular

because of their readability, although they are not the most robust, as we shall see.

A very simple example (Figure 1.3) again illustrates the propensity to buy a product. The

aim is to extend the branches of the tree until we obtain terminal nodes or leaves (at the end of

the branches, although the leaves are at the bottom here and the root, i.e. the total sample, is at

the top) which contain the highest possible percentage of ‘yes’ (propensity to buy) or ‘no’ (no

propensity to buy).

The algorithmic representation of the tree is a set of rules (Figure 1.4), where each rule

corresponds to the path from the root to one of the leaves. As we can see in this very simple

example, the model soon becomes less concise than a statistical model, especially as real trees

often have at least four or five depth levels. Exporting would therefore be rather more difficult

if it were a matter of copying the rules ‘manually’, but most programs offer options for

automatic translation of the rules into C, Java, SQL, PMML, etc.

Some clustering models, such as those obtained by the moving centresmethod or variants

of it, are also relatively easy to reprogram in different IT environments. Figure 1.5 shows an

example of this, produced by SAS, for clustering a population described by six variables into

three clusters. Clearly, this is a matter of calculating the Euclidean distance separating each

individual from each of the three clusters, and assigning the individual to the cluster to which

he is closest (where CLScads[_clus] reaches a minimum).

However, not all clustering models can be exported so easily. Similarly, models produced

by neural networks do not have a simple synthetic expression. To enable any type of model to

be exported to any type of hardware platform, a universal language based onXMLwas created

in 1998 by the Data Mining Group (www.dmg.org): it goes by the name of Predictive Model

Markup Language (PMML). This language can describe the data dictionary used (variables,

with their types and values) and the data transformations carried out (recoding, normalization,

discretization, aggregation), and can use tags to specify the parameters of various types of

model (regressions, trees, clustering, neural networks, etc.). By installing a PMML interpreter

or relational databases, it is possible to deploy data mining models in an operating environ-

ment which may be different from the development environment. Moreover, these models can
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be generated by different data mining programs (SAS, IBM SPSS, R, for example), since the

PMML language tends to spread slowly, even though it remains less widespread and possibly

less efficient than C, Java and SQL.

In R, for example, a decision tree is exported by using the pmml package (which also

requires the XML package). The first step is to create the model, using the rpart tree function

(Figure 1.6). The pmml package currently allows the export of models produced by linear

regression, logistic regression, support vector machines, neural networks (the nnet package),

decision tree (the rpart package), random forests and k-means.

I have mentioned three software packages in this section: SAS, IBM SPSS and R. These

will be described in detail, with other data mining software, in Chapter 5.

1.5 Data mining and protection of personal data

Statisticians and data miners must comply with their national law with regard to the

processing of personal data. Such data are defined as those which can be directly or indirectly

related to an individual physical person by using his civil status, another identifier such as the

Figure 1.3 Example of a decision tree generated by Answer Tree.
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telephone number of a customer or an assured party, or any other element belonging to him

(voice, image, genetic or biometric fingerprints, address, etc.).6

Most countries have passed laws to restrict the collection, storage, processing and use of

personal data, especially sensitive data, relating to health, sexual orientation, criminal

convictions, racial origin, political opinions and religious faith. This is also the case in

the European Union member states that have adopted European Directive 95/46/EC of

24 October 1995 into their national law. According to Article 6 of this directive, personal data

must be:

(a) processed fairly and lawfully;

(b) collected for specified, explicit and legitimate purposes and not further processed in a

way incompatible with those purposes. Further processing of data for historical,

statistical or scientific purposes shall not be considered as incompatible provided that

Member States provide appropriate safeguards;

/* Node 3 */

DO IF (SYSMIS(age) OR (VALUE(age) LE 45.5)) AND

((VALUE(nbcards) LE 1.5) OR SYSMIS(nbcards)).

COMPUTE nod_001 = 3.

COMPUTE pre_001 = ‘N’.

COMPUTE prb_001 = 0.649318.

END IF.

EXECUTE.

/* Node 4 */

DO IF (SYSMIS(age) OR (VALUE(age) LE 45.5)) AND

((VALUE(nbcards) GT 1.5) OR SYSMIS(nbcards)).

COMPUTE nod_001 = 4.

COMPUTE pre_001 = ‘O’.

COMPUTE prb_001 = 0.573678.

END IF.

EXECUTE.

/* Node 2 */

DO IF (VALUE(age) GT 45.5).

COMPUTE nod_001 = 2.

COMPUTE pre_001 = ‘O’.

COMPUTE prb_001 = 0.635468.

END IF.

EXECUTE.

Figure 1.4 Example of SPSS code for a decision tree.

6 This does not apply to files on physical persons that are anonymized by the removal of all identifiers that could be

used to trace them. Such files may be useful for statistical research.
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*************************************;

*** begin scoring code for clustering;

*************************************;

label _SEGMNT_ = ‘Cluster ID’

Distance = ‘Distance to Cluster Seed’;

drop _nonmiss; _nonmiss = n(

AGE , SAVINGS, NBPROD , EXPENDIT , INCOME , NBCARDS);

if _nonmiss = 0 then do;

_SEGMNT_ _ = .; distance = .;

end;

else do;

array _CLScads[3] _temporary_;

drop _clus;

do _clus = 1 to 3; _CLScads[_clus] = 0; end;

if n(AGE) then do;

_CLScads[1] + (AGE - 69.111111111 )**2;

_CLScads[2] + (AGE - 70.095238095 )**2;

_CLScads[3] + (AGE - 43.473900586 )**2;

end;

if n(SAVINGS) then do;

_CLScads[1] + (SAVINGS - 383125.82523 )**2;

_CLScads[2] + (SAVINGS - 256109.6931 )**2;

_CLScads[3] + (SAVINGS - 14778.055064 )**2;

end;

if n(NBPROD) then do;

_CLScads[1] + (NBPROD - 14.055555556 )**2;

_CLScads[2] + (NBPROD - 15.476190476 )**2;

_CLScads[3] + (NBPROD - 8.8776628878 )**2;

end;

if n(EXPENDIT) then do;

_CLScads[1] + (DEPENSES - 5091.3631019 )**2;

_CLScads[2] + (EXPENDIT- 3699.0411688 )**2;

_CLScads[3] + (EXPENDIT - 2296.6205468 )**2;

end;

if n(INCOME) then do;

_CLScads[1] + (INCOME - 3393.2086589 )**2;

_CLScads[2] + (INCOME - 3247.8545619 )**2;

_CLScads[3] + (INCOME - 1863.3223265 )**2;

end;

if n(NBCARDS) then do;

_CLScads[1] + (NBCARDS - 1 )**2;

_CLScads[2] + (NBCARDS - 1.2380952381 )**2;

CLScads[3] + (NBCARDS - 1.4502304722 )**2;

end;

_SEGMNT_ _ = 1; distance = _CLScads[1];

do _clus = 2 to 3;

if _CLScads[_clus] < distance then do;

_SEGMNT_ = _clus; distance = _CLScads[_clus];

end;

end;

distance = sqrt(distance*6/_nonmiss);

end;

***********************************;

*** end scoring code for clustering;

***********************************;

Figure 1.5 Example of SAS code generated by SAS Enterprise Miner.
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> library(pmml)

Loading required package: XML

> pmml(titanic.rpart)

<PMML version=‘‘3.2’’ xmlns=‘‘http://www.dmg.org/PMML-3_2’’

xmlns:xsi=‘‘http://www.w3.org/2001/XMLSchema-instance’’

xsi:schemaLocation=‘‘http://www.dmg.org/PMML-3_2

http://www.dmg.org/v3-2/pmml-3-

2.xsd’’>

<Header copyright=‘‘Copyright (c) 2010 St�ephane’’
description=‘‘RPart Decision Tree Model’’>

<Extension name=‘‘timestamp’’ value=‘‘2010-06-27 16:30:10’’

extender=‘‘Rattle’’/>

<Extension name=‘‘description’’ value=‘‘St�ephane’’
extender=‘‘Rattle’’/>

<Application name=‘‘Rattle/PMML’’ version=‘‘1.2.15’’/>

</Header>

<DataDictionary numberOfFields=‘‘4’’>

<DataField name=‘‘survived’’ optype=‘‘continuous’’

dataType=‘‘double’’/>

<DataField name=‘‘class’’ optype=‘‘continuous’’

dataType=‘‘double’’/>

<DataField name=‘‘age’’ optype=‘‘continuous’’ dataType=‘‘double’’/>

<DataField name=‘‘sex’’ optype=‘‘continuous’’ dataType=‘‘double’’/>

</DataDictionary>

<TreeModel modelName=‘‘RPart_Model’’ functionName=‘‘regression’’

algorithmName=‘‘rpart’’ splitCharacteristic=‘‘binarySplit’’

missingValueStrategy=‘‘defaultChild’’>

<MiningSchema>

<MiningField name=‘‘survived’’ usageType=‘‘predicted’’/>

<MiningField name=‘‘class’’ usageType=‘‘active’’/>

<MiningField name=‘‘age’’ usageType=‘‘active’’/>

<MiningField name=‘‘sex’’ usageType=‘‘active’’/>

</MiningSchema>

<Node id=‘‘1’’ score=‘‘0.323034984098137’’ recordCount=‘‘2201’’

defaultChild=‘‘2’’>

<True/>

<Node id=‘‘2’’ score=‘‘0.212016175621028’’ recordCount=‘‘1731’’

defaultChild=‘‘4’’>

<SimplePredicate field=‘‘sex’’ operator=‘‘greaterOrEqual’’

value=‘‘0.5’’/>

<Node id=‘‘4’’ score=‘‘0.202759448110378’’ recordCount=‘‘1667’’>

<SimplePredicate field=‘‘age’’ operator=‘‘greaterOrEqual’’

value=‘‘0.5’’/>

</Node>

<Node id=‘‘5’’ score=‘‘0.453125’’ recordCount=‘‘64’’

defaultChild=‘‘10’’>

<SimplePredicate field=‘‘age’’ operator=‘‘lessThan’’

value=‘‘0.5’’/>

<Node id=‘‘10’’ score=‘‘0.270833333333333’’ recordCount=‘‘48’’>

<SimplePredicate field=‘‘class’’ operator=‘‘greaterOrEqual’’

value=‘‘2.5’’/>

Figure 1.6 Exporting a model into PMML in R software.
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(c) adequate, relevant and not excessive in relation to the purposes for which they are

collected and/or further processed;

(d) accurate and, where necessary, kept up to date; every reasonable step must be taken

to ensure that data which are inaccurate or incomplete, having regard to the

purposes for which they were collected or for which they are further processed,

are erased or rectified;

(e) kept in a form which permits identification of data subjects for no longer than is

necessary for the purposes for which the data were collected or for which they are

further processed.

Article 25 adds that personal data may be transferred to a third country only if the country in

question ensures an adequate level of the protection of the data.

</Node>

<Node id=‘‘11’’ score=‘‘1’’ recordCount=‘‘16’’>

<SimplePredicate field=‘‘class’’ operator=‘‘lessThan’’

value=‘‘2.5’’/>

</Node>

</Node>

</Node>

<Node id=‘‘3’’ score=‘‘0.731914893617021’’ recordCount=‘‘470’’

defaultChild=‘‘6’’>

<SimplePredicate field=‘‘sex’’ operator=‘‘lessThan’’

value=‘‘0.5’’/>

<Node id=‘‘6’’ score=‘‘0.459183673469388’’ recordCount=‘‘196’’>

<CompoundPredicate booleanOperator=‘‘surrogate’’>

<SimplePredicate field=‘‘class’’ operator=‘‘greaterOrEqual’’

value=‘‘2.5’’/>

<SimplePredicate field=‘‘age’’ operator=‘‘lessThan’’

value=‘‘0.5’’/>

</CompoundPredicate>

</Node>

<Node id=‘‘7’’ score=‘‘0.927007299270073’’ recordCount=‘‘274’’>

<CompoundPredicate booleanOperator=‘‘surrogate’’>

<SimplePredicate field=‘‘class’’ operator=‘‘lessThan’’

value=‘‘2.5’’/>

<SimplePredicate field=‘‘age’’ operator=‘‘greaterOrEqual’’

value=‘‘0.5’’/>

</CompoundPredicate>

</Node>

</Node>

</Node>

</TreeModel>

</PMML>

>

Figure 1.6 (Continued ).
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Unless an exception is made, for example in the case of a person working in the medical

field, no statistician or other person is allowed to work on the aforementioned sensitive data

unless they have been anonymized7. In some cases, the secrecy surrounding these data is

reinforced by specific regulations, such as those relating tomedical or banking confidentiality.

Clearly, the disclosure of medical information about a patient may be harmful to him in terms

of his image, but also, and more seriously, if it creates difficulties when he is seeking work or

insurance cover. In another field, the abuse of Internet surfing data may be an intrusion into

private life, because such data may reveal preferences and habits, and may lead to unwelcome

selling operations. In banking, the disclosure of confidential data may expose their owner to

obvious risks of fraud. Banking data, especially those relating to the use of bank cards, could

also lead to drift, if they are used to analyse the lifestyle, movements and consumption habits

of cardholders. This could be used to create a customer profile, which is exploited for gain, but

which bears no relationship to the purpose for which these data were collected. As a general

rule, therefore, all such statistical and computerized processing is highly restricted, in order to

avoid cases in which customers innocently providing information simply for the purposes of

managing their contracts find that, unbeknown to them, the information has been used in other

ways for commercial purposes. Close attention is paid to the interconnection of computer

files, which would make it possible to link different kinds of information, collected for

different purposes, in such a way that disclosure would lead to the abusive or dangerous

retention of files on individuals. Sadly, history has shown that the fear of ‘Big Brother’ is not

unjustified. In this context, the sensitive nature of data on origin or political or religious

opinions is evident, but legislators have generally considered that the storage of personal data

on an individual could affect the freedom of the individual, even if none of the data are

sensitive when taken in isolation.

This is particularly true of data relating to different aspects of an individual which can be

used to create a ‘profile’ of the individual, using automatic processing, which may cause him

to lose a right, a service or a commercial offer. In this area, risk scoring and behavioural

segmentation are processes that are monitored and regulated by the authorities. The data

miner must be aware of this, and must be careful to use only the data and processes that are

legally available.

This fear of the power of files has even led some countries, including France, to restrict

the dissemination of geomarketing data, such as those obtained from censuses, to a

sufficiently coarse level of resolution to prevent these data from being applied too accurately

to specific individuals (see Section 4.2.1). Geodemographic databases also contain hundreds

of pieces of data on the income, occupational and family circumstances, consumption habits

and lifestyles of the inhabitants of each geographical area. If each geographical area contains

only a few tens of families, the data on a given family would clearly be very similar to the

mean data in the geographical area, and the profile of each family could therefore be fairly

accurately estimated.

The principles stated above are those that apply in the European Union, in the European

Economic Area (EU, Iceland, Liechtenstein, Norway), in Switzerland, in Canada and in

7 Current cryptographic methods, such as hashing, can be used for secure matching of files, and for reconciling

anonymity with the need to cross-check files containing data on a single person or to update them subsequently. Each

identifier is associated with a personal code, such that the identifier can be used to retrieve the personal code, but not

vice versa. This personal code is then used tomatch the files. Thesemechanisms have been used in themedical field for

several years.
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Argentina. In the United States, personal data protection is much less closely regulated, and

there is no equivalent to Directive 95/46/EC. Very few states have followed California in

passing appropriate legislation, and data protection is based on the reactions of citizens rather

than the law. However, some processes are subject to more restrictions than elsewhere in some

areas; for example, the granting of credit has been covered by the Equal Credit Opportunity

Act since 1974. This law prohibits the use of certain variables in the lending criteria, and

therefore in scoring systems as well. Ethnic origin, nationality and religion must not be used.

Neither must the sex of the applicant. Age can be used only if it does not penalize older

persons. Income can be taken into account, but its origin (wages, pensions, social security,

etc.) must not. No distinction must be made between married and unmarried applicants.

However, occupation, seniority in employment, and owner-occupier status may be taken into

account. Unless credit is refused, there is no obligation to tell an applicant what his score is (it

is available only once per year on the Annualcreditreport.com site), but some organizations

sell this information to applicants and also offer advice on improving their scores.

In another area, the Safe Harbor Privacy Principles, which US organizations are asked to

complywith, were developed by the USDepartment of Commerce in response to Article 25 of

Directive 95/46/EC, to protect the security of exchanges with those organizations that agree to

observe these principles. However, it appears that these principles are not always followed in

practice, and the exchange of data between Europe and the USA is a regular source of conflict.

The history of Passenger Name Record (PNR) data is one example of this.

Following the attacks on the USA on 11 September 2001, the Information Awareness

Office was established in January 2002, under the aegis of the US Department of Defense, to

provide permanent automatic surveillance of all possible kinds of information whichmight be

evidence of preparation for terrorist activities. This project, called Total Information

Awareness (TIA), and renamed Terrorism Information Awareness in 2003, was intended to

enable significant links to be created between police and judicial data and behaviour such as

applications for passports, visas, work permits and driving licences, the use of credit cards, the

purchase of airline tickets, the hiring of cars, and the purchase of chemical products, weapons,

etc. TIA included other aspects such as automatic recognition of a human face in a crowd,

automatic transcription of verbal and written communications in foreign languages, surveil-

lance of medical databanks to detect a possible biological attack, and the surveillance of

certain movements on the stock exchanges. This project led to protests by defenders of

individual liberties, and its funding was stopped in September 2003. It reappeared shortly

afterwards in other forms such as the CAPPS (Computer Assisted Passenger Prescreening

System) and CAPPS2 of the Transportation Security Administration. This programme was

more closely targeted than the preceding ones, since it was intended to be applied to users of

air transport only: on embarking, each passenger supplied his name, address and telephone

number, permitting automatic consultation of several hundred databases of various kinds

(government and private). The result of this interrogation could trigger an alert and result in a

passenger being searched. The initial aim was to extend this from the USA to Europe, but the

US companies that had agreed to participate in the tests were boycotted by consumers, and the

programme was finally wound up by Congress because of the dangers it posed to private life.

Furthermore, opposition developed in Europe against the transmission of PNR data to the US

customs and security services. These were data exchanged in standardized form between the

stakeholders in air transport. They could be used by CAPPS2, and their extent and period of

retention were critical. In 2004, CAPPS2 was replaced by Secure Flight and VRPS (Voluntary

Registered Passenger System), and agreement was reached, with some difficulty, in August

22 OVERVIEW OF DATA MINING



2007 between the European Union and the United States on the transmission of PNR data to

the authorities. The number and nature of these data (bank card number, telephone number,

address, etc.) were always considered excessive by the Europeans, especially since their

period of retention was 15 years, the right of access and correction was at the discretion of the

Americans, access to sensitive data (ethnic origin, political opinions, state of health, etc.) was

possible, the purposes of use could be extended, and the data could be transferred to third

countries by the Americans: these were all infringements of Directive 95/46/EC. Further

disputes between the two continents arose from the ‘no-fly lists’, or lists of passengers named

as undesirable by the USA, supplied by the US authorities to the airlines who were asked to

ensure that any passengers flying to the USA did not appear on these lists. The legal basis and

quality of these lists were questioned by the Europeans, who pointed out, among other things,

the risks of confusion of similar names in these lists, which are updated daily but still contain

65 000 names.

Any statistician or data miner dealing with personal data, even if these are rarely as

sensitive as PNR data, must be careful to respect the private life of the persons concerned and

must avoid using the data in a way which might cause undue offence. This is particularly true

in a world in which the resources of information technology are so vast that enormous

quantities of information can be collected and stored on each of us, almost without any

technical limitation. This is evenmore important in the field of data mining, a method which is

often used to help with decision making, and which could easily be transformed, if care is not

taken, into a tool which takes decisions automatically on the basis of collected information.

New problems have arisen concerning our individual data, which no longer simply form the

basis for global, anonymous analysis, but can also be used to make decisions which can

change the lives of individuals.

For further details on the protection of personal data and the problems it entails in modern

society, see Chapter 4 of David Hand’s book, Information Generation: How Data Rule Our

World,8 as well as the websites of the national data protection authorities.

1.6 Implementation of data mining

The main factors in the success of a project are:

(i) precise, substantial and realistic targets;

(ii) the richness, and above all the quality, of the information collected;

(iii) the cooperation of the departmental and statistical specialists in the organization;

(iv) the relevance of the data mining techniques used;

(v) satisfactory output of the information generated and correct integration into the

information system where appropriate;

(vi) analysis of the results and feedback of experience from each application of data

mining, to be used for the next application.

I will examine these matters in detail later on, especially in the next chapter and Chapter 13.

8 Hand, D.J. (2007) Information Generation: How Data Rule Our World. Oxford: Oneworld Publications.
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Data mining can be applied in different ways in a business. The business may entirely

outsource the data mining operation, as well as its computer facilities management, supplying

raw commercial files as required to specialist service providers. The service providers then

return the commercial files supplemented with information such as customers’ scores, their

behavioural segments, etc. Alternatively, the business may subcontract the essentials of the

data mining operation, with its service providers developing the data mining models it

requires, but then take over these models and apply them to its own files, possibly modifying

them slightly. Finally, the business may develop its own data mining models, using

commercial software, possibly with the assistance of specialist consultants – and this book,

of course! These different approaches are described more fully in Section 12.6.
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2

The development of a data

mining study

Before examining the key points of a data mining study or project in the following chapters,

I shall briefly run through the different phases in this chapter. Each phase is mentioned here,

even though some of them are optional (those covered in Sections 2.5 and 2.7), and most of

them can be handed over to a specialist firm (except for those covered in Section 2.1 and parts

of Sections 2.2 and 2.10). I will provide further details and illustrations of some of these steps

in the chapter on scoring. We shall assume that statistical or data mining software has already

been acquired; the chapter on software deals with the criteria for choice and comparison.

As a general rule, the phases of a data mining project are as follows:

. defining the aims;

. listing the existing data;

. collecting the data;

. exploring and preparing the data;

. population segmentation;

. drawing up and validating the predictive models;

. deploying the models;

. training the model users;

. monitoring the models;

. enriching the models.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



2.1 Defining the aims

We must start by choosing the subject, defining the target population (e.g. prospects and

customers, customers only, loyal customers only, all patients, only those patients who can be

cured by the treatment under test), defining the statistical entity to be studied (e.g. a person,

a household consisting of spouses only, a household including dependent children, a business

with or without its subsidiaries), defining some essential criteria and especially the phenom-

enon to be predicted, planning the project, deciding on the expected operational use of

the information extracted and the models produced, and specifying the expected results.

To do this, we must arrange for meetings to be held between the clients (risk management

and marketing departments, specialists, future users, etc., as appropriate) and the service

providers (statisticians and IT specialists). As some data mining projects are mainly

horizontal, operating across several departments, it will be useful for the general management

to be represented at this stage, so that the inevitable arbitration can take place. The top

management will also be able to promote the new data mining tools, if their introduction, and

the changes in procedure that they entail, encounter opposition in the business. The contacts

present at this stagewill subsequently attend periodic steering committee meetings to monitor

the progress of the project.

This stage will partly determine the choice of the data mining tools to be used. For

example, if the aim is to set out explicit rules for a marketing service or to discover the factors

in the remission of a disease, neural networks will be excluded.

The aims must be very precise and must lead to specific actions, such as the refining of

targeting for a direct marketing campaign. In the commercial field, the aims must also be

realistic (see Section 13.1) and allow for the economic realities, marketing operations that

have already been conducted, the penetration rate, market saturation, etc.

2.2 Listing the existing data

The second step is the collection of data that are useful, accessible (inside or outside the

business or organization), legally and technically exploitable, reliable and sufficiently up to

date as regards the characteristics and behaviour of the individuals (customers, patients, users,

etc.) being studied. These data are obtained from the IT system of the business, or are stored in

the business outside the central IT system (in Excel or Access files, for example), or are bought

or retrieved outside the business, or are calculated from earlier data (indicators, ratios,

changes over time). If the aim is to construct a predictive model, it will also be necessary to

find a second type of data, namely the historical data on the phenomenon to be predicted. Thus

we need to have the results of medical trials, marketing campaigns, etc., in order to discover

how patients, customers, etc. with known characteristics have reacted to a medicine or a mail

shot, for example. In the second case, the secondary effects are rarer, and we simply need to

know about the customer who has been approached has or has not bought the products being

offered, or some other product, or nothing at all. The model to be constructed must therefore

correlate the fact of the purchase, or the cure, with the other data held on the individual.

A problemmay arise if the business does not have the necessary data, either because it has

not archived them, or because it is creating a new activity, or simply because it has little direct

contact with its customers. In this case, it must base its enquiries on samples of customers,

if necessary by offering gifts as an incentive to reply to questionnaires. It could also use
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geomarketing, mega-databases (Acxiom, Wegener Direct Marketing) or tools such as ‘first

name scoring’ (see Chapter 4). Finally, the business can use standard models designed by

specialist companies. For example, generic risk scores are available in the banking sector

(see Section 12.6.2).

Sometimes the business may have data that are, unfortunately, unsuitable for data mining,

for example when they are:

. detailed data available on microfilm, useful for one-off searches but exorbitantly

expensive to convert to a usable computerized format;

. data on individual customers that are aggregated at the end of the year to provide an

annual summary (e.g. the number and value of purchases, but with no details of dates,

products, etc.);

. monthly data of a type which would be useful, but aggregated at the store level, not the

customer level;

In such cases, the necessary data must be collected as a matter of urgency (see also

Section 4.1.7).

A note on terminology. Variable is taken to mean any characteristic of an entity (person,

organization, object, event, case, etc.) which can be expressed by a numerical value

(a measurement) or a coded value (an attribute). The different possible values that a

variable can take in the whole set of entities concerned are called the categories of the

variable. The statistical entity that is studied is often called the individual, even if it is not

a person. According to statistical usage, we may also use the term observation.

2.3 Collecting the data

This step leads to the construction of the database that will be used for the construction of

models. This analysis base is usually in the form of a table (DB2, Oracle, SAS, etc.) or a file

(flat file, CSV file, etc.) having one record (one row) for each statistical individual studied and

one field (one column) for each variable relating to this individual. There are exceptions to this

principle: among the most important of these are time series and predictive models with

repeated measurement. There are also spatial data, in which the full meaning of the record of

each entity is only brought out as a function of the other entities (propagation of a polluting

product, installation of parking meters or ticket machines, etc.). In some cases, the variables

are not the same for all the individuals (for example, medical examinations differ with the

patients). In general, however, the data can be represented by a table in which the rows

correspond to the individuals studied and the columns correspond to the variables describing

them, which are the same for all the individuals. This representation may be rather too

simplistic in some cases, but has the merit of convenience.

The analysis base is often built up from snapshots of the data taken at regular intervals

(monthly, for example) over a certain period (a year, for example). On the other hand, these

data are often not determined at the level of the individual, but at the level of the product,

account, invoice, medical examination, etc. In order to draw up the analysis base, we must

therefore provide syntheses or aggregations along a number of axes. These include the

individual axis, where data determined at a finer level (the level of the products owned by the
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individual, for example) are synthesized at the individual level, and the time axis, where

n indicators determined at different instants are replaced by a single indicator determined for

the whole period. For example, in the case of wages and other income paid into in a bank, we

start by calculating themonthly sum of income elements paid into the different accounts of the

household, before calculating themean of thesemonthly income elements over 12months. By

observing the independent variables over a year, we can make allowance for a full economic

cycle and smooth out the effect of seasonal variations.

As regards the aggregation of data at the individual level, this can be done (to take an

example from the commercial sector) by aggregating the ‘product’ level data (one row per

product in the files) into ‘customer’ level data, thus producing, in the file to be examined, one

row per customer, in which the ‘product’ data are replaced by sums, means, etc., of all the

customer’s products. By way of example, we can move from this file:

to this file:

Clearly, the choice of the statistical operation used to aggregate the ‘product’ data for

each customer is important.Where risk is concerned, for example, very different resultsmay be

obtained, depending onwhether the number of debit days of a customer is defined as themean or

themaximum number of debit days for his current accounts. The choice of each operationmust

be carefully thought out and must have a functional purpose. For risk indicators, it is generally

the most serious situation of the customer that is considered, not his average situation.

When a predictive model is to be constructed, the analysis base will be of the kind shown

in Figure 2.1. This has four types of variable: the identifier (or key) of the individual, the target

variable (i.e. the dependent variable), the independent variables, and a ‘sample’ variable

which shows whether each individual is participating in the development (learning) or the

testing of the model (see Section 11.16.4).

customer no. date of purchase product purchased value of purchase

customer 1 21/02/2004 jacket 25

customer 1 17/03/2004 shirt 15

customer 2 08/06/2004 T-shirt 10

customer 2 15/10/2004 socks 8

customer 2 15/10/2004 pullover 12

. . . . . . . . . . . .

customer 2000 18/05/2004 shoes 50

. . . . . . . . . . . .

customer no. date of 1st purchase date of last purchase value of purchases

customer 1 21/02/2004 17/03/2004 40

customer 2 08/06/2004 15/10/2004 30

. . . . . . . . . . . .

customer 2000 18/05/2004 18/05/2004 50

. . . . . . . . . . . .
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The analysis base is constructed in accordance with the aim of the study. The aimmay be to

find a function f of the independent variables of the base, such that f (independent variables of a

customer) is the probability that the customer (or patient)will buy the product offered, orwill fall

ill, etc. The data are often observed over 18months (better still, 24months): themost recent 6 (or

12) months are the period of observation for the purchase of a product or the onset of a disease,

and the previous 12 months are the period in which the customer’s data are analysed to explain

what has been observed in the recent period. In this case, we are seeking a function f such that

Probabilityðdependent variable ¼ xÞ ¼ f ðindependent variablesÞ:
The periods of observation of the independent and dependent variables must be separated;

otherwise, the values of the independent variables could be the consequence, not the cause,

of the value of the dependent variable.

For example, if we examine the payments made with a card after the acquisition of a

second card in a household, they will probably be higher than for a household which has not

acquired a second card. However, this does not tell us anything useful. We need to know if the

household that has acquired a second card used to make more payments by card before

acquiring its second card than the household that did not acquire one.

2.4 Exploring and preparing the data

In this step the checking of the origin of the data, frequency tables, two-way tables, descriptive

statistics and the experience of users allow three operations.

The first operation is to make the data reliable, by replacing or removing data that are

incorrect because they contain too many missing values, aberrant values or extreme values

(‘outliers’) that are too remote from the normally accepted values. If only a few rare

individuals show one of these anomalies for one of the variables studied, they can be removed

from the study (at least in the model construction phase), or their anomalous values can be

replaced by a correct and plausible value (see Section 3.3). On the other hand, if a variable is

anomalous for too many individuals, this variable is unsuitable for use. Be careful about

numerical variables: we must not confuse a significant value of 0 with a value set to 0 by

default because no information is provided. The latter 0 should be replaced with the ‘null’

value in DB2, ‘NA’ in R or the missing value ‘.’ in SAS. Remember that a variable whose

reliability cannot be assured must never be used in a model. A model with one variable

missing is more useful than a model with a false variable. The same applies if we are uncertain

whether a variable will always be available or always correctly updated.

The second operation is the creation of relevant indicators from the raw data which have

been checked and corrected where necessary. This can be done as follows:

. by replacing absolute values with ratios, often the most relevant ones;

. by calculating the changes of variables over time (for example the mean for the recent

period, divided by the mean for the previous period);

. by making linear combinations of variables;

. by composing variables with other functions (such as logarithms or square roots of

continuous variables, to smooth their distribution and compress a highly right-skewed

distribution, as commonly found in financial or reliability studies);
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. by recoding certain variables, for example by converting ‘low, medium, high’ into

‘1, 2, 3’;

. by modifying units of measurement;

. by replacing the dates by durations, customer lifetimes or ages;

. by replacing geographical locations with coordinates (latitude and longitude).

Thus we can create relevant indicators, following the advice of specialists if necessary. In

the commercial field, these indicators may be:

. the age of the customer when his relationship with the business begins, based on the date

of birth and the date of the first purchase;

. the number of products purchased, based on the set of variables ‘product Pi purchased

(Yes/No)’;

. the mean value of a purchase, based on the number and value of the purchases;

. the recentness and frequency of the purchases, based on the purchase dates;

. the rate of use of revolving credit, deduced from the ceiling of the credit line and the

proportion actually used.

The third operation is the reduction of the number of dimensions of the problem:

specifically, the reduction of the number of individuals, the number of variables, and the

number of categories of the variables.

As mentioned above, the reduction of the number of individuals is a matter of eliminating

certain extreme individuals from the population, in a proportion which should not normally

be more than 1–2%. It is also common practice to use a sample of the population (see

Section 3.15), although care must be taken to ensure that the sample is representative: this may

require a more complex sampling procedure than ordinary random sampling.

The reduction of the number of variables consists of:

. disregarding some variables which are too closely correlated with each other and which,

if taken into account simultaneously, would infringe the commonly required assumption

of non-collinearity (linear independence) of the independent variables (in linear

regression, linear discriminant analysis or logistic regression);

. disregarding certain variables that are not at all relevant or not discriminant with respect

to the specified objective, or to the phenomenon to be detected;

. combining several variables into a single variable; for example, the number of

products purchased with a two-year guarantee and the number of products purchased

with a five-year guarantee can be added together to give the number of products

purchased without taking the guarantee period into account, if this period is not

important for the problem under investigation; it is also possible to replace the

‘number of purchases’ variables established for each product code with the ‘number

of purchases’ variables for each product line, which would also reduce the number

of variables;
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. using factor analysis (if appropriate) to convert some of the initial variables into a

smaller number of variables (by eliminating the correlated variables), these variables

being chosen to maximize the variance (the new variables are also more stable in

relation to sampling and random fluctuations).

Reducing the number of variables by factor analysis, for example by principal component

analysis (PCA: see Section 7.1), is useful when these variables are used as the input of a neural

network. This is because a decrease in the number of input variables allows us to decrease the

number of nodes in the network, thus reducing its complexity and the risk of convergence of the

network towards a non-optimal solution. PCA may also be used before automatic clustering.

Quite commonly, 100 to 200 or more variables may be investigated during the develop-

ment of a classification or prediction model, although the number of ultimately discriminant

variables selected for the calculation of the model is much smaller, the order of magnitude

being as follows:

. 3 or 4 for a simple model (although the model can still classify more than 80% of the

individuals);

. 5–10 for a model of normal quality;

. 11–20 for a very fine (or refined) model.

Beyond 20 variables, the model is very likely to lose its capacity for generalization. These

figures may have to be adjusted according to the size of the population.

The reduction of the number of categories is achieved by:

. combining categories which are too numerous or contain too few observations, in the

case of discrete and qualitative variables;

. combining the categories of discrete and qualitative variables which have the same

functional significance, and are only distinguished for practical reasons which are

unrelated to the analysis to be carried out;

. discretizing (binning) some continuous variables (i.e. converting them into ranges of

values such as quartiles, or into ranges of values that are significant from the user’s point

of view, or into ranges of values conforming to particular rules, as in medicine).

Examples of categories which are combined because they are too numerous are the

individual articles in a product catalogue (which can be replaced by product lines), social and

occupational categories (which can be aggregated into about 10 values), the segments of a

housing type (which can be combined into families as indicated in Section 4.2.1), counties

(which can be regrouped into regions), the activity codes of merchants (the Merchant

Category Code used in bank card transactions) and of businesses (NACE, the French name

of the Statistical Classification of Economic Activities in the European Community, equiva-

lent to the Standard Industrial Classification in the United Kingdom and North America),

(which can be grouped into industrial sectors), etc. By way of example, the sectors of activity

may be:

. Agriculture, Forestry, Fishing and Hunting

. Mining
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. Utilities

. Construction

. Manufacturing

. Wholesale Trade

. Retail Trade

. Transportation and Warehousing

. Information

. Finance and Insurance

. Real Estate and Rental and Leasing

. Professional, Scientific, and Technical Services

. Management of Companies and Enterprises

. Administrative and Support and Waste Management and Remediation Services

. Education Services

. Health Care and Social Assistance

. Arts, Entertainment, and Recreation

. Accommodation and Food Services

. Other Services (except Public Administration)

. Public Administration

Extreme examples of variables having too many categories are variables which are

identifiers (customer number, account number, invoice number, etc.). These are essential keys

for accessing data files, but cannot be used as predictive variables.

2.5 Population segmentation

It may be necessary to segment the population into groups that are homogeneous in relation

to the aims of the study, in order to construct a specificmodel for each segment, beforemaking

a synthesis of themodels. This method is called the stratification of models. It can only be used

where the volume of data is large enough for each segment to contain enough individuals of

each category for prediction. In this case, the pre-segmentation of the population is a method

that can often improve the results significantly. It can be based on rules drawn up by experts or

by the statistician. It can also be carried out more or less automatically, using a statistical

algorithm: this kind of ‘automatic clustering’, or simply ‘clustering’, algorithm is described

in Chapter 9.

There are many ways of segmenting a population in order to establish predictive models

based on homogeneous sub-populations. In the first method, the population is segmented
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according to general characteristics which have no direct relationship with the dependent

variable. This pre-segmentation is unsupervised. In the case of a business, it may relate to its

size, its legal status or its sector of activity. At the Banque de France, the financial health of

businesses is modelled by sector: the categories are industry, commerce, transport, hotels,

caf�es and restaurants, construction, and business services. For a physical person, we may use

sociodemographic characteristics such as age or occupation. In this case, this approach can be

justified by the existence of specific marketing offers aimed at certain customer segments,

such as ‘youth’, ‘senior’, and other groups. From the statistical viewpoint, this method is not

always the best, because behaviour is not always related to general characteristics, but it may

be very useful in some cases. It is usually applied according to rules provided by experts,

rather than by statistical clustering.

Another type of pre-segmentation is carried out on behavioural data linked to the

dependent variable, for example the product to which the scoring relates. This pre-

segmentation is supervised. It produces segments that are more homogeneous in terms of

the dependent variable. Supervised pre-segmentation is generally more effective than

unsupervised pre-segmentation, because it has some of the discriminant power required in

the model. It can be implemented according to expert rules, or simply on a common-sense

basis, or by a statistical method such as a decision tree with one or two levels of depth. Even a

decision tree with only one level of depth can be used to separate the population to be

modelled into two clearly differentiated classes (or more with chi-square automatic

interaction detection), without having the instability that is a feature of deeper trees. One

common-sense rule could be to establish a consumer credit propensity score for two

segments: namely, those customers who already have this kind of credit, and the rest. In

this example, we can see that the rules can be expressed as a decision tree. This method often

enables the results to be improved.

A third type of pre-segmentation can be required because of the nature of the available

data: for example, they will be much less rich for a prospect than for a customer, and these

two populations must therefore be separated into two segments for which specific models

will be constructed.

In all cases, pre-segmentation must follow explicit rules for classifying every individual.

The following features are essential:

. simplicity of pre-segmentation (there must not be too many rules);

. a limited number of segments and stability of the segments (these two aspects

are related);

. segment sizes generally of the same order of magnitude, because, unless we have

reasons for examining a highly specific sub-population, a 99%/1% distribution is rarely

considered satisfactory;

. uniformity of the segments in terms of the independent variables;

. uniformity of the segments in terms of the dependent variable (for example, care must

be taken to avoid combining high-risk and low-risk individuals in the same segment).

We should note that some operations described in the preceding section (reduction of the

number of individuals, variables and categories) can be carried out either before any

segmentation, or on each segment.
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2.6 Drawing up and validating predictive models

This step is the heart of the data mining activity, even if it is not the most time-consuming. It

may take the form of the calculation of a score, or more generally a predictive model, for each

segment produced in the preceding step, followed by verification of the results in a test sample

that is different from the learning sample. It may also be concerned with detecting the profiles

of customers, for example according to their consumption of products or their use of the

services of a business. Sometimes it will be a matter of analysing the contents of customers’

trolleys in department stores and supermarkets, in order to find associations between products

that are often purchased together. A detailed review of the different statistical and data mining

methods for developing a model, with their principles, fields of application, strong points

and limitations, is provided in Chapters 6–11.

In the case of scoring, the principal methods are logistic regression, linear discriminant

analysis and decision trees. Trees provide entirely explicit rules and can process heterogeneous

and possibly incomplete data, without any assumptions concerning the distribution of the

variables, and can detect non-linear phenomena. However, they lack reliability and the capacity

for generalization, and this can prove troublesome. Logistic regression directly calculates the

probability of the appearance of the phenomenon that is being sought, provided that the

independent variables have no missing values and are not interrelated. Discriminant analysis

also requires the independent variables to be continuous and to follow a normal law (plus

another assumption that will be discussed below), but in these circumstances it is very reliable.

Logistic regression has an accuracy very similar to that of discriminant analysis, but is more

general because it deals with qualitative independent variables, not just quantitative ones.

In this step, several models are usually developed, in the same family or in different

families. The development of a number of models in the same family is most common,

especially when the aim is to optimize the parameters of a model by adjusting the independent

variables chosen, the number of their categories, the depth or number of leaves on a decision

tree, the number of neurons in a hidden layer, etc. We can also develop models in different

families (e.g. logistic regression and linear discriminant analysis) which are run jointly to

maximize the performance of the model finally chosen.

The aim is therefore to choose the model with the best performance out of a number of

models. I will discuss in Section 11.16.5 the importance of evaluating the performance of a

model on a test sample which is separate from the learning sample used to develop the model,

while being equally representative in statistical terms.

For comparing models of the same kind, there are statistical indicators which we will

examine inChapter 11.However, since the statistical indicators of twomodels of different kinds

(e.g. R2 for a discriminant analysis and R2 for a logistic regression) are rarely comparable, the

models are compared either by comparing their error rates in a confusion matrix (see Section

11.16.4) or by superimposing their lift curves or receiver operating characteristic (ROC) curves

(see Section 11.16.5). These indicators can be used to select the best model in each family of

models, and then the best model from all the families considered together.

The ROC curve can be used to visualize the separating power of a model, representing the

percentage of correctly detected events (the Y axis) as a function of the percentage of

incorrectly detected events (the X axis) when the score separation threshold is varied. If this

curve coincides with the diagonal, the performance of the model is no better than that of a

random prediction; as the curve approaches the upper left-hand corner of the square, the
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model improves. Several ROC curves can be superimposed to show the progressive

contribution of each independent variable in the model, as in Figure 2.2. This shows that

a single variable, if well chosen, already explains much of the phenomenon to be predicted,

and that an increase in the number of variables added to the model decreases the marginal gain

they provide.

In addition to the qualities of mathematical accuracy of the model, other selection criteria

may sometimes have to be taken into account, such as the readability of the model from the

user’s viewpoint, and the ease of implementing it in the production IT system.

2.7 Synthesizing predictive models of different segments

This small step only takes place if customer segmentation has been carried out. We need to

compare the scores of the different segments, and calculate a unique normalized score that is

comparable from one segment to another. This new score allows for the proportion of

customers in each segment, and each score band, who have already achieved the aim,

i.e. bought the product, repaid the loan, etc.

The synthesis of the scores for the different segments is easy in a logistic regressionmodel,

since the score is a probability which is inherently normalized and is suitable for the same

interpretation in all the segments (provided that the sampling has been comparable in the

different segments).

In all cases, it is possible to draw up a table showing the score points (for propensity in this

case) of the different segments, indicating the subscription rate corresponding to this score

and this segment on each occasion (Table 2.1). The rows of this table are then sorted by

subscription rate, from lowest to highest. The rows sorted in this way are then combined into ten

groups, each covering about 10% of the customers, with the rows of each group following each

other and therefore having similar subscription rates. One point is given to the customers of the

first group, and so on up to the customers of the tenth group, who have 10 points.

Figure 2.2 ROC curve.
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2.8 Iteration of the preceding steps

The procedure described in Sections 2.4 to 2.7 is usually iterated until completely satisfactory

results are obtained. The input data are adjusted, new variables are selected or the parameters are

changed in the datamining tools, which, if operating in an exploratorymode, asmentioned above,

may be highly sensitive to the choice of initial data and parameters, especially in neural networks.

Before accepting amodel, it is useful to have it validated by experts in the field, for example

credit analysts in the case of scoring, or market researchmanagers. These experts can be shown

some real cases of individuals towhich different competingmodels have been applied, and they

can then be asked to saywhichmodel appears to provide the best results, giving reasons for their

response. Thus they can detect the characteristics of a model which would not have appeared

duringmodelling. Thismay bedone in thefield ofmarketing and propensity scores. Themethod

of modelling on historic data tends to reproduce the commercial habits of the business, even if

precautions are taken to avoid this (by neutralizing the effect of sales campaigns, for example).

Thus, recent customers may be rather too well scored, since they are usually most likely to be

approached by sales staff. In the test phase, we may discover that older customers are not

describedwell enough by the propensity score, and that the use of this scorewould result in their

not being targeted. This phase could thus lead to a reduction in the effect of thevariables relating

to customer lifetime; these variables may even be removed from the model. In the field of risk,

such variables may be those which forecast the risk too late and mask variables which would

allow earlier prediction; or theymay simply be variables which are not obvious to experts in the

field, and which are discarded from the model.

2.9 Deploying the models

Deployment involves the implementation of the data mining models in a computer system,

before using the results for action (adapting procedures, targeting, etc.) and making them

available to users (information on the workplace, etc.). It is harder to update the ‘workplace’

applications to incorporate the score, especially if we wish to allow users to input new

Table 2.1 Synthesizing the score points of the different segments.

Segment Score Number of

customers

Subscription rate

1 1 n1,1 t1,1

1 2 n1,2 t1,2

. . . . . . . . . . . .

1 10 n1,10 t1,10

2 1 n2,1 t2,1

2 2 n2,2 t2,2

. . . . . . . . . . . .

5 1 n5,1 t5,1

. . . . . . . . . . . .

5 10 n5,10 t5,10
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information in order to upload them to the central production files or to execute the model in

real time. For an initial test, therefore, we may limit ourselves to creating a computer file

containing the data yielded by data mining, for example the customers’ score points; this file

may or may not be uploaded to the computerized production system, and may be used for

targeting in direct marketing. A spreadsheet file can be used to create amail merge, usingword

processing software.

In this step we must decide on the output of the data at different levels of fineness. There

may be fine grades in the production files (from 1 to 1000, for example), which are aggregated

at the workstation (from 1 to 10) or even regrouped into bands (low/medium/high).

The confidentiality of the score output will be considered in this step, if not before: for

example, is a salesman allowed to see the scores of all customers, or only the ones for which he

is responsible? The question of the frequency of updating of the data must also be considered:

this is usually monthly, but a quarterly frequency may be suitable for data that do not change

very often, while a daily frequency may be required for sensitive risk data.

Before deploying a data mining tool in a commercial network, it is obviously preferable to

test it for several months with volunteers. There will also be a phase of take-over of the tool,

possibly followed by a phase in which the initial volunteers train other users.

2.10 Training the model users

To ensure a smooth take-over of the new decision tools by the future users, it is essential to

spend some time familiarizing themwith these tools. Theymust know the objective (and stick

to it), the principles of the tools, how they work (without going into technical details, which

would subsequently have to be justified individually), their limits (noting that these are only

statistical tools which may not be useful in special cases: the difficulty in educational terms is

to maintain a minimum of vigilance and critical approach without casting doubt on the

reliability of the tools), the methods for using them (while pointing out that these are decision

support tools, not tools for automatic decision making), what the tools will contribute

(the most important point), and how the users’ work patterns will change, in both operational

and organizational terms (adaptation of procedures, increased delegation, rules for res-

ponsibility if the user does or does not follow the recommendations of the tool, in risk scoring

for example).

2.11 Monitoring the models

Two forms of monitoring will be distinguished in this section. The first is one-off. Whenever

a new data mining application is brought into use, the results must be analysed. Let us take

the example of a major marketing campaign for which a propensity score has been

developed to improve response rates. After the campaign, it is important to ensure that

the response rates match the score values, and that the customers with the highest scores

have in fact responded best. If a category of customers with a high score has not responded

well to the marketing offer, this must be examined in detail to see if it is possible to segment

the category or apply a decision tree to it, in order to discover the profiles of the

non-purchasers and take this into account in the next campaign. It will be necessary to

check whether the definition of this profile uses a variable which is not allowed for in the

score calculation. It may be useful to complement this quantitative analysis with a
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qualitative analysis based on the opinions of the sales staff who have used the score: they

may have some idea of the phenomena which were not taken into account or were

underestimated by the score; they may also have intuitively identified the poorly scored

populations. The analysis of the low score results is also useful, especially when the score

has been developed in the absence of data on customers’ refusal to purchase, and when

‘negative’ profiles for the score modelling therefore had to be defined in advance, instead of

being determined on the basis of evidence, resulting in a degree of arbitrariness. An

examination of the feedback from the campaign will make it possible to corroborate or to

reject certain hypotheses on the ‘negative’ profiles.

The second form of monitoring is continuous. When a tool such as a risk score is used in

a business, it is used constantly and both its correct operation and its use must be checked.

Its operation can be monitored by using tables like the following:

month

score

M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10 M-11 M-12

1

2

3

. . .

TOTAL

The second column of this table shows, for themonthM – 1 before the analysis and for each

score value, the number of customers, the percentage of customers in the total population,

and the default rate. The sum of the losses of the business can be added if required. Clearly,

the rate of non-payments will be replaced by the subscription rate in the case of a propensity

score, and by the departure rate in the case of an attrition score. The third column contains the

same figures for the month M – 2, and so on. If required, a column containing the figures at

the timewhen the scorewas created may be added. These figures can be used to check whether

the score is still relevant in terms of prediction, and especiallywhether the rate of non-payments

(or subscription, or attrition) is still at the level predicted by the score. It is even better to

calculate the figures in columnM-n in the followingway. If the goal of the score is (for example)

to give a 12months prediction,wemeasure for each value of the score, the number of customers

at M-n-12 and the number of defaults between M-n-12 and M-n.

The use of the score ismonitored by using a table similar to the preceding one, in which the

rate of non-payments is replaced by the number and value of transactions concluded in a given

month and for a given score value. Thus it is possible to see if sales staff are taking the risk

score into account to limit their involvement with the most high-risk customers. Indicators

such as ‘infringements’ of the score by its users can be added to this table.

These tables are useful for departmental, risk and marketing experts, but may also be

distributed in the business network to enable the results of actions to be measured. They also

enable the business to quantify the prime target customers with which it conducts its

transactions; these are preferably customers whose scores have a certain given value (low

for risk, or high for propensity).
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score M–1 !
# score M–2

1 2 3 . . .

1

2

3

. . .

A ‘transition matrix’ like the one above enables the stability of the score to be monitored.

Original Now w2 probability

variable 1 category 1 number number

category 2 number number

. . .

. . .

TOTAL total number total number

variable 2 category 1 number number

. . .

. . .

. . .

variable k . . . . . . . . .

. . .

It is also worth using charts to monitor the distribution of the variables explaining the

score, comparing the actual distribution to the distribution at the time of creation of the score

(using a w2 or Cram�er’s V test, for example: see Appendix A), to discover if the distribution of

a variable has changed significantly, or if the rate of missing values is increasing, which may

mean that the score has to be revised.

2.12 Enriching the models

When the results of the use of a first data mining model are measured, the model can be

improved, as we have seen, either by adding independent variables that were not considered

initially, or by using feedback from experience to determine the profiles to be predicted (e.g.

‘purchaser/non-purchaser’) if these results were not available before.

At this point, we can also supplement the results of step 2.2) if they did not provide enough

historic details of the variable to be predicted.

Whenwe have done this, steps 2.3, 2.4, . . . can be repeated to construct a newmodel which

will perform more satisfactorily than the first one. This iterative process must become

permanent if we are to achieve a continuous improvement of the results. There is one proviso,

however: in the learning phase of a new model, we must never rule out individuals whose

previous levels were considered to be low. Otherwise this model can never be used to question
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the validity of previous models, which may sometimes be necessary. For example, if we use

a calculated scoring model to target only the individuals with the best score points, without

ever approaching the others, there is a risk that we will fail to detect a change in behaviour of

some of the initially low-scoring individuals. So it is always desirable to include a small

proportion of individuals with medium or low scores in any targeting which is based on

a model. We will return to this matter in Section 12.4.

2.13 Remarks

The procedure described in this chapter can use a number of data mining techniques with

different origins: for example, multiple correspondence analysis for the transformation of

variables, agglomerative hierarchical clustering for segmentation, and logistic regression for

scoring. There are four important points to be considered:

. For step 2.3, it is essential to collect the data to be studied for several months or even

several years, at least where predictive methods such as scoring are concerned, in order

to provide valid analyses.

. Steps 2.3 and 2.4 are much more time-consuming than steps 2.5–2.7, but are

very important.

. The data mining process is highly iterative, with many possible loopbacks to one or

more of steps 2.4–2.7.

. If the population is large, it will be useful to segment it before calculating a score or

carrying out classification, so that we can work on homogeneous groups of individuals,

making processing more reliable. I will discuss this matter further in the chapter on

automatic clustering.

2.14 Life cycle of a model

Data mining models (especially scores) go through a small-scale trial phase, for adjustment

and validation, and to enable their application to be tested. When models are in production,

they must be applied regularly to refreshed data. However, these models must be reviewed

regularly, as described in the chapter on scoring.

2.15 Costs of a pilot project

The factors determining the number of man-days for a data mining project are so numerous

that I can only give very approximate figures here. They will have to be modified according to

the context. These numbers are mainly useful because they demonstrate the proportions of the

different stages. Furthermore, these figures do not relate to major projects, only to small- and

medium-scale ones such as pilot projects intended to initiate and promote the use of data

mining in businesses.When the processes are fully established, the tools are in full production

and the data are thoroughly known, a reduction in the costs shown in the table in Figure 2.3

may be expected. These costs relate to the data mining team only, excluding costs for the other

personnel involved.
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No. Step Costs (in days) Remarks

Small-

scale

project

Medium-

scale

project

1 Definition of the target

and objectives

4 8 Preliminary analyses and

provision of numerical bases

for decision making.

2 Listing the existing

usable data

7 10 The cost depends on the

organization’s knowledge of

the data

3, 4 Collection, formatting

and exploration of the

data

15 28 This cost is largely determined

by the number of variables,

their quality, the number of

tables accessed, etc.

5–8 Developing and

validating the models

(clustering/scoring)

15 25 Must be multiplied if more

than one population segment

is to be processed

9 Complementary

analyses and delivery of

results.

9 12 For example, setting the

scoring thresholds

10 Documentation and

presentations

5 7

11 Analysis of the first tests

conducted

5 10 Statistical study leading to

subsequent action

TOTAL 60 100
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Figure 2.3 Costs of a data mining project.
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3

Data exploration and preparation

This chapter starts with a brief survey of the different types of data. It then goes on to detail the

tasks of exploring, analysing and preparing the data collected, using univariate, bivariate and

multivariate methods and statistical tests. These tasks are fundamental, as the quality of the

results generally depends more on the care taken here than on the modelling method which

uses these input data. The chapter concludes with a discussion of sampling.

3.1 The different types of data

The data may be quantitative, qualitative, or, for some special problems, textual.

Quantitative (or numerical) data may be continuous or discrete. Continuous (or scale or

interval) data are those whose values belong to an infinite subset of the set R of real numbers

(e.g. wages, amount of purchases). Discrete data are those whose values belong to a finite or

infinite subset of the set N of natural integers (e.g. number of children, number of products

bought). When the set of values is infinite, or just large (several tens), discrete data are

considered to be continuous data (e.g. age).

Qualitative (or categorical) data are data whose set of values is finite. These values are

numerical or alphanumeric, but when they are numerical they are merely codes, not quantities

(e.g. socio-occupational category, department number).

The values of text data are uncoded texts, written in natural language: examples are letters

of complaint, reports and press despatches.

What distinguishes continuous and discrete data from other types is that they are

concerned with quantities, so we can perform arithmetical operations on them; moreover,

they are ordered (we can compare them by an order relationship ‘�’). Qualitative data are not

quantities, but theymay be ordered; in this casewe speak of ordinal qualitative data (e.g. ‘low,

medium, high’). Non-ordered qualitative data are called nominal. Ordinal data can be classed

in the family of discrete data and treated in the same way.

The analysis of text data requires a mixture of linguistics and statistics: this is text mining,

which is discussed in Chapter 14. Note that text data in natural languagemay contain elliptical
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matter, abbreviations which may be more or less personal, faults in spelling or syntax, and

ambiguities (where the meaning of terms depends on a context which is not easy to detect by

automatic methods), making their analysis problematic.

Not all statistical and data mining methods can accept all types of input data.

However, there are operations that can be used to switch from one type to another, as shown

in Table 3.1.

3.2 Examining the distribution of variables

The first step in any investigation of data is to examine the univariate statistics of the variables,

so that we can:

. detect any anomalies in their distribution (especially outliers or missing values);

. get an idea of some orders of magnitude (such as the average ages and income of the

population) which will be useful in the subsequent analysis;

. see how to discretize the continuous variables if this is necessary.

For qualitative or discrete variables, we must look at the frequency of appearance of each

category (frequency tables). For continuous variables, we can obtain a quick view of the

distribution by using box plots (see Appendix A), which are output directly by some statistical

software, or can be produced by calculating the most significant quantiles, i.e. 1%, 10%, 25%,

50% (median), 75%, 90% and 99%. In particular, the last percentile (99%) may include

individuals selected erroneously because of poor coding: for example, a very high figure for

income may be recorded for a professional who has been incorrectly coded as ‘private

individual’. We must therefore analyse the nature of the values in the extreme percentiles, and

not eliminate them automatically.

We also have to ensure that the distribution of the values of a variable is indeed

homogeneous and does not have a singularity, which might be an erroneous value, assigned

by default where no information was acquired.

Finally, some variables such as age, age at commencement of working life, and time

elapsed under a contract must lie between certain limits: we must check that they do not stray

beyond these boundaries. Errors in the input of dates are quite common.

The second step is to use bivariate statistics, to detect:

. incompatibilities between variables;

Table 3.1 Data conversion.

Initial type Final type Operation Principle

Continuous Discrete Discretization

(syn : binning)

Splitting the whole set of values

into ranges

Discrete or

qualitative

Continuous MCA

(see Section 7.4)

Multiple correspondence analysis

yields continuous factors based

on the initial data
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. links between the dependent (‘target’) variable and the independent variables and their

interactions, in order to eliminate thevariables having no effect on the dependent variable;

. links between the independent variables, which must be avoided in some methods, such

as linear and logistic regression.

These statistics can be based on detailed association tests detailed in Appendix A and used

in Section 3.8 below, or, very simply (but less precisely), on the examination of two-way

frequency tables such as Table 3.2.

These tables are called contingency tables. Note that numerical variables can be set out in

a contingency table, provided that they are discretized. However, the intersection of more than

two variables (multivariate statistics) can only be observed by a difficult and time-consuming

process. Although some graphics tools can provide a three-dimensional display, sometimes

with a facility to rotate axes, the most powerful multivariate analysis tool is still factor

analysis, which I will discuss later on.

3.3 Detection of rare or missing values

This step must be carried out for all types of models.

Rare values can create bias in factor analysis and other analyses, by appearing to be more

important than they really are. It is better to remove the observations in question, or to replace

the rare valuewith a more frequent valuewhen such a replacement makes sense in the context.

As for missing values, these are obviously far more troublesome, since most statistical

methods are unable to handle them, and the corresponding observations must be eliminated

from the study. Missing values can occur, for example, in reported variables where the input

was optional and was not done; in responses to surveys; or in chemical analyses where the

concentrations of some elements are below the detection thresholds. This poses two problems:

on the one hand, there may be only 1% of missing values for each variable, but more than 10%

of observations in which one of the variables has a missing value; on the other hand, if the

values are not missing by chance and there are systematic differences between the complete

and incomplete observations, the removal of incomplete observations introduces a bias into

Table 3.2 Contingency table.

(frequency in thousands) Single Married Widowed Divorced TOTAL

<20 years 15 144 6 0 0 15 150

100% 0% 0% 0%

20–64 years 10 935 20 048 844 2 423 34 250

32% 59% 2% 7%

�65 years 696 4 755 3 079 328 8 858

8% 54% 35% 4%

TOTAL 26 775 24 809 3 923 2 751 58 258

46% 43% 7% 5%

Matrimonial status at 1 January 1996 (source: INSEE [French National Institute of Statistics and

Economic Studies], La situation d�emographique en 1995, p. 34).
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the analysis. Before reaching this point, therefore, we must be quite sure that we cannot use

other solutions, such as:

. not using the variable concerned if its contribution to the analysis of the problem does not

appear to be essential, or replacing it with a similar variable that has no missing value;

. replacing the missing value with a value determined by a statistical method, by the

investigator’s knowledge of the data, or by an external source;

. treating the missing value as a whole separate value, containing a certain data element

(this is not possible for numerical variables, since the ‘0’ has another meaning, but we

can divide them into classes and add a ‘missing value’ class).

The second and third solutions above should be avoided for any variable having a

proportion of missing values in excess of 15–20%.

Statistical replacement of the missing values uses a process called ‘imputation’; here we

must take a cautious approach. The simplest method is to replace the missing value with the

most frequent value (for qualitative variables) or the mean or median (for numerical

variables). This is a hazardous procedure, because individuals having missing values tend

to be atypical individuals (for example, because their risk level is above average, and theymay

conceal some information), rather than ‘average’ individuals. In any case, this procedure

distorts the distribution of the imputed variable (see Figure 3.1, taken from the article by Jean-

Pierre Nakache and Alice Gu�eguen cited below). There are more refined methods of

imputation, based for example on a regression (Figure 3.2, loc. cit.), a clustering method,

or a decision tree, for examining the individuals having the same profile as those with missing

values. These other individuals may include some with a non-missing value that can be used

as a reference. A fairly popular method is to classify individuals by the moving centres or

k-means method (see Section 9.9.1), and then to impute each missing value with the mean of

the variable in the class of the individual.

After imputation by the meanBefore imputation

Figure 3.1 Effect of imputation by the mean.
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Figure 3.2 Imputation by the mean and by a regression.
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In the most widespread imputation model, each missing value is replaced with an assumed

value: this is simple imputation, which has the drawback of underestimating the variability of

the imputed data and the confidence intervals of the estimated parameters. To overcome this,

Rubin (1978)1 and others have proposed amultiple imputationmethod in which each missing

value is replaced with a number of plausible values (five is often enough), several complete

data tables without missing values are thus obtained, and the desired statistical analyses (such

as linear or logistic regression) are performed on each table, after which the results are

combined into a set of estimated parameters with their standard deviations. This algorithm is

implemented in the SAS/STAT MI procedure (for multiple implementation) and MIANA-

LYSE (for combining the results). The interested reader should refer to Analysis of Incomplete

Multivariate Data, by Joseph L. Schafer,2 or the 2005 article by Jean-Pierre Nakache and

Alice Gu�eguen in Revue de Statistique Appliqu�ee.3

Of course, the MI procedure also allows single imputation, and its imputation using

Markov chains (Markov chain Monte Carlo (MCMC) method) or other methods provides

a closer approach to reality than an ordinary imputation by the mean or median. It can even

impute qualitative values. However, we must remember that MCMC imputation and

imputation by regression assume the normality of the imputed variables; if this is not the

case, the TRANSFORM instruction can be used to apply a number of transformations

(Box–Cox, power, exponential, logarithm, logit) to the variables before imputing them.

The command for single imputation of the variables Var1, Var2 and Var3 is given in the

following syntax by the option ‘NIMPUTE¼ 1’. As for the MIN and MAX options, these are

used to limit the imputed values, by specifying limits which may be different for the different

variables (be careful to specify the limits in the order in which the variables are cited in the

‘VAR’ command). If we do not wish to carry out the imputation, but simply need to obtain

descriptive statistics and the pattern of missing values (Figure 3.3), we choose the ‘NIMPUTE

¼ 0’ option. Where graphic representations are required, the VIM (‘Visualization and

Imputation of Missing values’) package in R can be used to explore the missing data, and,

in the later versions, carry out imputation by robust methods.

Note that, if more than one variable is named simultaneously in the VAR command, they

are imputed with respect to each other, which presupposes the presence of a real correlation

between these variables and enables the imputation to be enriched. Conversely, if we have

reason to think that the variables must be independent, it is better to execute the MI procedure

for one variable at a time.

PROC MI DATA = mytable.before_imputation

OUT = mytable.after_imputation

NIMPUTE = 1 MIN = 0 -1 . MAX = 100 1 .;

VAR var1 var2 var3 ;

RUN;

The pattern of missing values is described in a table in which the variables are grouped as

a function of theirmissing values, thevariables of a singlegroup being simultaneously filled in or

1 Rubin, D.B. (1978) Multiple imputations in sample surveys – a phenomenological Bayesian approach to

nonresponse. Proceedings of the Survey Research Methods Section, American Statistical Association, pp. 20–34.
2 Schafer, J.L. (2000) Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall.
3 Nakache, J.-P. and Gu�eguen, A. (2005) Analyse multidimensionnelle de donn�ees incompl�etes. Revue de

Statistique Appliqu�ee, 53(3), 35–62.
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missing for the samevariables. A cross ‘X’ (or a point ‘.’) for a variable signifies that it is filled in

(or missing) in the corresponding group. The absence of all the variables is denoted by a circle

‘O’ on thewhole line. Thus, in the fourth group of observations, only thevariableVar2 is filled in,

and its meanvalue is 0.16. For four individuals, the three variables Var1, Var2, Var3 are missing.

The VIM package in R carries out the same type of calculation and also provides a graphic

representation of it, as shown in the following example.4 In this example, the AGE variable

has six missing values, the VISION variable has four missing values, and the COURSE

variable has five missing values. Thirty observations have no missing value (Figure 3.4, right-

hand graphic, bottom line), while in four observations it is only the VISION variable that has a

missing value (top line), and so on.

Summary method:

Missings per variable:

Variable Count

AGE 6

VISION 4

COURSE 5

Missings in combinations of variables:

Combinations Count Percent

0:0:0 30 66.666667

0:0:1 5 11.111111

0:1:0 4 8.888889

1:0:0 6 13.333333

Another VIM graphic displays the histogram of each variable (the AGE variable in

Figure 3.5), showing the rectangle corresponding to the missing values of this variable on the

far right, and showing the rectangles for the missing values of another variable in different

colours. In our example, a darker grey indicates the four missing values of the VISION

variable, corresponding to ages of 42, 44, 69 and 72 years.

Plenty of other graphics are offered in this useful package.

Characteristics of the missing data

Group means 

Group Var1 Var2 Var3 Freq Percent Var1 Var2 Var3

1 3.1024620.245615 12.21731080.796557X X X 

2 0.166667. 00.043X . X 

3 0.595276-0.075471 .13.651108X X . 

4 .0.160265 .4.35353. X . 

5 0.000916. .1.1291X . . 

6 .. .0.054O O O 

Figure 3.3 Pattern of missing values.

4 Taken from Cody, R.P. and Smith, J.K. (2005) Applied Statistics and SAS Programming Language, 5th edn.

Upper Saddle River, NJ: Prentice Hall.
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3.4 Detection of aberrant values

This step must be carried out for all types of models.

An aberrant value is an erroneous value corresponding to an incorrect measurement,

a calculation error, an input error or a false declaration. While extreme values are not

always aberrant, aberrant values are not always extreme, and this makes them harder to

detect, possibly requiring a thorough knowledge of the data. However, it is essential to

recognize them.

Commercial files can contain considerable numbers of aberrant values:

. incoherent dates, such as unknown birth dates that have been replaced by ‘round

numbers’, subscription dates before the customer’s date of birth, dates of last updates in

the year 2050, 29 February in a non-leap year, etc.;

. customers declared as ‘private’ when they are ‘business’, with obvious effects on the

values of their financial data;

. amounts input in cents when they should have been in euros;

. ‘sex’ codes taking more than two different values to encode specific provident or

sickness benefit arrangements;
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Figure 3.4 Graphic of missing values.
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. profession not updated since the start of the customer’s relationship with the business,

and still appearing as ‘student’;

. telephone numbers that are not numbers at all, but codes indicating that the customer

does not wish to be contacted, that he is not to be sent reminders if there is a delay in

payment, that he is ex-directory, etc.

Luckily, aberrant values can often be detected using simple frequency tables or univariate

statistics. When this has been done, there are several further steps we can take:

. We can delete the observations in question, if they are not too numerous and if their

distribution is suitably random, or if it is clear that they should never have been included

in the sample.

. We can keep the observations but remove the variable from the rest of the analysis if it

is not considered essential, or replace it with a variable that is similar but has no

aberrant values.

. We can keep the observations and the variable, but replace the aberrant value with

another value assumed to be as close as possible to its true value (this brings us back to

the problem of imputation of missing values).
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. We can keep the observations and the variable, and use the variable as it is, tolerating a

small margin of error in the results of the models.

The following parameters should be considered when we decide how to act:

. If the anomaly arises because the selected observation is outside the range of the study,

as in the case above where business clients are confused with private customers, then

clearly we must delete the observation.

. If the variable appears to be poorly discriminant for the phenomenon that is to be

predicted, it will be better to keep the observation but eliminate the variable, or treat its

aberrant values as missing values.

. On the other hand, if the variable appears to be discriminant and contains very few

aberrant values, it would be a shame to lose it, and it would be better to eliminate the

defective observations.

. If the variable appears to be discriminant, but contains a large proportion of non-

correctable aberrant values, wewill be unable to eliminate all the defective observations,

and it would be better to avoid using the variable if we want the results to be reliable.

. If the variable appears to be discriminant and contains a reasonable proportion of

aberrant values that looks as though it could be reduced, we can try to correct the

aberrant values before using the variable.

. If the variable appears to be discriminant and contains a limited proportion of aberrant

values, and if it does not look as though the errors can be corrected in a reliable and

permanent way, it may be better to use the variable as it stands, without trying to

improve it; or we could divide it into classes and assign all the missing values to

a specific class.

The correction of an aberrant value, like the correction of a missing value, can be carried

out in two ways:

. by using other data sources inside or outside the business (a simple example would be

using the telephone directory to find reliable addresses and telephone numbers), or by

cross-checking between several variables to establish the reliability of the initial

variable (for example, by checking the declared number of children against the number

that can be deduced from certain purchases);

. by replacing the aberrant value with a statistically imputed value.

As ever, the imputation must be done with care: if an individual has aberrant character-

istics, this may be because his circumstances are very unusual, and it will not be acceptable to

replace specific but significant values with a mean or median that smoothes over any

differences. Corrections must be made with a light touch, or we may find that the remedy

is worse than the disease. Wemust avoid solutions that would be reliable in the short term, but

not in the medium or long term, or would require repeated or costly updates: this is the case

with some pointlessly complex systems based on numerous parameters which are too

dependent on the context in which they were established.
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3.5 Detection of extreme values

This step must be carried out for all types of models. It is optional for decision trees, which can

easily tolerate extreme values. However, it is recommended, since extreme values may be

aberrant values.

An extreme value is not necessarily an aberrant value, though. It may relate to a specific

profile or a specific category of individuals, which may or may not have to be retained in the

study; we will have to decide this on a case-by-case basis. An extreme value may relate to a

rare profile which is worth detecting. If we exclude it from the population studied we might

reduce the usefulness of the learning sample and the resulting model. This is particularly true

for the prediction of risks of non-payment or fraud, since the risk profiles often have extreme

values for some of their financial ratios.

Leaving aside these cases of searches for atypical patterns, the extreme values of a

continuous variable, even if they are not anomalies, will affect some methods, especially

logistic regression, discriminant analysis and methods based on variance calculation. It may,

therefore, be useful to take the following action:

. exclude the individuals (‘outliers’) with these extreme values from the learning sample

of the model (the model can be tested on these temporarily excluded individuals

afterwards), while ensuring that not more than 1–2% of individuals are excluded;

. or divide the continuous variable into classes, the extreme values being placed in the first

or last class, but being ‘neutralized’ to some degree;

. or Winsorizing the variable – Winsorization means replacing the values of the variable

beyond the 99th percentile with this percentile, while the values falling before the first

percentile are replaced with this first percentile.

We can use standard deviations instead of percentiles. For a normal distribution

(Figure 3.6), the values of a variable separated from the mean by more than three standard

deviations are very rare, and can generally be considered extreme.

A tool which is very suited to the detection of these extreme values is the ‘box plot’

described in Appendix A.

Some software, such as SAS Enterprise Miner and IBM SPSS Modeler, can filter the

extreme values according to standard deviations or percentiles (Figure 3.7).

3.6 Tests of normality

Tests of normality must be performed for a Fisher discriminant analysis or linear regression,

because of the assumptions of these models. It is preferable to deal with the extreme

values beforehand.

The normal law, or Laplace–Gaussian law, is frequently encountered in natural,

biological and medical phenomena; it is the limit law of the binomial, Poisson and w2

distributions, the basis of many statistical indices (such as the kurtosis and skewness), the

context of many statistical tests (Student’s t, ANOVA, Pearson’s correlation) and a basic

assumption of Fisher discriminant analysis (Xi/Y distribution), linear regression (residual

distribution), etc.
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Figure 3.7 Eliminating extreme values.

Figure 3.6 Normal distribution.
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Admittedly, the assumption of normality is hardly ever justified in the real world5, but

luckily the lack of normality does not necessarily invalidate the tests based on this assumption

(the tests known as ‘parametric’, in contrast to ‘non-parametric’ tests); provided that the

sample sizes are large enough (several hundred will suffice), this assumption can be largely

dispensed with.

The normality of a variable can be verified by the Shapiro–Wilk test (the best), the

Kolmogorov–Smirnov test (themost general), the Lilliefors test or the Anderson–Darling test.

TheKolmogorov–Smirnov test involvesmeasuring themaximum deviationD (in absolute

terms) between the distribution function (cumulative density function) of the variable tested

and the distribution function of a Gaussian variable (or, more generally, of any continuous

variable whose distribution is to be compared with that of the observed variable). We then

calculate the probability of observing such a large value of D on the hypothesis H0 that the

tested data come from a normal distribution. If this probability is below a given threshold of

0.05 or 0.10 (a higher threshold can be used if the sample sizes are smaller), we rejectH0 and

conclude that the data do not come from a normal distribution. However, if the probability is

above this threshold, as in Figure 3.8 which is plotted by the SAS/STAT UNIVARIATE

procedure (and the SAS/GRAPHGCHART procedure for the bar chart), we do not rejectH0,

and we accept the normality hypothesis. As in this case, low values ofD lead us to accept the

hypothesis of normality.

The SAS syntax is as follows:

PROC GCHART data = example ;

VBAR distance / LEVELS = 8;

RUN ; QUIT ;

The LEVELS option enables us to choose the number of bars in the chart.

PROC UNIVARIATE DATA=example NORMAL;

VAR distance;

RUN;

We can also create the histogram directly with the UNIVARIATE procedure, by adding the

‘HISTOGRAM distance’ command to it. This also enables us to superimpose the density

curve of the normal distribution having the same mean (MU) and the same standard deviation

(SIGMA) on the chart. The result can be seen in Figure 3.9.

PROC UNIVARIATE DATA=example NORMAL;

VAR distance;

HISTOGRAM distance / NORMAL (MU=EST SIGMA=EST);

RUN;

TheKolmogorov–Smirnov test was improved by Lilliefors for the casewhere themean and

variance of the variable are not known in advance, but are estimated from the sample data.

5 According to Henri Poincar�e, in La Science et l’hypoth�ese, ‘An eminent physicist once told me, in connection

with the law of errors, that everyone believed in it so strongly becausemathematicians thought it was an observed fact,

while observers thought it was a mathematical theorem’.
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The original Kolmogorov–Smirnov test was not powerful enough in this case (it rejected the

null hypothesis less often when it was false). Another weak point of the Kolmogorov–Smirnov

test is that it is less sensitive in the tails of the distribution than in the centre. This aspect has been

corrected by the Anderson–Darling test, and by the Cram�er–von Mises test which is a special

case of the Anderson–Darling test.

In the Shapiro–Wilk test, the cumulative distribution of the data is shown on a normal

probability scale, called a P-P (probability–probability) plot, where a normal distribution

is shown by a straight line with a slope of 1 (Figure 3.10). Thus the Shapiro–Wilk statistic

is a way of measuring how far the graphic representation of the data deviates from the

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.992264 Pr < W 0.9845

Kolmogorov-Smirnov D 0.051999 Pr > D >0.1500

Cramer-von Mises W-Sq 0.02621 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.162071 Pr > A-Sq >0.2500

FREQUENCY

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Distance
10.710.510.310.19.99.79.59.3

Figure 3.8 The Kolmogorov–Smirnov test.
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straight line. It ranges from 0 to 1, and, in contrast to other normality statistics, a low value

means that the normality hypothesis is to be rejected. More generally, the P-P plot is

used to compare the observed distribution function with the distribution function of a

specified probability distribution, which is not necessarily the normal distribution. The

probability distribution must be fully specified, and, in the example of a normal

distribution, the mean and the standard deviation are specified by the user or calculated

by the procedure on the basis of the sample data. The match between the observed

distribution function and the theoretical distribution function appears in the form of a

diagonal on the P-P plot.

The SAS syntax for generating the P-P plot in Figure 3.10 is:

SYMBOL V=plus;

PROC CAPABILITY DATA=example NOPRINT;

PPPLOT distance / NORMAL (COLOR = black)

CFRAME = white

SQUARE;

This test is more powerful than the Kolmogorov–Smirnov test for small samples (less than

2000 individuals); in these circumstances, it is the best test of normality.

Another useful test, the Jarque–Bera test,6 specifically uses the characteristics of the

normal distribution. It operates by jointly testing the coefficient of skewness S and the
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Figure 3.9 Histogram with density curve of the normal distribution.

6 Jarque, C.M. and Bera, AK. (1980) Efficient tests for normality, homoscedasticity and serial independence of

regression residuals. Economics Letters, 6(3), 255–259.
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coefficient of kurtosisK of the data set (see Section A.2.1). More specifically, the Jarque–Bera

test does not directly test the normality of the data, but tests whether or not the skewness and

kurtosis calculated from these data are those of a normal distribution (having the same

expectation and the same variance):

H0: S¼ 0 and K¼ 3,

H1: S 6¼ 0 and K 6¼ 3.

According to H0, the following statistic follows a w2 distribution with two degrees of

freedom, enabling the hypothesis to be tested:

JB ¼ n

6
S2 þ ðK�3Þ2

4

 !
:

This test is asymptotic and is preferably reserved for cases where the sample sizes are

fairly large. It is run in R by the jarque.bera.test function in the tseries package.

Normality tests arewidely available in statistical software. For example, SASoffers them in

its procedures NPAR1WAY (Kolmogorov–Smirnov, Cram�er–von Mises – see the syntax for

this procedure in Section 3.8.3) and UNIVARIATE (Kolmogorov–Smirnov, Cram�er–von
Mises, Shapiro–Wilk for fewer than 2000 observations, and Anderson–Darling). The Kolmo-

gorov–Smirnov, Lilliefors and Shapiro–Wilk tests are also provided in SPSS (the EXAMINE

procedure) and R (the ks.test, lillie.test and shapiro.test functions); R also includes the

Anderson–Darling and Cram�er–von Mises tests (ad.test and cvm.test functions).
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Figure 3.10 Shapiro–Wilk test.
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A general comment on statistical tests. Having been designed at a time when volumes of

datawere smaller than they are today, they tend to reject the null hypothesis very easily when

the number of individuals is very large; in otherwords, the slightest deviation (with respect to

independence for the w2 test, or with respect to normality in the present case) is detected and

appears to be significant. The ‘paradox’ that arises from this is that the lack of normality is

very easily detected when the sample sizes are large, even though this lack of normality is

less troublesome in these circumstances. Conversely, a lack of normality may be unnoticed

when sample sizes are small, even though this defect can have more serious effects; for

purists, this may require the use of non-parametric tests (see Section A.2.4). However, there

is no reason why non-parametric tests should not be used on data that are presumed to

be normal.

3.7 Homoscedasticity and heteroscedasticity

This test is carried out in Fisher discriminant analysis and linear regression, because of the

hypotheses of these types of model. The extreme values must have been processed before-

hand, to avoid false alarms.

In the case of a single independent variable in a discrimination model, the term

‘homoscedasticity’ means the equality of the variances of the variable in a number of

samples, for example in the different groups of a population. In the case of more than one

independent variable, homoscedasticity means the equality of the covariance matrices of

the variables in a number of samples. In the case of linear regression, we speak of

homoscedasticity when the variance of the residuals does not depend on the value of the

predictors; when this occurs, solutions for correcting it are shown in Section 11.7.1. When

a score is calculated to separate k types of individuals, we are particularly concerned with

the equality of the covariance matrices of the independent variables in the k sub-

populations to be discriminated. This is a basic hypothesis in Fisher’s linear discriminant

analysis. We will see that, in the absence of homoscedasticity (i.e. when heteroscedas-

ticity is present), we should theoretically abandon linear discriminant analysis in favour of

quadratic discriminant analysis. In practice, the use of quadratic discriminant analysis is

not often necessary, and only provides a slight improvement in the results, while

increasing the number of parameters to be estimated, so adding to the complexity of

the model. Heteroscedasticity is considered to be less troublesome when all the samples

are of the same size.

Homoscedasticity can be verified by the Levene test (which is the best, because it has low

sensitivity to non-normality), the Bartlett test (best if the distribution is normal) or the Fisher

test (the least robust if normality is not present), which test the null hypothesis that the

variances are equal,

H0 : s21 ¼ s22 ¼ . . . ¼ s2k ;

against the alternative hypothesis

H1 : s2i 6¼ s2j for at least one pair ði; jÞ:
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The Levene test used by SPSS (Figure 3.11) shows that the variance differs significantly

between the two groups, the calculated probability being less than 0.05.

The Levene test, together with the Bartlett test that is not included in SPSS, is also available

in R (levene.test and bartlett.test functions) and SAS (ANOVA and GLM procedures).

3.8 Detection of the most discriminating variables

This investigation must be carried out when a predictive model is being constructed, except

in the case of a decision tree, which detects the most discriminating variables automatically

and is not affected by the presence of non-discriminating variables. Most of the other

methods give much better results when they are used on a list of variables limited to the most

relevant ones. This selection phase is crucial, therefore, and it is also essential to have a

thorough knowledge of the data and their functional significance. The problem here is that

we must exclude the less discriminating variables while being aware that some variables are

less discriminating when taken in isolation and more discriminating when considered with

others, because they are less correlated with them. We must therefore mark and retain these

variables for the subsequent modelling procedure. There are some helpful techniques, such

as variable clustering (see Section 9.14) for ensuring that we have selected at least one

representative of each class of variables. Although some software, such as SAS Enterprise

Miner, offers automatic detection of discriminating variables, it is also useful if the operator

makes a brief inspection to avoid excluding a variable unnecessarily, given the importance of

this selection.

For cases where the dependent variable and the independent variables are all quantita-

tive, see Appendix A for information on the Pearson and Spearman correlation coefficients.

In the case of a quantitative dependent variable and a qualitative independent variable, the

aim is to determine whether the values of a quantitative variable differ significantly between

a number of groups: this requires a test of the equality of the mean, known as ‘single factor

analysis of variance’ (see Appendix A). When there are n qualitative independent variables,

an ‘n-factor ANOVA’ is carried out. Single-factor analysis is muchmore common, and I will

discuss below the case of a qualitative dependent variable and a quantitative independent

variable, which is symmetrical and which we shall return to: we will check to see if the

dosage of a medicine affects recovery (the qualitative dependent variable), in order to find

out whether the fact of belonging to the ‘recovered’ group has a link with the dosage (the

quantitative dependent variable).

Test of homogeneity of variance

Power
Levene
statistic df1= df2 Significance

50.448 2 396 .000

Figure 3.11 Levene test.
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So for now we simply need to examine the case of a qualitative dependent variable, as

found in scoring for example. We will do this by making a distinction based on the nature of

the independent variables.

3.8.1 Qualitative, discrete or binned independent variables

For variables that are qualitative, discrete, or continuous but divided into classes, we test

their link with the dependent variable by calculating the values of w2, the associated

probability, and Cram�er’s V coefficient. The advantage of Cram�er’s V is that it integrates

the sample size and the number of degrees of freedom of the contingency table, using w2max (see

Section A.2.12). It is more readable than the probability associated with w2 and, above all, it
provides an absolute measure of the strength of the link between two qualitative or discrete

variables, regardless of the number of their categories and the size of the population.

Note that, in contrast to the probability associated with the w2 of a table, w2max depends only

on the minimum of the number of rows and the number of columns, not on both of these

numbers at once. In particular, if one of the two cross-tabulated variables (for example, the

dependent variable) is binary, w2max is equal to the size of the population and does not depend

on the number of categories of the second variable.

Let us take the case of a two-column table, to seewhy w2max does not depend on the number

of rows. In this case, w2max is found when one or other of the columns X and Y is 0 in each row.

Thus we obtain a table in the following form:

V1

X Y TOTAL

V2

A 50 0 50

B 0 25 25

C 0 25 25

TOTAL 50 50 100

In this table, w2 does not change when we aggregate all the rows for which Y¼ 0 as well as all

the rows for which X¼ 0, in other words when we return to a 2� 2 table (for which

w2¼ w2max ¼ sample size):

V1

X Y TOTAL

V2

A 50 0 50

B þ C 0 50 50

TOTAL 50 50 100

Thus w2max for an l� 2 table depends not on l, but only on the total sample size. This is why

Cram�er’s V for two tables, l� 2 and 2� 2, can be compared, and Cram�er’s V for two variables

V2 can be compared with a binary dependent variable V1, even if the two variables V2 do not

have the same number of categories (particularly if V2 is formed from a single continuous

variable discretized in several ways). In our example, Cram�er’s V is 1 and w2 is 100 for both

tables, but the probability associated with w2 is 1.93� 10�22 for the first table and
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1.52� 10�23 for the second. Clearly, it is meaningless to claim that V2 is more discriminating

in the second case, as its power to predict V1 is exactly the same.

Two other examples demonstrate the superiority of Cram�er’s Vover the w2 probability for
the process of selecting variables. The two variables V3 and V4 shown below have exactly

the same power to predict V1, since V4 is obtained by aggregating the rows of V3, and rows A

and B on the one hand, and C and D on the other hand, are linearly related. V3 and V4 have the

same Cram�er’s V¼ 0.19, and the same w2 ¼ 5.357, but the probability of the w2 of V3 is 0.15
(a non-significant link), while for V4 it is 0.02 (a significant link). At the 5% threshold wewill

accept V4 but not V3, although in fact the number of degrees of freedom changes (1 instead of

3), but not the discriminating power of the variables.

V1

X Y TOTAL

V3

A 30 20 50

B 30 20 50

C 10 15 25

D 10 15 25

TOTAL 80 70 150

V1

X Y TOTAL

V4

A þ B 60 40 100

C þ D 20 30 50

TOTAL 80 70 150

Another, less trivial, example is provided by the variable V5 below:

V1

X Y TOTAL

V5

A 30 20 50

B 25 15 40

C 5 5 10

D 20 30 50

TOTAL 80 70 150

V5 is a refinement of the division of V4, the first category of which is divided into three sub-

categories. Since the rows of V5 are linearly independent, we can say that V5 is slightly more

discriminating than V4: its power to predict V1 is slightly greater. In fact, its Cram�er’s V is

slightly greater than that of V4: 0.20 instead of 0.19. On the other hand, w2 probability is much

higher for V5 (at 0.12) than for V4 (0.02), suggesting that V5 ought to be excluded from the

selection variables in favour of V4.
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Even more annoying is the fact that, if we rely on the w2 probability for the selection

of variables, we may reach opposite conclusions depending on whether we are working on

awhole population or a sample. Suppose that V4 and V5 are observed in 1% of the population,

and the contingency tables for the whole population are as follows:

V1

X Y TOTAL

V4

A þ B 6000 4000 10 000

C þ D 2000 3000 5000

TOTAL 8000 7000 15 000

V1

X Y TOTAL

V5

A 3000 2000 5000

B 2500 1500 4000

C 500 500 1000

D 2000 3000 5000

TOTAL 8000 7000 15 000

The Cram�er’s V values are unchanged, because they are insensitive to the sample size.

However, the w2 probabilities are now 1.6� 10�118 for V4 and 1.1� 10�126 for V5. This time,

therefore, the variable selection process will favour V5 rather than V4, by contrast with

the result found for the 1% sample.

In conclusion, the selection of variables that are qualitative, discrete, or continuous but

divided into classes must be based on Cram�er’s V rather than the w2 probability. If we rely on
this probability, we run the risk of failing to select variables that would in fact be found to be

discriminating after a regrouping of some of their categories.

For ordinal independent variables, we can use Kendall’s tau as described in Appendix A.

3.8.2 Continuous independent variables

For continuous independent variables, we can carry out a parametric test of variance

(ANOVA) with one factor, or a non-parametric test, unless we conduct both tests to give

us a better chance of capturing all the independent variables that are potentially useful.

The ANOVA test is appropriate if the independent variables are normal and have the same

variance regardless of the category of the dependent variable. If one of the two hypotheses of

normality and homoscedasticity is not satisfied, it will be preferable to use a more robust non-

parametric test, which could be either the Wilcoxon–Mann–Whitney test (binary dependent

variable) or the Kruskal–Wallis test (two or more categories). We can also use the Welch

ANOVA test where there is normality without homoscedasticity. There is another test, known

as the median test, but it is less powerful than the Wilcoxon–Mann–Whitney and Kruskal–

Wallis tests. Overall, I prefer the Kruskal–Wallis test, because of its generality and the
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readability of the result, which takes the form of a w2 with one degree of freedom, increasing as

the continuous independent variable is linked more closely with the dependent variable.

The ANOVA test yields the R2 indicator, which is the inter-class sum of squares ESS

divided by the total sum of squares TSS, and which is closer to 1 as the strength of the link

between the dependent qualitative variable and the continuous variable tested increases (see

Section A.2.13). We are mainly interested in the classification of the variables according to

the value of R2, rather than the significance level (the probability associated with this value),

since in some cases most of the variables would be selected at the 5% threshold. This

indicator R2 is supplied by the SAS/STATANOVA procedure using the following syntax, in

which it should be noted that the qualitative dependent variable becomes an independent

variable of the (means of the) continuous variables indep_var_x. Note that the single-factor

ANOVA test is also executed by the GLMprocedure, which is slower but can also be used for

multiple-factor ANOVA tests in both balanced and unbalanced designs, whereas the

ANOVA procedure can only be used for multiple-factor ANOVA in the case of balanced

designs (with the same number of observations for each combination of factors) and in some

other very specific cases.

PROC ANOVA DATA=table;

CLASS dependent;

MODEL indep_var_1 indep_var_2 ... = dependent;

RUN;

The outputs of the ANOVA procedure shown below demonstrate that the first independent

variable is clearly better than the second in terms of explaining the dependent variable.

R-Square Coeff Var Root MSE indep_var_1 Mean

0.018519 532.7779 4.218779 0.791846

R-Square Coeff Var Root MSE indep_var_2 Mean

0.001116 31.41090 0.295972 0.94225

Warning: it is sometimes better to run these tests after excluding abnormal individuals from

the sample, because extreme values bias the results to a significant degree, and may make

a variable appear to be more predictive than it really is (or vice versa).

The values of R2 and w2 in the Kruskal–Wallis test increase with the strength of the link; the

independent variables are therefore listed by decreasing values of the preceding indicators, so

that themost predictivevariables are at the head of the list. This list can be obtained simply, even

when there are many independent variables, by using the programming languages of software

such as SAS andSPSS, asmentioned in Section 3.8.4. To this listwe can add thevariableswhich

wouldnotbedetectedbytheabovemethods,becauseofanon-monotoniceffectonthedependent

variable for example, butwhicharedetectedbyaCHAIDorCARTdecision tree. Ifweusea tree,

wemust restrict ourselves to the first split andmeasure all the best splitting variables detected by

the software, in addition to the first variable selected, and not take into account the first splitting

variables of all the subsequent splits, which are most discriminating variables for a sub-

population only. This list can be written in summary form as in Table 3.3.

We may need to supplement the list with variables that were not previously selected, but

are identified as useful by experts in the field. In fact, some variables are found to be

DETECTION OF THE MOST DISCRIMINATING VARIABLES 63



Table 3.3 Table for selecting variables.

variable

KW

w2 KW rank R2 R2 rank CHAID w2
no. of CHAID

nodes df CHAID prob.

CHAID

rank

CART

rank

X 2613.076444 1 0.0957 1 1023.9000 5 4 2.3606E-220 1 1

Y 2045.342644 2 0.0716 2 949.0000 5 4 4.0218E-204 2 11

Z 1606.254491 3 0.0476 5 902.3000 4 3 2.8063E-195 4 12

. . . 1566.991315 4 0.0491 4 920.4000 4 3 3.3272E-199 3 4
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powerfully discriminating in risk or attrition scores, because they alert us to the event late

and without much risk of error: in other words, they sound the fire alarm when the smoke is

already visible. On the other hand, some variables are earlier indicators and apparently less

discriminating with respect to the risk, but allow more effective preventive action to be taken

by flagging up problems sooner.

There is a happy medium, as suggested above, by which we can avoid losing variables

which would only be moderately discriminating individually, but are globally useful because

they are less closely linked with other independent variables. In this method, we quickly

identify groups of variables and then look for at least one variable in each group. This factor

analysis is carried out on numerical data, discretized previously (see Section 3.10) if some of

them have missing values, using either the SAS VARCLUS algorithm (see Section 9.14), or

the ACP Varimax method (see Section 7.2.1). The latter method operates as follows.

For each of the factor axes used (the ones with eigenvalues greater than 1, using the Kaiser

criterion), we can obtain the coefficients of correlation with the set of variables. Each axis is

strongly correlatedwith somevariables andweakly correlatedwith others: for each axis,wewill

examine the variables that are most closely correlated with it. Variables with a correlation

coefficient (coordinate of the variable on the axis) above 0.7 will be assigned to each axis: these

are the variables that contribute more to this axis than to all the others added together (see

Section 7.1.2: for a given variable, the sum of squares of its coefficients of correlation with the

set of axes is equal to 1). In this way we obtain several groups of variables: the number will be

equal to the number of axes used, less a few axes without any variable assigned, plus any group

of variables that is not assigned to any axis. If the last group is too large, the threshold of 0.7 on

the correlation coefficient is reduced.We can also choose to assign each variable to the axiswith

which it ismost closely correlated,without specifying a threshold for the correlation coefficient.

If the volume of data is not too great (a few tens of thousands of observations), we can use

another technique to refine the selection of variables by marking the most robust ones. With

this method, we construct a certain number (50–100) of samples found by random sampling

with replacement; these are called ‘bootstrap’ samples. We launch a modelling process

(logistic regression or discriminant analysis) on each bootstrap sample,with stepwise selection

of the variables, and then count how many times each variable is selected in a model.

Depending on the number of variables tested, we accept only those variables which have

appeared at least two or three times, or all those which have appeared at least once. This

selection method decreases the sensitivity to sampling, which makes a variable appear

sufficiently discriminating on one sample but not on another, even if both samples were

constructed by random sampling from the same number of individuals using the same rule.

By means of this exhaustive analysis, we can expect to find all the discriminating

variables, regardless of their type, which may be that of the variable X in Figure 3.12 or

Y in Figure 3.13.X is discriminating and can be used as it stands in any classificationmethod. Y

is discriminating, butmust be used in a decision tree or must be divided into classes in advance

if it is to be used in a classification method such as logistic regression. Z in Figure 3.14 is not

discriminating and should be rejected.

3.8.3 Details of single-factor non-parametric tests

The aforementioned generalizations of Student’s t test are shown, with others, in Table 3.4.

The non-parametric tests (Wilcoxon–Mann–Whitney, Kruskal–Wallis, median, and

Jonckheere–Terpstra) operate on the ranks of the values, rather than on the values themselves,
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and are therefore more robust and can also be applied to purely ordinal variables. Note that the

t and ANOVA tests are less affected by a lack of normality than by heteroscedasticity.

I will now describe the principle of theWilcoxon–Mann–Whitney test for two groups. The

observations of the two groups are combined and ordered, and amean rank is assigned to them

for tied values. The observations for the two groups must be independent and the number of

tied values must be small with respect to the total number of observations. The number

of times that a value of group 1 is smaller (i.e. its rank is lower) than a value in group 2 is

calculated and denoted by U1. The number of times that a value in group 2 is smaller (i.e. its

Density

customers with
propensity

independent variable X

customers without
propensity

Figure 3.12 Linear discrimination.

Density

customers with
propensity

customers without
propensity

independent variable Y

Figure 3.13 Non-linear discrimination.
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rank is lower) than a value in group 1 is calculated and denoted byU2. The Mann–WhitneyU

statistic is the smaller of these two numbers.

Wilcoxon’s rank-sum statistic7 S is the sum of the ranks of the smaller (or first) sample.

Evidently, as U decreases, the groups become more significantly different, and the same

applies if S is very large or very small. Each of these statistics is associated with a test in

which the null hypothesis is that the ranks of group 1 do not differ from the ranks of group 2

(both groups are taken from the same population). The alternative hypothesis is that either

the ranks of the two groups are different (two-tailed test) or that the ranks of one group

are greater than those of the other group (one-tailed test). The commonly used term,

‘Wilcoxon–Mann–Whitney test’, is justified by the fact that both statistics lead to equivalent

Density

customers with
propensity

customers without
propensity

independent variable Z

Figure 3.14 Non-discrimination.

Table 3.4 Mean comparison tests.

Form of distribution Two samples Three or more samples�

normality and homoscedasticity Student’s t test ANOVA

normality and heteroscedasticity Welch’s t test Welch – ANOVA

non-normality and heteroscedasticity Wilcoxon–

Mann–Whitney

Kruskal–Wallis

non-normality and heteroscedasticity median test median test

non-normality and heteroscedasticity Jonckheere–Terpstra

test (ordered samples)

�Do not compare all the pairs by t tests, because significant differences will be incorrectly detected (at the

95% threshold, for four equal means, at least one significant difference will be detected in 27% of cases).

Such a test, which rejects the null hypothesis too readily, is described as ‘liberal’ or ‘powerful’.

7 Not to be confused with the Wilcoxon signed-rank statistic for two matched samples.
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tests. This will be clear when we examine the formula giving the value of Ui as a function of

the sample size ni and the sum Ri of the ranks of the observations of the group i:

Ui ¼ n1n2 þ niðni þ 1Þ
2

�Ri:

The Wilcoxon statistic is R1 and the Mann–Whitney statistic is

U ¼ min n1n2 þ n1ðn1 þ 1Þ
2

�R1; n1n2 þ n2ðn2 þ 1Þ
2

�R2

� �
:

For example, with the following observations from the two groups G1 and G2:

G1: 3 5 6 10 14

G2: 8 12 16 18

we find these ranks:

G1: 1 2 3 5 7

G2: 4 6 8 9

and therefore R1¼ 18, R2¼ 27, U1¼ 20 þ 15� 18¼ 17, U2¼ 20 þ 10� 27¼ 3 and U¼
U2¼ 3 (note: it is a general property that U1 þ U2¼ n1n2). The three cases (U2¼ 3) in

which a value of group G2 is smaller than a value of group G1 are those of the pairs (10, 8),

(14, 8) and (14, 12).

The fact, as mentioned above, that the null hypothesis is more easily rejected as U

becomes smaller is explained as follows. U is compared to a critical value found in a table for

a fixed threshold, and ifU is below this critical value, the null hypothesis is rejected. This exact

test has a corresponding asymptotic test: when the sample sizes n1 and n2 are greater than 8,

the U statistic tends, according to the null hypothesis, towards a normal distribution with

a mean m¼ n1n2/2 and variance s
2¼ n1n2(n1 þ n2 þ 1)/12. The asymptotic test is conducted

by calculating the quotient Z¼ (U� m)/s and comparing the calculated value |Z| with the

theoretical value found in the table for the standard normal distribution. If |Z| � |Ztable|, we

reject the null hypothesis; if |Z|< |Ztable|, we accept it and conclude that there is no significant

difference between the groups. At the usual threshold of 5%, the null hypothesis will be

rejected if |Z|� 1.65 for a one-tailed test, and if |Z|� 1.96 for a two-tailed test.

Similarly, the exact distribution of the Wilcoxon statistic can be found in a table for small

sample sizes, or calculated by software that can carry out an exact test, but there is also an

asymptotic test available in the same conditions as for theMann–WhitneyU statistic: when n1
and n2> 8, the S statistic tends under the null hypothesis towards a normal distribution with

amean m¼ n1(n1 þ n2 þ 1)/2 and variance s2¼ n1n2(n1 þ n2 þ 1)/12 (note that this is equal

to the variance of the Mann–Whitney statistic). In the example below, this variance is 4.082,

while the mean m is 10 for Mann–Whitney and 20 for Wilcoxon (based on the smaller group).

The SAS/STAT NPAR1WAY procedure (single-factor non-parametric tests) calculates

the Wilcoxon statistic instead of the Mann–Whitney statistic, based on the smaller group; in

this case the result is S¼ 27. With the EXACT instruction, the NPAR1WAY procedure (see

below for the full syntax) carries out an exact test; we may note here that it is considered non-

significant at the 5% threshold and does not prove the existence of a significant difference

between the two grounds. For its part, the one-tailed asymptotic test (‘normal approximation’)

is considered significant, but the two-tailed test is not (since 1.96> Z� 1.65). The value of Z
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used for the test is the quotient (S� m)/s¼ (27� 20)/4.082¼ 1.7146. This difference between

the conclusions of the asymptotic and exact tests is commonly found.

Wilcoxon Scores (Rank Sums) for Variable x Classified by Variable a

a N Sum of

Scores

Expected Under H0 Std Dev

Under H0

Mean Score

1 5 18.0 25.0 4.082483 3.600

2 4 27.0 20.0 4.082483 6.750

Wilcoxon Two-Sample Test

Statistic (S) 27.0000

Normal Approximation

Z 1.7146

One-Sided Pr>Z 0.0432

Two-Sided Pr> |Z| 0.0864

t Approximation

One-Sided Pr>Z 0.0624

Two-Sided Pr > |Z| 0.1248

Exact Test

One-Sided Pr>¼ S 0.0556

Two-Sided Pr>¼ |S - Mean| 0.1111

The non-parametric Kruskal–Wallis test is used for k� 2 groups, with the same null

hypothesis as before, in other words that the groups all come from the same population and

that there is no difference between their ranks (since the alternative hypothesis is that the ranks

of at least two groups differ, the Kruskal–Wallis test is essentially two-tailed). Let N be the

number of observation, ni the size of the group i, and Ri the sum of the ranks of the

observations of the group i. The test statistic is

H ¼ 12

NðN þ 1Þ
Xk
i¼1

R2
i

ni
�3ðNþ 1Þ:

A correction must be made where there are equalities of ranks. If the sizes are large or if

k> 6, H tends under the null hypothesis towards a w2 distribution with k� 1 degrees of

freedom; otherwise, we must look up the critical values in a table. Even in a case of normality

and homoscedasticity, this test is almost as powerful as ANOVA. Here, the test is not

considered significant at the 5% threshold, and we find that the associated probability (0.0864)

is equal to that of the two-tailed Wilcoxon test. This is by chance, but in any case these

probabilities are always similar. No exact Kruskal–Wallis test is implemented in the SAS/

STAT NPAR1WAY procedure.
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Kruskal-Wallis Test

Chi-Square 2.9400

DF 1

Pr>Chi-Square 0.0864

Themedian test is designed to test the null hypothesis that the samples come from populations

having the same median. When there are two samples, the median test is a w2 test (at least if the
sample sizes are large) applied to a 2� 2 contingency table whose columns correspond to the

samples and whose rows contain the number of observations over (or under) the median.

The Jonckheere–Terpstra test is used when there is a natural a priori classification

(ascending or descending) of the k (�3) populations from which the samples are taken.

Suppose we wish to determine the effect of temperature on the growth rate of trout, where this

is measured in three samples at water temperatures of 16, 18 and 24 �C. If we are attempting to

reject the null hypothesis of the equality of growth rates in the three samples, the Jonckheer-

e–Terpstra test is preferable to the ANOVA test because it takes the increasing order of the

temperatures into account.

These tests can be carried out by most statistical programs such as SAS and SPSS. The

SAS/STAT procedure, as mentioned above, is:

PROC NPAR1WAY WILCOXON DATA=table CORRECT=no;

/* suppress continuity correction */

CLASS a; /* classification variable */

VAR x; /* numeric variable*/

EXACT; /* optional exact test */

RUN;

The WILCOXON option on the first line launches the Kruskal–Wallis test, and the

Wilcoxon–Mann–Whitney test if the number of groups (¼ number of categories of the

variable ‘a’) is 2. By replacing WILCOXON with ANOVA, MEDIAN or EDF we will

respectively obtain an ANOVA test, a median test, or tests of the equality of the distribution

of the variable ‘x’ in the groups defined by the variable ‘a’ (Kolmogorov–Smirnov

and Cram�er–von Mises tests, and, if ‘a’ has only two categories, the Kuiper statistic). The

instruction EXACT is optional, and launches the determination of an exact test to be used for

small samples. The Jonckheere–Terpstra test is not run by the SAS NPAR1WAY procedure,

but by the FREQ procedure, using the option JT on the TABLES line.

3.8.4 ODS and automated selection of discriminating variables

I have already mentioned the programming language of certain software, which enables the

list of independent variables, classed according to their discriminating power, to be drawn up

automatically. In this section, we will see how the SAS Output Delivery System (ODS) can be

used for this purpose, noting that the SPSS Output Management System can also yield the

results shown here, although the programming would be rather more complex.

For continuous independent variables, let us take the example of an automatic method of

this kind, using the Kruskal–Wallis test and its implementation in the SAS NPAR1WAY

procedure which we looked at before. In the example of syntax shown below, the dependent

variable is the ‘target’ qualitative variable specified on the CLASS line, and the continuous

independent variables are specified on the VAR line. Theymay be very numerous, and it would

be tedious to scan tens of pages of results to find all the Kruskal–Wallis w2 values, given that
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only the highest ones are useful. Rather than read the results directly in the SAS Output

window, we will start by sending them to an SAS file, using the ODS. By placing the

instruction ‘ODS OUTPUT KruskalWallisTest¼ kruskal’ in front of the NPAR1WAY

procedure, we specify that the Kruskal–Wallis test results are to be retrieved, and that we

wish to retrieve them into the file ‘kruskal’. The first qualification is required because we have

seen that the NPAR1WAY procedure runs not only the Kruskal–Wallis test, but also the

Wilcoxon–Mann–Whitney test when the number of categories of the dependent variable is 2.

Of course, if we wished to retrieve the result of the Wilcoxon test, we would have to replace

‘KruskalWallisTest’ with ‘WilcoxonTest’.

The data set ‘kruskal’ contains three observations for each variable mentioned on the VAR

line: one of these (characterized by the variable _NAME1_¼ ‘_KW_’) contains the w2 value,
another (with the variable _NAME1_¼ ‘DF_KW’) contains the number of degrees of

freedom of the w2 test (still 1 in this case), and a third (with the variable _NAME1_¼ ‘P_KW’)

contains the probability associated with the value of w2 (the content here being equal to that of
the w2 value, since the number of degrees of freedom is always the same). In our case, we

simply need to retrieve the first type of observation ‘_KW_’, which we can do with the

condition WHERE. We then sort the file by decreasing values ‘nValue1’ of w2 (‘cValue1’ is
the w2 value in alphanumeric format) and the first 30 lines of it are printed, assuming that we

are only interested in the 30 variables most closely linked to the dependent variable. We could

also export this file in Excel format.

ODS OUTPUT KruskalWallisTest = kruskal ;

PROC NPAR1WAY WILCOXON DATA = table ;

CLASS target;

VAR var1 var2 var3 var4 var5 ...;

DATA kruskal (keep = Variable cValue1 nValue1);

SET kruskal;

WHERE name1 = ’ KW’;

PROC SORT DATA = kruskal;

BY DESCENDING nValue1;

PROC PRINT DATA = kruskal (obs = 30);

RUN;

The result is as follows:

Obs Variable cValue1 nValue1

1 var3 5821.0000 5821.000000

2 var2 1039.1879 1039.187933

3 var4 1032.8305 1032.830498

4 var5 803.8562 803.856189

5 var1 693.4167 693.416713

6 � � � 633.9656 633.965609
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Otherwise, for independent variables that are qualitative, discrete, or continuous and divided

into classes, where the link with the dependent variable is tested by calculating the value of

Cram�er’s V coefficient, the ODS ‘KruskalWallisTest’ is replaced by the ‘ChiSq’ table and the

above syntax becomes:

ODS OUTPUT ChiSq = Chi2;

PROC FREQ DATA=table;

TABLES target * (var1 var2 var3 var4 var5 ...) / CHISQ;

DATA Chi2 (keep = Table Value);

SET Chi2;

WHERE Statistic = ’Cramers V’;

PROC SORT DATA = Chi2;

BY DESCENDING Value;

PROC PRINT DATA = Chi2 (obs = 30);

RUN;

Note that it is the FREQ procedure that, used with the option CHISQ, yields Cram�er’s V,
together with the w2, the Mantel–Haenszel w2 and the coefficient F.

One last comment. The normal output to the Output window is specified in ODS by the

keyword LISTING (the default output) and it is possible to request the cancellation or

reactivation of this output. By writing the following syntax, we prevent the results of PROC

NPAR1WAY from being displayed in the Output window (using the ODS LISTING CLOSE

instruction), but we allow the results of subsequent procedures to be displayed there (using the

ODS LISTING instruction). This option is useful if the number of variables is very large,

because the outputs of PROC NPAR1WAY could fill several hundred pages in the output

window unnecessarily.

ODS LISTING CLOSE ;

ODS OUTPUT KruskalWallisTest = kruskal ;

PROC NPAR1WAY WILCOXON DATA = table ;

CLASS target;

VAR var1 var2 var3 var4 var5 ...;

RUN;

ODS LISTING ;

However, this solution is not suitable if we wish to send the outputs simultaneously to the

Output window and an HTML or RTF document, which we can do simply by bracketing the

processes between a first line ODS RTF FILE (for an RTF document) and a last line ODS RTF

CLOSE(toclose thefile), enablingus topresentSASoutputs inaWorddocument inamuchmore

elegant way than by copying and pasting from the Output window. By adding these two extra

lines, and leaving theODSLISTINGCLOSEinstruction,wewill block thedisplayof theoutputs

of PROCNPAR1WAYin the Output window, but not in the RTF file, whichwill be createdwith

all the outputs as if noODSLISTINGCLOSE instruction had been given. To block all the ODS
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outputsofallkinds,wemustuse theODSEXCLUDEALLinstruction;afterwards,wecanreturn

to the normal displaywith theODSSELECTALL instruction. The syntax for placing the list of

30 variables most closely linked to the dependent variable in a file ‘sas_ods.doc’ is as follows:

ODS RTF FILE = "c:\sas_ods.doc" ;

ODS EXCLUDE ALL ;

ODS OUTPUT KruskalWallisTest = kruskal ;

PROC NPAR1WAY WILCOXON DATA = table ;

CLASS target;

VAR var1 var2 var3 var4 var5 ...;

RUN;

ODS SELECT ALL ;

DATA kruskal (keep = Variable cValue1 nValue1);

SET kruskal;

WHERE name1 = ’KW’;

PROC SORT DATA = kruskal;

BY DESCENDING nValue1;

PROC PRINT DATA = kruskal (obs = 30);

RUN;

ODS RTF CLOSE;

3.9 Transformation of variables

We often need to carry out this step, regardless of the type of model. The particular type of

transformation known as normalization of the variables is widely used in Fisher discriminant

analysis, because of the assumption of multivariate normality in this type of model, and also in

cluster analysis. Another transformation is even more widely used, but wewill save this for the

next section: this is discretization, i.e. the division of continuous variables into classes. Another

fairly common transformation is one in which the original variables are replaced with their

factors, continuous variables which are produced by factor analysis (see Chapter 7) and which

are remarkable in that a few of the factors (which are sorted) contain the essentials of the

information. This method will be discussed later. Finally, there is the transformation known as

creation of indicators, such as the ratios X/Y or X(period t)/X(period t–1) from the raw data,

which is preferably done in cooperation with specialists in the field under investigation.

If the number of variables is large, this stepmay sometimes be carried out only after the step

of selecting the most discriminating variables, to avoid having to transform all the variables

instead of concentrating on the discriminating variables only. However, some transformations

can be executed automatically, such as the one in which a value of ‘missing’ is substituted for

one which is known to be equivalent (e.g. ‘999999999’), or a qualitative variable coded in n

characters is replaced with one coded in fewer characters, with which a label is then associated.

Thus ‘accommodated free of charge’ is replacedwith ‘F’, and the appropriate label is associated

with the code ‘F’: this reduces computation time and the amount of data stored.

Now let us examine the normalization of a continuous variable. This is done by

transforming the variable with a mathematical function, which compresses its distribution,
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brings it closer towards a normal distribution, and if necessary decreases its heteroscedasticity

and increases its discriminating power in a linear model. Financial data, whose distributions

are generally more ‘peaked’ than the normal curve and more elongated towards the right, are

processed in this way. The same applies to reliability data, product concentrations, cell counts

in biology or percentages ranging from 0 to 100. The smaller degree of flattening compared

with the normal curve is revealed by the kurtosis, while the elongation of the distribution to the

right is shown by a coefficient of skewness greater than 0 (see Section A.2.1).

The transformation function is frequently the Napierian logarithm (if V� 0, V is replaced

with log(1 þ V)) or the square root, if the skewness is positive. If this coefficient is negative,

the transformation function is often V2 or V3. For a percentage from 0 to 100, the arcsine

function (
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V=100

p
) is most suitable. Some software can carry out an appropriate transfor-

mation automatically, using the Box–Cox transformation function. Examples are the box.cox

function in the car package and the boxcox function in theMASS package in R. The Box–Cox

transformation is based on a parameter l which is estimated in such a way as to optimize the

result. Demonstrations can be found on the Internet at:

http://wiki.stat.ucla.edu/socr/index.php/SOCR_

EduMaterials_Activities_ PowerTransformFamily_Graphs

Following the 1964 paper by Box and Cox,8 variants have been proposed by other authors,

including Manly (1971),9 John and Draper (1980),10 Bickel and Doksum (1981)11 and Yeo

and Johnson (2000).12

The example in Figure 3.15 of transformation of thevariable ‘household income’ shows that

the logarithm is not always the most suitable transformation function. This variable is visibly

‘peaked’ and skewed to the right, as confirmed by the values of the skewness (2.38) and kurtosis

(11.72) and the P-P plot of the cumulative distributions (Figure 3.16). Looking at the logarithm

of the income (actually the logarithm of ‘1 þ income’) in Figure 3.17, we see that the situation

has not improved, because the distribution is even more ‘peaked’ (kurtosis¼ 12.03) and it is

skewed to the left this time (skewness¼�2.03).However, the square root of the incomes shows

a distributionmuch closer to normality (Figure 3.18),with kurtosis 1.76 and skewness 0.64. The

diagram of cumulative distributions (Figure 3.19) is also very close to a straight line.

3.10 Choosing ranges of values of binned variables

Discretization is unnecessary if we use a decision tree, which can itself divide continuous

variables into classes: the CHAID, CART, C4.5 and C5.0 trees can also be used very

successfully for this purpose (see below). However, when we start with continuous variables,

this step must always be carried out before multiple correspondence analysis (MCA),

DISQUAL discriminant analysis (a linear discriminant analysis on the factors of an MCA)

8 Box, G.E.P. and Cox, D.R. (1964) An analysis of transformations. Journal of the Royal Statistical Society, Series

B, 26(2): 211–252.
9 Manly, B.F.J. (1976) Exponential data transformations. The Statistician, 25, 37–42.
10 John, J.A. and Draper, N.R. (1980) An alternative family of transformations. Applied Statistics, 29, 190–197.
11 Bickel, P.J. and Doksum, K.A. (1981). An analysis of transformations revisited. Journal of the American

Statistical Association, 76, 296–311.
12 Yeo, I.K. and Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry.

Biometrika, 87, 954–959.
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Figure 3.16 P-P plot of income.
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Figure 3.17 Distribution of the logarithm of income.
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Figure 3.18 Distribution of the square roots of income.
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or clustering by similarity aggregation (the Condorcet method). It is unnecessary before factor

analysis of mixed data, since this handles both quantitative and qualitative data. The question

of discretization arises when logistic regression is to be undertaken, since logistic regression

can incorporate quantitative and qualitative variables into the same model. It is true that

logistic regression on discretized continuous variables is often better than logistic regression

on continuous initial variables (see Section 11.8.4), but this is not always the case.

As a general rule, and especially before carrying out a logistic regression, we need to

decide whether to divide each independent variable into classes, by checking to see if the

phenomenon to be predicted is a linear function of the independent variable, or at least

monotonic (in other words, always increasing or decreasing). An example of a non-linear

response might relate to an illness where the frequency of occurrence increases more rapidly

at some ages than at others. An example of a non-monotonic response is attendance at health

spas, which will be lower for young and retired persons and higher for active persons. Non-

linear responses are quite common, unlike non-monotonic responses.

Where we have a non-linear monotonic response as a function of X, we can sometimes

preserve a continuous form, by modelling f(X) instead of X, where f is a monotonic function

such that f(x)¼ x2 for example, if the response is quadratic.

However, a non-monotonic response requires a deeper transformation of the independent

variable, and in this case we usually discretize it, in other words divide it into classes or

‘ranges’. We can then model it by logistic regression or DISQUAL discriminant analysis.

The division into classes is carried out naturally by taking the points of inflection or

intersection of the distribution curves as the class limits (‘purchasers exceed non-purchasers’).

However, ranges of values having the same behaviour with respect to the dependent variable

are grouped together. For example, in Figure 3.20, we can distinguish the range ‘45–65 years’.

There are three other situations where continuous variables may usefully be discretized.

The first of these relates to the presence of missing values, where these are infrequent enough
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Figure 3.19 P-P plot of the square roots of income.
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to make it unnecessary to exclude the variable (see Section 3.3). Since the imputation of

missing values is always a trickymatter, the preferred solution is usually to divide the variable

into ranges, then to add another range corresponding to all the missing values; this range can

be examined and joined to another range if appropriate. Note in passing that division into

classes may help to decrease the rate of missing values at source: in a questionnaire,

respondents are more willing to provide details of wage ranges than their exact pay.

Then there are extreme values which are not easy to correct: clearly, discretization

eliminates this problem, and we no longer have 150-year-old customers, but simply

customers in the ‘80 years and above’ range. The extreme values will be assigned to the

first or last class. Clearly, discretization is not the only solution; for instance, another one is

Winsorization (Section 3.5).

Finally, when using logistic regression, the determination of the coefficients may be

uncertain if the number of individuals is small, because there will not be enough points to

estimate the maximum likelihood. In this case, discretization increases the robustness of the

model by grouping individuals together.

This all goes to show that dividing continuous variables into classes does not necessarily

lead to a loss of information, but is often beneficial to the modelling procedure. It also enables

us to go on to process quantitative variables in the same way as qualitative variables.

Having said this, we still need to know the best way of discretizing the variables. There is

no universal recipe, and certainly no fully automatic method, even though some data mining

software has started to incorporate this kind of functionality.

Among other decision trees, CHAID (see Section 11.4.7) can be very helpful, as the

following examplewill show. Suppose that wewish to predict a target variable from a number

of variables including age, and that wewish to discretize the age variable. We start by dividing

the ages into 10 ranges (or more, if the number of individuals is large), then inspect the

percentage of individuals in the target for each age class.
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Figure 3.20 Division of a continuous variable into classes.
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target

no yes Total

age 18–25 years Count 127 81 208

% within age 61.1% 38.9% 100.0%

25–29 years Count 104 126 230

% within age 45.2% 54.8% 100.0%

29–32 years Count 93 101 194

% within age 47.9% 52.1% 100.0%

32–35 years Count 113 99 212

% within age 53.3% 46.7% 100.0%

35–38 years Count 93 94 187

% within age 49.7% 50.3% 100.0%

38–40 years Count 149 123 272

% within age 54.8% 45.2% 100.0%

40–42 years Count 108 72 180

% within age 60.0% 40.0% 100.0%

42–45 years Count 116 97 213

% within age 54.5% 45.5% 100.0%

45–51 years Count 77 113 190

% within age 40.5% 59.5% 100.0%

> 51 years Count 71 145 216

% within age 32.9% 67.1% 100.0%

Total Count 1051 1051 2102

% within age 50.0% 50.0% 100.0%

Wewill subsequently group together the classes which are close in terms of percentage in

the dependent variable, namely range 2 and 3, ranges 4 to 8, and ranges 9 and 10. If we now

launch the CHAID tree on the variable ‘age’, we can see that it automatically does what we

have done manually, by dividing the continuous variable into deciles, then using the w2

criterion to group together the classes which are closest in terms of the dependent variable

(Figure 3.21). The number of classes produced by CHAID is not usually specified by the user

directly, but is based on the minimum size of a node and the threshold of w2, these values being
included in the input parameters of the tree algorithm (see Section 11.4.7).

We do not always use such a purely statistical method for the discretization; sometimes wemay

combine statistical criteria with ‘professional’ ones which may result in the choice of thresholds

which are significant for the problemunder investigation (for example, 18 years for an age criterion).

Certain basic principles are generally followed for clustering or MCA, regardless of the

discretization method used:

1. Avoid having too many differences in the numbers of classes between one variable and

another.
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2. Avoid having too many different class sizes for each variable.

3. Especially avoid having classes that are too small.

4. About 4 or 5 classes is often found to be a good number.

To speed up the process, we can divide continuous variables into quartiles or quintiles, and

then adjust the thresholds so that they ‘fall just right’ or correspond to the reference thresholds

of the problem.

For prediction, the number of classes is determined partly by the sample size (there can be

more classes with a larger size, since there has to be a minimum of individuals in each class),

and partly by the distribution of the dependent variable as a function of the independent

variable. In the example in Figure 3.20, there will be either three or two natural classes (if we

group the two extreme classes together), and in the example in Figure 3.21 there will be either

four or three natural classes (if the two central classes, which are quite similar, are grouped

together). Quite often, a continuous variable can be usefully divided into two classes; this

operation is called binarization. This gives us two classes of the type ‘0/>0’ (absent/present)

or ‘�0/>0’, or possibly with other thresholds. As a general rule, we try to limit the number of

classes, to ensure that the percentages in the target are clearly different from one class to the

next, and to reduce the number of parameters in the model, thereby increasing its robustness.

We have seen how the CHAID tree can be used to automate the division into k classes.

Other algorithms such as ChiMerge13 are based on the w2 criterion, or on the Pearson f (see

Section A.2.12), for example StatDisc.14 Other approaches are based on entropy and

Figure 3.21 Automatic discretization using CHAID.

13 Kerber, R. (1992) ChiMerge: Discretization of numeric attributes. In Proc. Tenth National Conference on

Artificial Intelligence, pp. 123–128. Cambridge, MA: MIT Press.
14 Richeldi,M. and Rossotto, M. (1995) Class-drivenstatistical discretization of continuous attributes. InMachine

Learning: ECML-95 Proceedings European Conference on Machine Learning, Lecture Notes in Artificial Intelli-

gence 914, pp. 335–338. Berlin: Springer.
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minimize the sum of entropies of the categories, as in the C4.5 tree. For continuous variables,

these have the advantage of finding the optimal threshold (according to the chosen criterion),

since all possible split thresholds are tested. An example of this approach is implemented in

the SPSS Data Preparation module (see Chapter 5 on software). The CART tree (see

Section 11.4.7) can also be used to carry out binarization in an optimal way, since it

optimizes the Gini index of purity by testing all the possible split thresholds for the variable.

These algorithms can also be used generally for the optimal supervised grouping of the

categories of a categorical variable, and are increasingly common in data mining software.

Of course, each continuous variable can be divided in several different ways, for example

in binary and non-binary ways, and all the forms of division can be input into the predictive

model for testing. We can then keep the most appropriate division.

When we have a number of variables to be discretized, rather than just one, we should not

attempt to complete the operation in one stepwith just one tree.What we need to dowhen using

this method is to request, on each occasion, the construction of a tree with a single level and a

single variable to be divided, identified as an independent variable. Multiple-level trees will not

be suitable here, because the division of a variable at a level of the order of n� 2 depends on the

division at the level n� 1 and therefore is not globally, but only locally, optimal (see

Section 11.4.9). Only a tree with one level of depth provides an overall optimum method,

in this case for the division of the variable. Thus, in order to discretize a set of p variables, we

start the tree algorithm p times, once for each of the variables. A macro-language such as that

provided by some software is very useful for automating the procedure. My recent book Étude

de cas en statistique d�ecisionnelle proposes a macro-program based on the CHAID algorithm

and the SAS TREEDISC macro for automatic discretization of a set of variables.15

Since these processes may be rather complex, if the number of variables is high and if

there is no automatic procedure that is fast enough, this step is sometimes left until after the

selection of the most discriminating variables, in order to concentrate on the truly discrimi-

nating variables only. Warning: the classification will affect the discriminating power, so we

may miss out on an interesting variable!

3.11 Creating new variables

This stepmust be considered for all types ofmodels. Like the transformation of variables carried

out before it, this step is not universal; somemodels only use the initial variables. However, it is

often useful in non-scientific areas, where the variables have not been collected with statistical

analysis in mind, and may not always be best suited to the investigation of the problem.

In this case, new variables can be created from the initial variables and may be more

discriminating. Here are a few common examples, in no particular order:

. the date of birth and date of first purchase are combined to give the customer’s age at the

commencement of his relationship with the business;

. the set of variables ‘product Pi purchased (Yes/No)’ can be used to find the number of

products purchased;

. the number of purchases and the total value of these purchases give the mean value of

a purchase;

15 Tuff�ery, S. (2009) Étude de Cas en Statistique D�ecisionnelle. Paris: Technip.
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. the dates of purchase tell us how recent and frequent the purchases were;

. the credit limit and the amount actually used can be combined to find the rate of use of

the credit.

Thus new variables are generally created by the modeller, but there are automatic variable

creation methods, such as the genetic algorithms described in Section 11.13.

Another useful program is DataLab, developed by Complex Systems. One of its functions,

Data Scanning (Figure 3.22), is designed for data preparation as a preliminary to predictive

modelling, and for generating combinations of variables. The user specifies the dependent

variable and the independent variables. DataLab then automatically transforms the variables,

Winsorizing and discretizing the continuous variables, binarizing the categorical variables or

grouping their categories, and combining variables with each other. It automatically creates a

large number of variables of the form V2, 1/V, log(V), root(V), V1/V2, V1V2, V1 þ V2,

(V1>V2), etc. Finally, it uses a linear regression (for a numeric dependent variable) or

logistic regression (for a categorical dependent variable) to select the most discriminating

variables. The resulting model can be exported in SAS, SPSS, SQL or other code. This tool

should not be relied on unthinkingly for the automatic selection of all variables and the

construction of the final model, but DataLab is very useful for suggesting combinations of

variables which might not have been thought of.

3.12 Detecting interactions

One phenomenon commonly encountered in the real world is that the simultaneous action

of two variables is not the sum of the independent actions of the variables. We speak of

‘interactions’ between the variables.

This step of detecting the interactions has to be performed for some models such as linear

models (linear discriminant analysis or logistic regression), which are additive, meaning that

when they are expressed in the form

Y ¼ a1X1 þ . . . þ akXk;

Figure 3.22 Generation of variables by DataLab.
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the effect of each variable Xi is independent of the effect of the other variables. In other words,

each coefficient ai is uniquely determined. If the reality to be modelled is more complex, and

if, for example, a person’s weight has different effects in a model depending on his size or age,

we can sometimes take the quotient ‘weight/size’ if the relationship between the two variables

is linear. But if the relationship between them is more complex, or if the variables are not

numeric, the interactions must be introduced, by taking the product of indicators, such as:

1age2A1 � 1weight2P1; 1age2A2 � 1weight2P2; 1age2A2 � 1weight2P1; 1age2A1 � 1weight2P2; . . .
or

1married � 1no children; 1unmarried � 1no children; 1married � 1with children; 1unmarried � 1with children:

The interactions of variables are used when the sample sizes are large enough. They are

less useful for continuous or discrete variables, and more useful for qualitative variables (e.g.

‘one-parent family with three children’).

The interactions can be detected by two-way tables or by decision trees (incidentally, part

of the name of the first tree, AID, stands for ‘interaction detection’). It is increasingly common

for logistic regression algorithms or those of other generalized linear models (see Sec-

tion 11.9.6) to enable the contribution of interactions to be tested in a model. Thus, if we take

the example of predicting deaths in the sinking of the Titanic, we see that the class�sex
interaction has more effect than age (in binary form: 0¼ child/1¼ adult).

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr>ChiSq

Intercept 1 �5.9403 0.5645 110.7220 <.0001

CLASS 1 1.7191 0.1898 82.0339 <.0001

AGE 1 1.0205 0.2275 20.1137 <.0001

SEX 1 6.0881 0.5148 139.8860 <.0001

CLASS�SEX 1 �1.5505 0.1947 63.4238 <.0001

Now, when we relate sex (0¼ F, 1¼M), class (1st, 2nd, 3rd, 0¼ crew) and survival (yes/

no) to each other, we see (Figure 3.23) that the rate of survival does indeed decrease with the

class number for women, but that the survival rate for men is slightly higher in third class than

in second. The interaction between class and sex is not very pronounced, but it is there. There

is also an interaction between age and sex, because the survival rate is higher for women than

for men, and higher for children than for adults, but lower for girls than for women. To

investigate this interesting example further, you can download the data file from:

http://www.amstat.org/publications/jse/datasets/titanic.dat

We can make the SAS/STAT LOGISTIC procedure test all the possible interactions

between the three independent variables beyond these three variables, by writing

PROC LOGISTIC DATA=titanic;

MODEL survived = class | age | sex / SELECTION=forward;

RUN;
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To test all the possible second-order interactions, we write

PROC LOGISTIC DATA=titanic;

MODEL survived = class | age | sex @2 / SELECTION=forward;

RUN;

Finally, to test the class�sex interaction only (which gives the above coefficients),

we write

PROC LOGISTIC DATA=titanic;

MODEL survived = class age sex class*sex /

SELECTION=forward; RUN;

Note that the HIERARCHY¼ SINGLE option (the default option) of LOGISTIC offers

an interesting possibility: we can decide to input an interaction into a model only if its

component variables have already been selected as principal effects, and we can retain a

variable as long as it has an effect in an interaction.We can avoid this hierarchical structure by

using the HIERARCHY¼NONE option.

Survived
Sex no yes Total 

Count 3 20 23crew 

% within Class 13,0% 87,0% 100,0%

Count 4 141 145first

% within Class 2,8% 97,2% 100,0%

Count 13 93 106second

% within Class 12,3% 87,7% 100,0%

Count 106 90 196

Class

third

% within Class 54,1% 45,9% 100,0%

Count 126 344 470

female

Total 

% within Class 26,8% 73,2% 100,0%

Count 670 192 862crew 

% within Class 77,7% 22,3% 100,0%

Count 118 62 180first

% within Class 65,6% 34,4% 100,0%

Count 154 25 179second

% within Class 86,0% 14,0% 100,0%

Count 422 88 510

Class

third

% within Class 82,7% 17,3% 100,0%

Count 1364 367 1731

male

Total 

% within Class 78,8% 21,2% 100,0%

Figure 3.23 Survival rates on the Titanic.
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3.13 Automatic variable selection

This step is not essential if the discriminating variables have already been carefully chosen, as

mentioned in Section 3.8. However, it is strongly advisable to include this step for certain

models such as linear models (linear discriminant analysis or logistic regression). All serious

programs offer stepwise automatic selection, at the very least. To describe this selection mode,

I will use the example of the prediction of a binary variable by logistic regression, although the

technique can be applied more generally.

The main stepwise selection methods are as follows:

. Forward stepwise selection, in which there is no variable in the model at the outset, and

those which are sufficiently closely linked to the dependent variable, and which

contribute most to the model (in a sense which can vary: e.g. likelihood ratio test,

score test in the SAS and IBMSPSS LOGISTIC procedures, etc.), are added one by one,

with allowance for the previously selected variables.

. Backward stepwise selection, in which we start by entering all the variables into the

model before removing, one by one, thosewhich contribute least to themodel (in a sense

which can vary: the SAS and IBM SPSS LOGISTIC procedures use theWald test). This

method is not recommended if the initial number of variables is very large (especially if

the number of observations is also large), but it can enable more useful variables to be

detected; in logistic regression, however, it has the drawback of being sensitive to

possible problems of complete separation (see Section 11.8.7).

. In combined stepwise selection, each forward selection step is followed by one or more

backward selection steps, and the process is interrupted when no further variables can be

added to the model or when the addition or removal of a variable results in a model

which has already been evaluated; this method is most demanding in terms of

computation time, but it is the most reliable and the most widely used method.

Two more remarks may be added:

. It is possible to combine forward and backward selection with the aim of retaining only

those variables which appear both times.

. Automatic stepwise selection procedures are often insufficiently selective, and the

statistician must often exclude other variables manually, for example according to the

correlation coefficients between independent variables or evidence of overfitting (see

Section 11.3.4) measured in the test sample.

The detailed algorithm for stepwise selection, as implemented for example in SAS or IBM

SPSS, is as follows:16

Step 1. Estimate the constant by searching for the maximum likelihood.

Step 2. Calculate the score statistic for each variable not included in the model.

16 I will not go into the details of the options for specifying a minimum or maximum number of variables in the

model.
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Step 3. Choose the variable V with the lowest p-value for this statistic. If this p-value is

higher than the input threshold (the SLENTRY parameter in SAS; by default this is

0.05), the algorithm ends; otherwise, go to the next step.

Step 4. Add the variable V to the model. If this model is then identical to a previously

calculated model, this means that Vwould be excluded subsequently, and the algorithm

ends without the addition of V (otherwise, the algorithmwould ‘loop’). Otherwise, go to

the next step.

Step 5. Calculate the Wald statistic and the corresponding p-value for each variable (Vand

the others) in the resulting model.

Step 6. Choose the variableW having the highest p-value. If this p-value is below the output

threshold (the SLSTAY parameter in SAS; by default this is 0.05), go back to step 2.

Otherwise, if the model produced by excluding the variableW is a previously calculated

model, this means that Vwould be added subsequently: this model is therefore retained,

without W, and the algorithm ends, to prevent it from ‘looping’. Otherwise, i.e. if the

p-value is greater than or equal to the output threshold and if the model withoutW is not

a previous model, W is excluded, and we go back to step 5.

Thus we obtain a model in which the variables Vi1, Vi2, . . ., Vip are a subset of the set of
tested variables V1, . . ., Vk, chosen because they optimized a certain statistical criterion (the

score statistic in this case) at each iteration, with allowance for the choice of the variables Vi1,

Vi2, . . ., Vip’ (p
0 < p) previously entered into the model. Clearly, this model is not necessarily

the best one overall, since the best model with p0 þ 1 variables is not necessarily found by

adding a variable to the best model with p0 variables (just as the best clustering into k classes is
not necessarily derived from the best clustering into k þ 1 classes). Suppose, for example,

that we have three variables V1, V2 and V3, such that the variable V1 optimizes the statistical

criterion and V2 is strongly correlated with V1. The one-variable model will be {V1} and the

two-variable model will be {V1,V3}, since V1 eliminates V2 which is highly correlated with it.

However, it is possible that the model {V2,V3} is better than the model {V1,V3}. Although this

is not the most common example, it is not exceptional. This is what makes global selection

methods useful.

In the case of continuous independent variables, SAS, SPAD and R (with the leaps

package) have also implemented a global method which is better than the stepwise methods,

namely the leaps and bounds algorithm of Furnival andWilson,17 which attempts to calculate

the best regressions for a subset of 1, 2, . . ., k independent variables, by comparing some of all

the possible models and eliminating the least useful ones immediately. By optimizing the

exploration of all the possible cases, we can keep the computation time within acceptable

limits, at least if k� 40.

3.14 Detection of collinearity

This step of detecting linear links between independent variables is essential for Fisher

discriminant analysis, logistic regression and linear regression. However, collinearity does

17 Furnival, G.M. and Wilson, R.W. (1974) Regression by leaps and bounds. Technometrics, 16, 499–511.
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not affect decision trees, neural networks, or PLS regression. This section is concerned with the

links that may exist between continuous independent variables, but logistic regression can also

have qualitative or discrete independent variables, and the absence of excessively strong

associations between these is tested by thew2 criterion andCram�er’sV, asmentioned inSections

3.8.1 and A.2.10–A.2.12.

The simplest and most usual way of detecting collinearity is to calculate the correlation

coefficients of the variables in pairs (Pearson’s coefficient for continuous variables that are

fairly close to a normal distribution, Spearman’s in other cases). This can be done

automatically for all the variables using the programming language of a package such as

SAS or SPSS.

In the SAS example shown below, we are focusing on the correlation coefficients of the

variables VAR1, VAR2. . . contained in the TEST file, and we wish to detect the strongest

correlations. The results of the analysis are shown in the form of a list of the pairs (VARi,VARj)

with their correlation coefficients (Pearson’s, see below), startingwith the strongest correlations

in absolute terms and ending with theweakest. These calculations are performed by the CORR

procedure, which outputs them to the file specified by OUTP. In this file the correlations are

shown in a matrix, with one row (of the ‘CORR’ type) and one column per variable, so that the

correlation coefficient of (VARi,VARj) is read on the jth column of the ith row. The

TRANSPOSE procedure is used to transform this matrix display into the required list. The

file called PEARSON below then contains the name of the first variable of each pair in

VARIABLE1, the name of the second variable in VARIABLE2, the correlation coefficient

and its absolute value in ABSCORRELATION. Before printing the list (using PRINT),

we eliminate the unwanted terms and keep only those in which VARIABLE1<VARIABLE2.

PROC CORR DATA = test PEARSON SPEARMAN OUTP=pearson

OUTS=spearman NOPRINT;

VAR var1 var2 var3 var4 var5 ... ;

DATA pearson (DROP = _TYPE_ RENAME =(_NAME_ _ =

variable1)); SET pearson;

WHERE _TYPE_ = "CORR";

PROC TRANSPOSE DATA = pearson NAME=variable2

PREFIX=correlation OUT = pearson ;

VAR var1 var2 var3 var4 var5 ... ;

BY variable1 NOTSORTED ;

DATA pearson;

SET pearson;

WHERE variable1 < variable2;

abscorrelation = ABS(correlation1);

PROC SORT DATA=pearson;

BY DESCENDING abscorrelation ;

PROC PRINT DATA=pearson;

RUN;

. . . (same for Spearman)
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As an empirical rule, we can consider that the correlation is unacceptable when the

correlation coefficient exceeds 0.9, very risky when the coefficient exceeds 0.8, and needs to be

treated with caution when it exceeds 0.7. Obviously, we will be more tolerant if the available

variables are less numerous and if it will be difficult to achieve a sufficiently accurate prediction.

If we use a method that is sensitive to the collinearity of the independent variables, it is not

always sufficient to verify the absence of collinearity of the variables examined in pairs. In

other words, it is not enough to calculate the correlation coefficients of all the pairs of

variables. This is because there may be a linear relationship between three variables even

when there is no linear relationship between any two of the three. We must therefore check

that there is no multicollinearity between the variables. This can be done in two ways.

Oneway is to calculate an index called the ‘tolerance’ or its inverse, the ‘variance inflation

factor’ (VIF). The VIF is so called because it acts as a multiplier of the variance of the

estimator of the coefficient of the variable in a linear regression (see Section 11.7.1). The

tolerance of a variable is the proportion of the variance of this variable that is not explained by

the other variables, i.e. 1�R2, where R is the multiple correlation coefficient of the tested

variable with the other independent variables. It is often considered that the tolerance should

be greater than 0.2 or at least 0.1 (VIF� 10).

Alternatively, we examine the correlation matrix and calculate its condition indices

(according to Belsley, Kuh and Welsch),18 defined as the square root19 of the ratio of the

largest eigenvalue to each of the eigenvalues:

Z2k ¼ mmax=mk:

According to Belsey,the multicollinearity is moderate if some indices Zk are greater than
10, and high if some indices Zk are greater than 30. If this is the case, we check to see if we can
link the corresponding eigenvalue to a strong contribution (in excess of 50%) of the principal

component (the eigenvector associated with the eigenvalue) to the variance of two or more

variables. In other words, we find out whether two ormore columns in Table 3.5 contain values

greater than 0.5. In our case, the table shows that there is no problem of collinearity, as the

collinearity present between variables 4 and 6 is only moderate.

In SAS and IBM SPSS, only the linear regression procedure REG offers the possibility

of measuring the tolerance and VIF, although these measurements are equally useful in

logistic regression or discriminant analysis. However, all we need to do is to launch the REG

procedure, specifying as the dependent variable that of the problem (event if it is binary). In

any case, the choice of dependent variable has no effect on the result, as this will only be

based on the correlations between the independent variables, not the correlations with the

dependent variable. We must be careful about using these criteria when the independent

variables are not continuous, for example if we recode qualitative variables: recoding a

binary variable in 0/1 form will not lead to the same result as recoding in 1/2. The VIF (and

the condition indices) will be substantially higher with 1/2 coding.

The SAS syntax for producing these indices is shown in Section 11.7.8.

Note that we can get an idea of the risks of multicollinearity and the natural groupings

of variables by carrying out an agglomerative hierarchical clustering of the variables, rather

than the individuals, as mentioned in Section 9.14.

18 Belsley, D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics: Identifying Influential Data and

Sources of Collinearity. New York: John Wiley & Sons, Inc.
19 Some authors do not use the square root.
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3.15 Sampling

3.15.1 Using sampling

Sampling is an indispensable procedure in statistics and data mining, especially in prediction

and classification, where most algorithms use a training sample for developing the model and

a test sample for validating the model, or multiple samples for cross-tabulated validation.

Also, if the class to be predicted is rare, it may be necessary to sample the population and

adjust the sample in order to increase the frequency of that class. Some classification methods

require sampling. It is often the case that the overall numbers to be processed are so great that

we have to sample in order to reduce the number of observations to be handled. Finally,Monte

Carlo methods and resampling (see Section 11.15) are increasingly used to enhance or at least

estimate the robustness of models, either by aggregation of models or by calculating

confidence intervals for the estimated parameters.

Sampling is only applicable if, on the one hand, we can control the representativeness of

the sample,20 and, on the other hand, if we are not looking for excessively unusual phenomena.

This can easily be understood if we consider the investigation of types of fraud or narrow

segments with high added value. We also need to be sure that the accuracy of the results only

increases as the square root of the sample size (i.e. it does not depend on the size of the

total population):21 a multiplier of 10 only divides the confidence interval by 3.2 (¼ ffiffiffiffiffi
10

p
). As

a general rule, optimal sampling requires a thorough knowledge of the population under

investigation, which is not always available, especially if we are studying a constantly

changing population such as a customer base.

Table 3.5 Multicollinearity.

Variance Proportions

Eigenvalue

Condition

index (cst) var 1 var 2 var 3 var 4 var 5 var 6

1 3.268 1.000 .01 .00 .03 .02 .01 .01 .02

2 1.022 1.788 .00 .56 .01 .02 .00 .33 .00

3 .976 1.830 .00 .42 .00 .10 .00 .42 .01

4 .811 2.008 .00 .02 .07 .81 .00 .14 .00

5 .636 2.266 .01 .00 .78 .04 .02 .09 .00

6 .221 3.842 .01 .00 .11 .01 .20 .00 .73

7 .065 7.099 .97 .00 .00 .00 .76 .00 .24

20 For example, we can conduct a Student test or a non-parametric test on the means of the variables used (see

Appendix A).
21 See Appendix A.
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Consider an example from the world of banking: the creation of a sample of current

account holders. Do we start by taking accounts at random, according to a probability

distribution, and then find their holders, or should we start by picking holders at random and

then find their accounts? In the first case, there will be a bias towards holders who have several

accounts (and are therefore more likely to be chosen); in the second case, there will be a bias

towards accounts with more than one holder, i.e. joint accounts. In one case, there is a bias

towards professionals and well-off customers, while in the other case there is a bias towards

couples; in all cases, the sampling is biased and must be adjusted. We must therefore know

the population so that we can find the distribution of single/joint accounts and customers as

a function of their numbers of current accounts.

Clearly, sampling is required for the development of a predictive model, if only for the

creation of the training and test samples for optimizing the selection of the independent

variables. This selection will be carried out in such away that the performance of the model on

the test sample is maximized. Once this has been done, we must still return to the whole

population to recalculate the parameters of the model (such as the logistic regression

coefficients), not only on the learning sample, but on the totality of individuals, in order

to provide the best estimate of the parameters of themodel (unless we use a baggingmethod as

described in Section 11.15.2).

3.15.2 Random sampling methods

The main methods of random sampling are simple random sampling, systematic sampling,

stratified sampling and cluster sampling.

Simple random sampling involves drawing n individuals at random without replacement

from a population of N, each individual having a probability of 1/N of being drawn. For this

purpose, many programs have a ‘random’ function which randomly outputs a number from

0 to 1 according to a statistical distribution that can be specified (uniform, normal, etc.). In

some variants, the drawing can be with replacement and/or with unequal probability (not

equal to 1/N for each individual). Such an unequal probability is used in boosting. As for the

sampling with replacement, it is the foundation of bootstrap (see Section 11.15).

In systematic sampling, the individuals are drawn not at random, but in a regular way. If we

carry out a ‘one in a hundred’ sampling, we take the first individual, then the 101st, then the

201st, and so on. We must pay attention to cyclical data with this form of sampling: if we use

customer numbers, the hundreds number may be a family number, and if we take one

customer in every hundred, wewill never choose two individuals in the same family. However,

this sampling mode can also provide a degree of comprehensiveness.

In stratified sampling, we divide the population, for example by dividing the customers

into age ranges, and then draw customers at random from each stratum to obtain a sub-sample

for each stratum; we can then bring all these sub-samples together. In proportional stratified

sampling, the relative size of each sub-sample is equal to the relative size of the corresponding

division: for example, if 30% of the customers in the population are aged over 60, then 30% of

any stratified sample by age must be customers aged over 60. It may be useful to carry out

a non-proportional stratified sampling procedure to take into account the variability of the

phenomena studied in each stratum: thus we can underrepresent the strata in which the

variability is low (where the interesting information is concentrated in a few individuals) and

overrepresent the strata in which the variability is high (which require a larger number of

individuals to establish the information).
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Stratified sampling is required when we need to construct two samples for the training and

testing of a classification model, since it enables us to control the distribution in the two

samples of the dependent variable. In the aforementioned case of a rare class to be predicted

and the necessity of increasing its frequency in the sample, this can be done by non-

proportional stratified sampling.

Cluster sampling is a matter of drawing families of individuals (the ‘clusters’) at random

and choosing all the individuals in each cluster, this being known as a census. We may, for

example, choose certain urban districts at random and then ask questions of all the customers

from these districts. Or we can choose a family name at random and then carry out a census

of all the customers whose family name starts with the letter drawn at random. We must be

careful about the representativeness of the sample, if some initials are chosen at random, for

example ‘S’ for ‘Smith’! It may be better toworkwith the second and third letters of the family

name, after conducting a test of representativeness.

By contrast with stratified sampling, cluster sampling improves as the clusters resemble

each other more closely, and as the individuals in each cluster differ from each other. This is

because the basic principle of this form of sampling is that the cluster is a miniature version

of the population under investigation. If we wish to measure a certain indicator in the sample,

we will choose a cluster division criterion having no relationship with the indicator to be

measured. We often choose a geographical criterion (although its relevance must still be

checked), especially as the use of this criterion limits travelling time and expense in the case of

a field study.
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4

Using commercial data

This chapter describes the main kinds of data that are generally studied in commercial data

mining applications, grouped into types. Particular attention will be paid to geodemographic

and profitability data, which are very useful in certain contexts. Finally, there is a detailed

examination of the data used in banking, personal and property insurance, the telephone

industry and mail order.

4.1 Data used in commercial applications

Before looking at the details of the data used in four of the main commercial sectors where

large-scale data mining projects are typically found, I will list the main kinds of data common

to all these sectors, divided into a fewmajor families. These data are aggregated by household

or used at the individual level, depending on the studies concerned and the possible options.

4.1.1 Data on transactions and RFM Data

In many investigations, and in all of those that relate to a propensity to consume, the most

important data are those on commercial transactions. We ask the following questions:

‘where?’ (geographical locations, businesses where the transactions took place, Internet,

etc.), ‘when?’ (frequency and recency of the transactions), ‘how?’ (method of payment), ‘how

much?’ (number and value of transactions), ‘what?’ (what has been purchased).

A typical recency, frequency, monetary value (RFM) analysis is conducted by cross-

tabulating the recency of the last purchase in the period studied (e.g. quarter T� 1, T� 2,

T� 3, T� 4), with the frequency of purchases in that period (in our example, the number of

quarters between 1 and 4 when a purchase was made), and then examining the distribution of

purchases in each intersection. We can denote these by 0 and 1 to indicate quarters without a

purchase and with purchases, respectively; for example, 1001 signifies a customer who has

made a purchase in the preceding quarter T� 1 and in the quarter T� 4, and no purchases in

the other two quarters. The results will be as shown in Table 4.1.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.
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When the subscription rates are measured for each cell of the table, we often find a

segmentation having the following general form:

. Very good customers: 1111, 1110, 1101, 1011;

. Good customers: 0111, 1100, 1010, 1001;

. Average customers: 0110, 0101, 0011, 0100, 0010, 0001;

. New active customers: 1000.

4.1.2 Data on products and contracts

Other important data relate to the ownership of products: these include the numbers, types,

options, prices, date of purchase or subscription, date and reason for cancellation or return of

products, mean product life or expiry date, payment date and method, discount granted to the

customer, and profit margin on this product for the business.

4.1.3 Lifetimes

The first of the variables relating to customer lifetime is, of course, age. For obvious reasons of

market segmentation, this is a very important variable in marketing. If we do not know the

ages of our customers, we can sometimes estimate them with a reasonable degree of accuracy

by an alternative method. This is ‘first name scoring’, and it will be described later.

The second major lifetime relating to a customer is his lifetime as a customer of the

business. This variable is used, together with others including length of time at present address

and length of time in present job (rather than length of time at work, i.e. number of years since

first job), as a risk indicator.

For propensity studies, we must also consider the period of time that has elapsed since the

subscription to a contract or the purchase of a product, which is important, especially when

there is a life cycle for the product concerned, as in the case of vehicles, credit, and some

managed savings products.

For risk studies, we may also consider the time since the last claim (related to

no-claims bonuses in car insurance, for example), since the last dispute, since the last

non-payment, etc.

Table 4.1 RFM segmentation.

frequency recency 4 3 2 1

T� 1 1111 1110 1100 1000

1101 1010

1011 1001

T� 2 0111 0110 0100

0101

T� 3 0011 0010

T� 4 0001
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As I have mentioned, we can attempt to estimate customers’ ages when they are not

directly known, by using the first name. This first name scoring method is based on the fact

that certain first names go in and out of fashion through the years. The usefulness of this

method is evident for first names such as the one in the graph in Figure 4.1, based on the

INSEE data for France. Data of this type are provided by the Office for National Statistics in

the United Kingdom and by the Social Security Administration in the United States.1 These

are names that are sufficiently popular to have a statistical value, but not as widespread as first

names which are present at all periods (John, David, Lucy. . .), meaning that they cannot be

used as predictors of age (although if we know two first names at the same address we can try

to cross-tabulate them). Such names are John and David in the United Kingdom, James and

Mary in the USA, and Pierre, Paul and Marie in France. In the USA, Mary was always one of

the top two girls’ names from 1910 to 1965, James was always one of the top five boys’ names

from 1910 to 1980, John and Robert stayed in the top five until 1971, andMichael has become

increasingly popular since the 1940s. However, some first names are highly predictive: in

France, these are Émile, Jeanne and Germaine for the 1920s, Joseph, Lucien, Roger and

Th�er�ese for the 1930s, Claude for 1935–1945, Monique for 1940–1950, Daniel, Bernard,

Michel and Françoise for 1945–1955, Philippe, Patrick and Catherine for 1955–1965, Éric,

Thierry, Pascal (with a peak in 1962, as seen in Figure 4.1), Christine, Isabelle and Nathalie for

1960–1970, Julien andNicolas for 1980–1990, and so on. In the USA andUK,we findGeorge

and Dorothy at the start of the twentieth century, Margaret in 1910–1930, Richard in 1930–40

(USA) and 1950–1970 (UK), Karen in the 1960s, Christopher in the 1970s and 80s, Jessica in

the 1990s, and so on. In the UK,Margaret was one of the two commonest names between 1914

and 1934, then declined from 4th to 39th place from 1944 to 1954.

Figure 4.1 Distribution of the first name ‘Pascal’.

1 See, for example, http://www.nameplayground.com/ and http://www.ssa.gov/OACT/babynames/ for the USA,

http://www.babynames.co.uk/popular-baby-names for the United Kingdom, http://meilleursprenoms.com for France,

and www.beliebte-vornamen.de for Germany.
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As a final comment on first name scoring, in the absence of more detailed information, the

first name can give us some hints about the geographical origin and sociocultural level of the

parents. It may be useful for a business to compare the distribution of its customers’ first

names with the distribution in the whole population of the country.

4.1.4 Data on channels

For each customer, we can distinguish the following:

. the channel through which contact was made (sponsorship, press advertisement,

telephone call, response to mailing, etc.);

. the preferred channel for contact and communication (post, telephone, SMS, Internet,

store/agency, etc.);

. the preferred channel for orders (post, telephone, Internet, store/agency, etc.);

. the preferred delivery channel (store/agency, home delivery, etc.).

The channel through which contact was made can be particularly important for the continuing

relationship between the business and the customer: customers recruited by sponsorship are

considered to be most loyal.

4.1.5 Relational, attitudinal and psychographic data

Relational data are: responses to marketing campaigns and offers, rejection of direct

marketing, preference for a contact channel, preference for a delivery channel, response to

questionnaires (on order or guarantee forms, for example), responses to courtesy or customer

satisfaction calls, calls to the customer service or after-sales service, and complaints (but

remember that fewer than 10% of dissatisfied customers actually make complaints).

Relational data are less commonly available than other data, but are very important. For

example, a customer’s propensity may depend on the distribution channel; a customer with a

high propensity score may refuse an offer because it is made by telephone, where he would

have accepted it by post. If these data are available, it may be helpful to use them to construct

‘distribution channel’ propensity scores which are then cross-tabulated with the ‘product’

propensity scores; we can then avoid contacting customers who do not wish to be contacted.

Attitudinal data may have a significant effect on the customer’s loyalty, which does not

only depend on his satisfaction. This is because, as we know, a satisfied customer may change

brands, but a customer who is well treated after a complaint is generally more loyal than

before the incident. Customers who complain most are sometimes those who are most

attached to the brand. The attitudinal factors to be incorporated into loyalty modelling are: the

image and prominence of the brand for the customer (low,medium or high), the predisposition

to purchase (is unaware of the product/has heard of it/knows about it/is interested/would like

it/expects to buy it), the attitude to the product (enthusiastic/positive/indifferent/negative/

hostile), the reasons for buying (quality, price, service, etc.), the attractiveness of the

competition, the customer’s propensity or disinclination to change, any special barriers to

change existing in the market (making the customer more or less ‘tied’), etc. We need to

distinguish voluntary loyalty from captivity.
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Psychographic data are lifestyle, personality (shy, authoritarian, prudent, ambitious, etc.),

values (pro-modern, conservative, politically involved, hedonistic, materialistic, critical,

etc.), risk aversion (trustful, mistrustful, anxious, demanding), knowledge, focus of interest,

opinions and behaviour. These data are widely used for customer segmentation. They include

the well-known social styles of the Centre de Communication Avanc�ee, the criteria for which
are more concerned with psycho-sociology.

4.1.6 Sociodemographic data

This list of data used in data mining will end with sociodemographic data, even though these

are the best-known type. This is because they are rarely the most discriminating data in

practice. Perhaps their main advantage is that they are universal and easily understood.

However, they can also suffer from input errors, intentional false statements, and, above all,

frequent lack of updating.

The main sociodemographic data are:

. personal (sex, level of education);

. family (family situation, number and ages of children, number of dependants);

. occupational (income, occupation and social category, number of working and retired

people in the household);

. wealth (fixed and movable property, owner-occupier or tenant, value of residence,

possession of a second home, etc.);

. geographical (length of time at the address, region of residence, place of residence

(commune, district, municipality), number of inhabitants of the place of residence,

ZIP code, ZIPþ4 code and Block Group (USA), Super Output Area and Census

Output Area (UK), IRIS and INSEE block (France), type of housing (geodemographic

segment) deduced from the preceding geographical area;

. environmental and geodemographic (competition, population, working population,

customer population, unemployment rates, economic potential, product ownership

rates, etc., in the area of residence of the customer or prospect).

4.1.7 When data are unavailable

Some geodemographic data (see Section 4.2.1) and relational data (survey responses) are

useful in the absence of other, more precise data, especially in a population of prospects.

We can also use behavioural mega-databases. These mega-databases contain hundreds of

indicators of the consumption habits and lifestyles of several tens of millions of households

with their personal details (names, telephone numbers, postal address, and e-mail address if

any). There are two main types of mega-databases.

In the first type, the databases are created by the sharing of files from partners in retailing,

mail order, the Internet sector, the press, the community sector, etc. In France, the leading

mega-database is Apollinis, belonging to WDM (formerly Wegener Direct Marketing), with

10 million postal addresses and 3 million e-mail addresses. A good example in the UK is the

Data Locator Group and its Data Rental based containing 2000 data items on 24 million
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individuals. In the second type of megadatabase, the data are collected via large-scale surveys,

where the households agree to respond and allow the resale of these data in exchange for

discount vouchers or free samples for a number of products. The American Acxiom company

is a specialist in these databases, and has become even more dominant since 2004 when it

purchased the major European company Claritas and the leading French provider, Consodata.

The owners of these mega-databases may conduct studies for businesses (drawing up

profiles of their customers) or may sell them address files which are ‘qualified’, in other words

enriched with a certain amount of information or created by using certain selection criteria.

Naturally, the amount of accompanying information will increase the price of each address:

this ranges from around D0.20 to D0.30 for a plain address (D0.50 with the telephone number

added), plus about D0.05 for each lifestyle criterion, plus about D0.10 to D0.15 for each

precise consumption habit. So the price will often be more than D0.50 per qualified address,

which is more expensive than the addresses sold by La Redoute or the Bottin international

directory, but is justified by the accuracy of the information. A business can even add its own

questions to a supplier’s surveys, although this will obviously cost more, and be the only

business to know what the answers are.

4.1.8 Technical data

These are data which are not generally used in data mining analysis, but are required for the

selection of individuals admitted to the analysis base, or for the implementation of data mining

in targeted marketing. These data are:

. date of death (the fact that this is filled in);

. the type of customer (private, business, company, etc.);

. non-acceptance of direct marketing (shown in the Robinson lists used in France,

Belgium, Switzerland and Germany);

. bad payer status;

. status as employee of the business or of a subsidiary;

. title, surname, forename, telephone number and full address;

. the ‘not at this address’ indicator (in direct marketing, a good file should contain fewer

than 3% ‘not at this address’ responses).

4.2 Special data

4.2.1 Geodemographic data

Geodemographic data have the distinctive feature of not relating directly to individuals, but to

their geographical environment. For each individual, customer or consumer, it is possible to

discover the details of his place of residence in terms of economics (number of businesses,

working population, population on benefits, unemployment, local businesses and services,

consumption habits, etc.), sociodemographics (population, wealth, average number and ages

of children, family structures, social and occupational level, etc.), housing (age, type and
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convenience of housing, proportion of tenants and owner-occupiers, etc.) and competition

(presence of the business, presence of its competitors, market share, etc.). This information is

supplied by the general census (sources: the U.S. Census Bureau in the USA, the Office for

National Statistics in the UK, INSEE in France), statistics on civil status, electoral registers,

tax authorities, social services organizations, postal services, housing files, etc. In France, the

sources include the SIRENEfile of businesses, the RevenueDepartment, the family allowance

office, the annual statement of social data, the Banque de France (the file of bank branches),

etc. Sometimes this information can be supplemented with street-level information such as

that available in the files of postal services.

The existence of these data has led to the emergence of geomarketing, which Franck

Bleuzen defines as ‘modelling and analysis of all the correlation factors between the

consumer’s place of residence and his mode of consumption’.2 The underlying assumption

of geomarketing is that the choice of a place of residence is dictated to a household by social

and financial considerations, resulting in a degree of uniformity of the information mentioned

above, at least if it is examined with a sufficiently fine degree of resolution, and leading to

similar behaviour in terms of consumption and purchasing.

Of course, geodemographic data are not directly related to separate individuals, and are

therefore less precise than some other data that the business may hold on its customers.

However, they have the major advantage of being available for individuals who are not (yet)

customers of the business. This enables the business to supplement the information it holds on

its prospects, to investigate a geographical area where it has no market presence with a view to

establishing itself there, to identify the catchment areas and population movements, to find

areas with high commercial potential, to prepare for the targeting of prospects or the

marketing of a new product, to allocate the territories of its sales staff, to analyse the

customer profiles by local market, and so on.

By identifying the catchment areas of its points of sale, a business can limit their overlap,

or, conversely, find areas of poor coverage, decide on the areas for distribution of its

advertising flyers and posters, adapt its offer to the customer base, measure the effects of

its competitors, etc.When it is established in an area, the business can measure its commercial

performance by comparing it, on the one hand, to its performance in other areas with the same

socioeconomic and demographic characteristics (in the same block groups, see below), and,

on the other hand, to the expected potential performance allowing for the household resources

as shown in the geodemographic databases for this area. If the business considers that its

trading performance is inadequate, it can use geomarketing either to focus its efforts on areas

with major potential for the proposed product(s), or it can preferentially target areas

geographically close to areas where its penetration rate is high.

Geodemographic data can be used for propensity studies. The customer’s potential for the

business will be roughly equal to the difference between the ‘shopping basket’ of consumers

in his area and what he has purchased already.

Geodemographic data are available at different geographical levels, ranging from the

whole country to the district, via regions, departments, cantons and communes (in France), or

from the state to the county and the municipality (in the USA), or again from the region to the

country and district (Ward) in the UK. The nomenclature of territorial units for statistics

(NUTS), established by Eurostat in 1981, defines territorial divisions which are comparable

between the countries of the European Union, for the purpose of drawing up regional statistics

2 Cited by Laure Gontard (http://mvmemoire.free.fr/m%E9moires/Les%20m%E9moires/GONTARD.pdf).
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and implementing the EU’s regional policies. The NUTS nomenclature has three levels:

NUTS 1, NUTS 2 and NUTS 3. Each member state is divided into one or more NUTS 1

regions, which are divided into one or more NUTS 2 regions, which are again divided into one

or more NUTS 3 regions. NUTS 1 in France is a group of regions (there are nine of these,

including one for overseas territories); in Germany it is a Land (there are sixteen of these), and

in the UK it is a region (there are nine of these). A NUTS 2 territory is a region in France and a

county in the UK. NUTS 3 is a département in France, and a district in the UK and Germany.

The NUTS nomenclature of 2006 divides the European territory into 97 NUTS 1 regions, 271

NUTS 2 regions and 1303 NUTS 3 regions.

In France, the district level has been defined by INSEE, for all municipalities with more

than 5000 inhabitants, as sets of blocks grouped according to statistical information (IRIS)

with an average of 2000 inhabitants each. There are approximately 16 000 of these IRIS

districts. The usefulness of the IRIS district is that it relates to an area of uniform population,

instead of a purely administrative division. This makes it suitable for geomarketing studies.

The 35 000 municipalities with less than 5000 inhabitants each are not divided into IRIS

districts.

If the base unit for general census data on the population is taken to be the minimum

geographical area for the free distribution of all3 the 17 000 sociodemographic indicators,

belowwhich level the Data Protection Act (CNIL) considers (since the 1990 census) that there

is a risk of supplying information which could be too closely applicable to individual cases

(this risk is judged to be unacceptable because it is compulsory to respond to the census

questions), the 51 000 base units are the 35 000municipalities with less than 5000 inhabitants,

plus the 16 000 IRIS districts of the 1800 municipalities with more than 5000 inhabitants.

Some information, generally relating to the files of the Post Office or the Revenue Agency,

is compiled at the address and street level. Between the street and the municipality or IRIS

level, there is an intermediate level, with about 120 inhabitants: this is the block level, and is

also the area covered by a census taker in the general census. Municipalities with more than

10 000 inhabitants (numbering about 900) are divided into blocks, as are all municipalities in

urban areas with more than 50 000 inhabitants, and there are about 222 000 of these blocks,

containing more than half of French households. Oddly enough, municipalities with 5000 to

10 000 inhabitants are divided into IRIS districts, not into blocks, although the IRIS districts

are defined as groups of blocks.

INSEE has distributed a maximum of 15 items of information at block level since 1990.

These items are the distribution of the population by sex and five age ranges (0–19, 20–39,

40–59, 60–74, 75 and above), the number of people in primary homes, and the division of

housing into four categories (primary homes, second homes, occasional accommodation,

vacant accommodation). However, some specialist companies, which already held databases

at block level before 1990, have continued to update these after each general census, by

interpolation of the information supplied at IRIS level. In the USA, the smallest unit used by

the Census Bureau for data collection is the Census Block. It is similar to the French block, but

at an even finer level of detail, representing an area bounded by a street, a road or a

watercourse, even if there are no inhabitants. Of the 8.2 million Census Blocks, about 2.7

million are uninhabited. The Census Blocks are grouped into Census Block Groups (more

than 200,000 in each), which are themselves grouped into Census Tracts which are roughly

equivalent to municipalities, and then into counties and states. With an average of 500

3 Except for indicators of nationality and immigration.
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households each, the Census Block Groups are the equivalent of the French IRIS, and the

Census Bureau distributes information at this level. In the United Kingdom, the smallest unit

use by the Office for National Statistics is the Census Output Area, which is the equivalent of

the French block, the number of OAs being almost the same as the number of blocks. This

unit is then aggregated into Super Output Areas, and subsequently into Census Tracts, districts

and counties.

There are two further resources which can increase the relevance of geomarketing studies.

The first resource is provided by data mining itself, using the clustering techniques which,

in France, enabled the research company COREF to develop a typology of French munici-

palities (in about 40 clusters called geotypes�), and then a typology of blocks (in 31 clusters

called ı̂lotypes�, which have then been refined into about 50 sous-ı̂lotypes), after creating

databases of several hundred variables on these two types of entity.

This clustering is based on factor analysis and dynamic cloud clustering (see Sec-

tion 9.9.2). This approach has the advantage of summarizing numerous data and substituting

a single indicator, the block cluster, or a few factors, for several hundreds of sociodemo-

graphic, behavioural, economic and other indicators (age, family circumstances, number of

children, income, socio-occupational class, housing, distance from shops, etc.). This is always

useful, especially when there is no preconceived idea of the phenomenon to be examined, and

when we are not interested in a single specific data element.

COREF was purchased in 1996 by CCN, which then merged with other companies to

create Experian. Experian eventually abandoned the COREF typologies, and developed its

own geodemographic typologies, now in use worldwide, starting with MOSAIC.

This typology is available in an international version, MOSAIC GLOBAL, developed for

380 million households and 880 million consumers in 25 countries, including the USA,

Canada, Western and Northern Europe, Japan, Australia and New Zealand. It is based on

sociodemographic data, lifestyles, behaviour and preferences, and contains 10 types which

are universal and found to varying degrees in the 25 countries covered by this typology. For

example, “sophisticated singles” include 29% of Finns but only 1.3% of Irish citizens. The

types are distributed along two major discriminant axes: the income level (from low to high)

and the housing type (urban to rural).

A High 
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Singles

B
Bourgeois
Prosperity 

C
 Career and 

Family 

D
Comfortable 
Retirement 

E 
Routine Service 

Workers

F
Hard Working Blue 

Collar
G Affluence 

Metropolitan
Strugglers

H
Low Income 

Elders

I
Post Industrial 

Survivors

J
Rural

Inheritance

Low Rural Urban  

This global typology can be used for marketing analyses at the international level, for

comparing customers in different countries, or for finding identical behaviours in different

countries. This information is useful for developing coherent marketing approaches, applying

the knowledge of a customer in one country to another country, etc.

The MOSAIC GLOBAL typology is also subdivided in each country, where there is a

specific typology related to the global typology by means of common variables (proportion of

the population aged over 65, or of school age, etc.). Of course, these MOSAIC types are
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always calculated by statisticalmethods (k-means on standardized variables; see Section 9.9.2),

but they are also validated by experts in the sociology of consumption, economics and human

geography. Their variables are carefully chosen: they must have balanced weights, without

any one characteristic taking precedence; they must not be redundant, must be related to

consumer behaviour, and must have categories which are not too rare and which are well

distributed over the whole territory. In the USA, we find variables relating to age, ethnic

origin, educational level, family circumstances, size of household, occupation, income, the

status of the housing and age of the building, the means of transport to work, and the number

of vehicles owned.

In the USA, the MOSAIC typology is based on 300 variables, including the data from the

10-yearly general Census of the population with annual updates by AGS Demographics, and

consists of 60 types aggregated into 12 groups, available at the ZIPþ4 code, the ZIP code, or

the Block Group level. The ZIPþ4 level is very detailed, since it corresponds to a street or

about ten households, but not all addresses have a ZIPþ4 code; conversely, not all ZIPþ4

codes relate to addresses (they may be box numbers), and moreover the ZIPþ4 code created

to optimize the routing of the mail is not as stable over time as the Block Group. This last unit

is therefore preferred as the elementary unit for analysis and storage of geodemographic data.

In the United Kingdom, MOSAIC is constructed from 400 variables, 54% taken from the

Census and 46% from other sources. It consists of 61 types aggregated into 11 groups: Ties of

Community, Suburban Comfort, Blue Collar Enterprise, Happy Families, etc (Table 4.2). It

was in the UK that MOSAIC was first developed, as a result of the work done by Richard

Webber, Professor of Geography at Kings College, University of London with Experian.

In France, MOSAIC consists of 52 “portraits” aggregated into 14 “landscapes”, including

“working class tradition”, “future executives”, “popular middle class”, “culture and leisure”,

“urban seniors”, etc.

Other companies are now offering these typologies at the national and international level,

including Acxiom, with Personicx, a typology with about 70 segments, defined at the level of

the Block Group or ZIP Code (USA), the postcode (UK) or IRIS (France). It can be used on

national statistical data, and also on the Acxiom megadatabase (see Section 4.1.7).

In the UK, Richard Webber, creator of MOSAIC, has also developed the ACORN (A

Classification Of Residential Neighbourhoods) typology.

In the USA, the Experian MOSAIC typology is used alongside the very popular PRIZM

housing typology of Nielsen Claritas, with its 14 groups and 66 segments, includingMoney&

Brains, Home Sweet Home, Old Glories, and Young & Rustic. In 1974 this was the first major

commercial geodemographic segmentation. Like those ofMOSAIC, the PRIZM segments are

distributed along two major discriminant axes, namely the income level (from low to high)

and the housing type (from rural to urban).

The second resource of geomarketing is the existence, alongside geodemographic

databases, of GIS (Geographical Information Software), enabling all the manipulated data

to be linked to their geographical coordinates to provide true spatial databases and analyses.

For example, we may wish to study the propagation of a phenomenon, or calculate the

distance between each customer and the nearest point of sale. To do this, the software

incorporates mapping data and socioeconomic and demographic indicator bases, to which

data specific to the business can be added. All these data can be recalculated for areas defined

by the user. This software also allows for changes of scale: we can examine the figures at

county level, then ‘zoom in’ on a particular county, municipality, district, and so on. Finally,

we can export certain data calculated for an area defined on a map by the user.
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Table 4.2 The Experian MOSAIC groups.

Group Percentage

of UK

Households

Social Groups Description

Symbols of Success 9.62% Upper Middle and Middle

Middle class

This group represents the wealthiest 10% of people in

Britain, Set in their careers and with substantial equity

and net worth. These people tend to be white British

but with some Jewish, Indian and Chinese Minorities.

Tends to contain older people advanced in their

careers.

Happy Families 10.76% Lower middle class and

Middle middle class

Families from Middle England, focussed on children,

home and career. Tends to be in new suburbs in more

prosperous areas of the UK. Mostly white with few

minorities

Suburban Comfort 15.10% Lower Middle Class People in comfortable homes in mature suburbs built

between 1918 & 1970, moderate incomes. Includes

Middle class Asian Enterprise

Ties of Community 16.04% Lower middle class and

Skilled working class

People focussed on local communities, families

concentrated near Industrial areas, Includes lower

income Asians

Urban Intelligence 7.19% Mixture of Middle classes Young educated people in urban areas starting out in

life, Includes significant minority presence and

students
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Table 4.2 (Continued)

Group Percentage

of UK

Households

Social Groups Description

Welfare Borderline 6.43% Working class and Poor Poorest people in the UK, Urban with significant

ethnic minority presence

Municipal Dependency 6.71% Working class and Poor Poor people in council houses and dependent on

benefits, Mostly white British with few immigrants

Blue Collar Enterprise 11.01% Skilled Working Class Enterprising rather than well educated, includesWhite

Van Man, Few Ethnic minorities

Twilight Subsistence 3.88% Working class pensioners Poorer pensioners in council houses, few ethnic

minorities

Grey Perspectives 7.88% Middle Class pensioners Pensioners in comfortable retirement and traditional

values

Rural Isolation (K) 5.39% Mixed Rural People with relatively low incomes but high non liquid

assets, traditional values, very few ethnic minorities
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To study a customer base, the first step is to ‘geocode’ it, in other words link each

standardized 4 address with its IRIS code and its block code, and possibly its coordinates in the

form of longitude and latitude. Geocoding has to be done regularly (at least once or twice

yearly) to allow for new customers and changes of customers’ addresses. In France, the

Institut G�eographique National supplies maps for geocoding (from the G�eoroute road

database), and has worked in partnership with INSEE to create the Base-ı̂lots database

containing a map of streets and blocks 90 and 99, the addresses at the ends of street sections,

and a few details of cladding or marking. INSEE has brought this database closer to Directory

of Location Below the Municipal Level (known as REPLIC), which supplies, for each block,

the reference, the reference of the IRIS district to which it belongs, the type of road, the

starting address, the end address and the side of the road, thus enabling address files to be

divided by block.

But even with all these resources, geomarketing is limited, especially in France. This is

because it is illegal for anyone except a few public authorities to distribute data on areas of

habitation below the IRIS level, apart from the 15 types of data available at block level (see

above). This means that geomarketing data are less precise in France than in the United

Kingdom, for example, where many types of data are available at the level of the Census

Output Area, equivalent to the block. Because of this, the predictive power of these data is

rather limited (this can be tested with scoring tools), and their use is reserved for cases where

more precise data are not on hand.

4.2.2 Profitability

Profitability (or economic value) is a factor in many analyses, which may be concerned with

the profitability of markets, customer segments or individual customers, not to mention

profitability per product, per territory or per distribution channel. It is the difference between

the profits to the business from a customer, segment, or market, etc., and the costs incurred,

namely the acquisition and structural costs, commercial costs, operation processing costs and

the cost of finance. While the profits are not always easily estimated, it is even harder to

ascertain the costs in a business using multi-channel distribution, since we have to trace all

contacts and interactions between a business and its customer, according to the types of

channel and the frequency and duration of interactions. And although, fortunately, informa-

tion technology always allows us to seewhat product was sold towhat customer for what price

at what date, it is not always capable of showing us who sold it (a physical agency, a travelling

salesman, a call centre, a website. . .), or how (spontaneous request by a customer, response to

a direct marketing effort, etc.), and it is even less likely to reveal how long it took (unless we

plug sales representatives’ diaries into the databases), which also has a considerable effect on

costs. Even if the business can answer these questions, this is not the end of the process of

determining cost and profit, because cost accounting is not always sufficiently detailed to

show the cost of each operation.

4 Standardization of addresses is highly recommended in all customer files. It enables us to reduce the number of

‘not at this address’ replies, avoid duplication in the files, and ensure that two people in the same family do in fact live

at the same address, while benefiting from the reduced postal rates offered in France for mailings using standardized

addresses.
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Finally, even if the business can achieve a precise calculation of the profitability of each

customer, it must be wary of drawing conclusions too quickly: the method of calculating

profitability is not always a direct reflection of a customer’s behaviour, a risk, or a propensity to

buy, but may reflect the behaviours of financial markets and stock exchanges which affect the

products owned by the customer. Thus, the profitability of a product such as a home-ownership

savings scheme may be positive or negative according to the year of joining. Since the

profitability of a customer is affected by the profitability of the products, we must be cautious

when interpreting this. In any case, before focusing too strongly on our customers who are most

profitable at any given time, we should note that a customer who remains loyal throughout his

life to the same company, the same brand, the same trademark, generally moves through several

segments of differing profitability. This naturally brings us to the most interesting aspect of

profitability, namely lifetime value (LTV), or the updated net value of the expected future

financial transactions with a customer (income relating to the customer minus acquisition and

service costs), in other words the updated net value of profitability. In the airline industry, for

example, the LTVof a student travelling in economy classmay begreater than that of a company

director travelling inbusiness class.This is because the studentwill becomeanexecutive in a few

years’ time, just when the company director retires and starts travelling in economy class.

This information is much richer than the simple profitability at a given time, but is also

much harder to calculate, especially if the business does not have regular financial transactions

with the customer. This would be the case for a motor manufacturer, by contrast with a

telephone service provider where the billing and revenues are regular. The LTV must include

elements of propensity – including the propensity to buy a new product, to upgrade or to cross-

purchase – as well as the margins on each product, the costs (structural, acquisition, operation

processing, etc.), and, last but not least, customer attrition and product lifetime, allowing for

possible contract breaks (for example, early repayment of bank loans or disconnections due to

unpaid telephone bills). The calculation of LTV is a combination of the main predictive

indicators (propensity, attrition, risk) that can be established for a customer. It enables us to

target promotional and advertising investment on customers who are loyal to a brand, rather

than using a scatter-gun approach with a large number of customers who in some cases are

only ‘promotional buyers’. This is also true of banking, where it may be tempting to cut

margins to offer credit at very favourable rates to customers who will switch to another

provider at the first opportunity. If we are unable to carry out this complex LTV calculation,

we can examine the cross-tabulation of profitability and loyalty (the inverse of attrition), and

the distribution of customers on these two axes.

Profitability þ customers to be made loyal customers to be retained

� customers to be let go customers to be made profitable

� þ
Loyalty

4.3 Data used by business sector

4.3.1 Data used in banking

We will start this survey of the specific types of data used in data mining with the banking

sector, which is distinctive because of the variety of problems and the richness of the data that

can be used.
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A retail bank will keep the following data:

. personal and family data (age, sex, family situation, number and ages of children,

number of dependants);

. occupational data (occupation and social category, years in employment, number of

working people in the household);

. geographical (length of time at the address, code of the municipality of residence, area

of residence (district), type of residence deduced from the area of residence, other

geodemographic data;

. assets (income and savings kept at the bank, home owner or tenant status, possession of

second home, etc.);

. data on bank products held (number, type, date of commencement, expiry date,

liabilities, net banking income, profitability);

. data on the use of bank products, mainly credit and payment methods;

. data on the operation of current accounts (number and value of credit and debit

entries, distinguishing between transfers between a person’s accounts from external

movements; highest credit entries for the month; average credit and debit balances;

authorized and unauthorized overdrafts in terms of value and number of days; state-

ments; debits; credit transfers, etc.)

. data on the characteristics of credit (fixed term or revolving credit, reason for credit,

period of credit, nominal amount, available amount, monthly instalments, outstanding

capital, type of interest rate, value of rate, indexing of rate, early repayment, number and

value of outstanding payments, number and nature of guarantees, normal or question-

able accounting situation, etc.);

. data on risk (disputes, outstanding credit repayments or dishonoured cheques, value of

unpaid amounts, blocking by courts or banks, over-indebtedness);

. relational data (reactions to marketing initiatives and commercial offers, refusal of

direct marketing, preference for a contact or distribution channel, responses to courtesy

calls or satisfaction surveys, complaints, multibanking);

. event data (birthdays, start of working life, marriage, birth of children, retirement,

expiry of a savings or credit product).

A business bank will keep the following data:

. data on the banking behaviour of businesses (operation of accounts, use of credit, etc.);

. accounting data obtained from balance sheets and used to construct economic and

financial ratios relating to the equilibrium of the balance sheet, profitability, solvency,

increase in activity, productive structure, indebtedness, inter-business credit, etc.;

. risk data (unpaid items, receivership, liquidation, etc.);

. data supplied by the Banque de France (from the FIBEN database) and rating agencies

such as Standard & Poor’s, Moody’s, Fitch, and Dun & Bradstreet.
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4.3.2 Data used in insurance

The list below covers the main requirements of cross-selling, up-selling and attrition studies

which may be carried out in a general insurance company.

First of all, we have data on the customers: age, sex, family situation, number of children,

municipality code, pricing zone, lifetime as a customer of the insurance company, relationship

between the insured object and the customer (home-owner/tenant, main driver, etc.), socio-

professional category, and geodemographic and environmental data.

The contract data are the number of insurance policies, cover/options, situation of the

contract, reason for cancellation, original company, age of product, level of reduction,

payment frequency, amount of premium, and discount offered to customers.

The claims data are the limited cost and actual cost, number of claims in the current year,

number of claims in other years, cover used, rate of liability, and history of claims.

Finally, data on the insured property are particularly useful for up-selling.

For home insurance, we have the following data: nature of residence (main or secondary),

type of residence (apartment or house), number of rooms in the residence, data of construction

of the residence, insured capital, and insured capital for valuables.

For motor insurance, we have the following data: vehicle make/type/model, vehicle

segment/class, type of gearbox, taxable capacity, date of first use, date of purchase, date of

birth of the main driver, date of licence of main driver, whether or not a young driver is to be

covered, no-claims bonus, number of years with 50% bonus, use of vehicle, and type and

amount of excess.

4.3.3 Data used in telephony

The data used in the mobile or fixed telephone industry come from various sources. Mostly

they are obtained from the management and use of telephone lines, but some are collected by

polls or surveys from customer panels.

There are ‘customer’ data, namely: subscriber’s address, sex of subscriber, type of

residence, ownership of a computer, availability of Internet access, geodemographic and

environmental data, first subscription date, number, types and references of lines, previous

telecommunications company, phone number portability.

There are line data: type of line, status of line, subscription start date, commitment end

date, reason for termination (house move, competition, etc.), type of subscription, ISDN

subscription, options taken up (call diversion, call waiting, call transfer, etc.), pricing options

(local package, mobile package, etc.), start date and average reduction for each pricing option,

inclusion on telephone directory, switching type and model.

There are ‘billing’ data, as follows: date of bill, amount of bill, due date, payment method

(cheque, direct debit, etc.), total call duration, number of calls (per types), number of different

called parties, average distance of called parties, and average duration and frequency of call

per called party.We also have the numbers, dates, durations and prices of calls of the following

types: local, national, international, mobile, SMS, Internet, and customer service.

Finally, there are the ‘call’ data: type of ‘call’ (voice, SMS, Internet), calling number,

number called, date and time of start and end of call, duration of the call (voice), number of

characters (SMS), origin and destination of the call, distance of called party, call successful

(yes/no), call billed (yes/no), call pricing (local, trunk, etc.), pricing option for the call

(package, reduction period, special offer, etc.) and use of voice messaging.
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4.3.4 Data used in mail order

The data that are used in mail order are:

. personal and family data (age, birthday, sex, forename, number of children and their

approximate ages);

. sociodemographic data (address, area of residence, type of residence deduced from the

area of residence, catchment area, change of address);

. commercial activity (recency, frequency, value of orders, season of each order) – this is

essential information, because a customer who has already ordered products is more

likely to order again;

. purchasing habits (product types, product style);

. the channel used for orders (post, telephone, Internet, store);

. the method of payment (cheque, bank card, store card, on-line payment, cash, interest-

free instalments, COD);

. the delivery channel (store, home, 24-hour home delivery);

. incidents (returns, refusals).

It is worth noting that RFM analysis is well established in data mining for the prediction of

mail-order buying behaviour. The recency and frequency are analysed by season, in other

words by half-years, and cover the last two years. That is to say, the recency is the half-year in

which the last order was given, and the frequency is the number of half-years of activity in the

last two years.

The forename is used not only to estimate the customer’s age when this is not

known (using the forename scoring method described above), but also in ‘loyalty/profit-

ability’ typologies.
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5

Statistical and data mining

software

The statistical and data mining software market may be dominated by a few products, but

there are many other packages, which are often much less expensive and, in some cases, may

offer a comprehensive functionality. Some highly useful free software products are also being

developed in this field. Themost popular of these is R. However, the choice of software is not a

simple matter, since statistical functionality is not the only criterion. We must also consider

how the software performswith high volumes of data, the ease of access to different databases,

the simplicity of deployment of the product models (model production and export functions)

and the possibility of automating common tasks. The computing power may be surprising:

somemicrocomputer packages can process hundreds of thousands of lines ormore. Given that

the price of commercial software ranges from D1500 to D150 000 (even if there are big

discounts for teaching and research), while the software houses’ brochures only highlight the

benefits, we can easily become confused. The aim of this chapter is to help you make your

choice by summarizing the points of comparison between products, showing you the range of

current software on offer, and providing details on the three leading packages, namely SAS,

IBM SPSS, and R. I will conclude with some advice about optimization to reduce machine

processing time.

5.1 Types of data mining and statistical software

With the advent ofmicrocomputing, numerous statistical and datamining programs have been

developed for computers. These are relatively inexpensive, easily installed, and generally

user-friendly; they contain good algorithms and can process tens or hundreds of thousands

of individuals. They include Insight’s S-PLUS, Neuralware’s Predict, R (free software based

on the S engine, like the commercial S-PLUS product) and TANAGRA (freeware). Most of

them, however, cannot fully process very large databases, and often use only one or two

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.
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techniques – although newer, more powerful versions may be on their way. Some very highly

developed products, such as S-PLUS, R, TANAGRA, Weka and JMP (pronounced ‘Jump’),

are an exception to this rule and usemultiple techniques. JMPwas developed by John Sall, one

of the founders of SAS. It can read and write SAS tables, although there is no need to install

SAS; it is also much less expensive. It has an interactive, simple, intuitive interface, and

produces excellent graphics. It has its own algorithms for clustering, regression, generalized

linear models, decision trees, neural networks, survival analysis, time series and many others,

but it can also call SAS routines by entering their options in the parameters.

With these software well established, others have been designed to use large data volumes

and cover a wide range of techniques. They can operate in microcomputer (or ‘local’) mode,

and also in client–servermode, if the databases are very large or if they require operation on an

industrial scale, for example with secure data sharing and protection. In this case, the server

can process millions or tens of millions of lines, while the client is used for a quality display.

The price of this software is at least five to ten times as great as that of the equivalent

microcomputer software, and depends mainly on the configuration (the number of processors)

of the server. Some packages, such as SPAD, are cheaper. The range of software is

summarized in Table 5.1. You can now choose which section of the table your new system

is to come from.

Single-technique software will only meet a limited, one-off requirement, and a profes-

sional statistician will not be interested in it, except for a very specific application that his

usual software cannot handle: for example, a statistician may use SAS/STAT, but create his

decision trees with IBM SPSS Answer Tree, and use DataLab for the transformation and

selection of variables.

Table 5.1 Chart of statistical and data mining software.

Multi-technique software TIBCO Software – S-PLUS SAS – SAS/STAT

R SAS – Enterprise Miner

Weka IBM – IBM SPSS Statistics

University of Lyon –

TANAGRA

IBM – IBM SPSS Modeler

SAS – JMP Coheris SPAD – SPAD

Statsoft – Statistica Data

Miner

TIBCO Software – Insightful

Miner

KXEN

Oracle – Oracle Data Mining

Microsoft – Analysis Services

Single-technique software Salford Systems – CART Isoft – Alice

Neuralware – Predict IBM – SPSS Answer Tree

Complex Systems – DataLab

" Statistical resources Microcomputer software Client–server software
Computing power !
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Multi-techniquemicrocomputer softwarewill satisfy themore demanding statistician, at a

price that is still reasonable. It can also handle the data volumes required by small, medium

and some large businesses. All statistical algorithms are available in this sector.

A business or an organization is likely to be persuaded to opt for client–server software,

not because of a need for statistical techniques, but rather because of a need for industriali-

zation. This software enables several users to work cooperatively on the same machine and

even on the same data if necessary, with more flexible licence management, and it is possible

to schedule back-ups, automatic data transfers and mass processing on a Unix or mainframe

server, or even to export the models provided by the software into a management information

application. If we need to carry out frequent, secure, automatic statistical processing with

output of the results to numerous users, we will choose this category of product.

But even when we have chosen a category, that is not the end of the matter. For multi-

technique software, especially for client–server systems, we often have to choose between

two types: these are known as ‘statistical’ and ‘data mining’ software (Table 5.2).

Table 5.2 Statistical software vs. data mining software.

Trade designation Statistical software Data mining software

Platform Microcomputer or client–

server

Microcomputer or client–server

Graphic interface Programming windows or

scrolling menus

Icons which can be moved and

linked with arrows

Algorithms Those which are currently

used, except for decision trees

(these may be present in

special-purpose software)

As for statistical software

- without a number of statistical

algorithms (e.g. non-parametric

tests) and data analysis algorithms

(e.g. linear discriminant analysis)

which have to be called by lines of

script

- with the addition of decision trees,

neural networks, detection of

association rules

- may sometimes provide higher

performance in managing large

databases

Price A significant price A high price

Examples SAS/STAT SAS Enterprise Miner

IBM SPSS Statistics IBM SPSS Modeler

S-PLUS (TIBCO Software) Insightful Miner (TIBCO Software)

Statistica Base (Statsoft) Statistica Data Miner (Statsoft)
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This double list is only a few years old. Several well-known statistical software

developers have extended their product range to include data mining software, which is

quite separate from their statistical products. What are the differences between statistical and

data mining software, which sometimes cohabit and interact with each other? Table 5.2

provides a summary. In view of the price difference, the choice should be straightforward, but

marketing can still work miracles in every field. We should also consider the attractions of

neural networks (currently available in a module of IBM SPSS Statistics) and association

rules detection algorithms.

5.2 Essential characteristics of the software

5.2.1 Points of comparison

We must bear a number of factors in mind when comparing and choosing statistical or data

mining software. First of all, we must look for a wide range of data mining and data

preparation techniques. The second point may be more or less important, depending on

whether or not the user has other data request, analysis and preparation software.

However, even if he has this software, it is always more convenient to have all the tools

in a single package. This will avoid data transfers which may be complicated by different

native data formats.

For constructing statistical models, in most cases we need to have software that can

provide logistic regression, Fisher discriminant analysis, decision trees and cluster analysis.

For other common applications, the software must also be capable of executing linear

regression and general linear models (GLMs), to enable us to process quantitative and

qualitative predictors simultaneously while controlling random effects.

A software package should also have advanced statistical functionality, covering the

following tasks:

. carrying out tests on the distribution of variables, which are essential for choosing the

correct algorithms and selecting the right variables;

. transforming the variables in the best possible way (binning, normalization, etc.);

. detecting correlations of variables with each other;

. carrying out factor analysis (PCA and MCA);

. sampling data for validating and establishing the reliability of models (cross-tabulated

validation, bootstrapping, stratified sampling, etc.).

We must then check the quality of the implemented data mining algorithms. This may not be

an easy matter, since the marketing literature of software houses is not always explicit,

especially as regards their weak points. We usually have to rely on other users to tell us if the

learning technique of a supplier’s neural network is based on the rather outdated gradient

back-propagation algorithm, or if his decision tree is unreliable because it lacks an automatic

validation procedure, or if the sampling method is a little rough-and-ready.

A third criterion, which may be decisive, is the computing power and the capacity to

handle large data volumes. The importance of this factor is directly related to the size of the
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business and the number of customers. Most microcomputer software can handle several tens

of thousands or even hundreds of thousands of individuals, especially for a discriminant

analysis not requiring excessive amounts of computing power. So small and medium

enterprises without very complex requirements can use these products quite happily,

especially if the models generated by the software can be exported, in C or another language

for example, in such a way that they can be imported into the central computers of the

business. Large enterprises should be aware that computing power, even in client–server

systems, depends on the power of both the hardware and the software, and the ratios between

processing speeds of different programs can be as much as 1 to 5. Processing speed can be

crucial in certain areas of work where large amounts of calculation, repeated tests and

multiple-sample models (e.g. bootstrapping) are required in order to comply with regulations.

Even if initially large populations can be broken down by clustering and segmentation

operations, a large amount of computing power is still needed for the cluster analysis itself, as

well as for modelling in each of the segments, which, even if smaller, may require highly

complex analysis.

A fourth criterion relates to the types of data handled: for example, if the business already

has an SAS Infocentre, it will clearly be beneficial to choose SAS software. In any case, the

software must be able to import data in different formats.

Another criterion is the user-friendliness of the software and the ease of producing reports

summarizing the operations and the results. Although this factor should be borne in mind

because it may have an effect on the user’s productivity and avoid the need for repetitive tasks,

it should not be overestimated, and we should always remember that greater user-friendliness

will never be a substitute for the basic experience of statistics and datawhich a user is expected

to have.

The final criterion is . . . the price! It is not always easy to compare the prices of different

suppliers, who may either sell or lease their software, may offer maintenance for technical

support and the delivery of later versions, may charge according to a price list or by the volume

of data processed, and so on.

5.2.2 Methods implemented

The more numerous and varied the methods implemented by the software, the more likely

the statistician is to be able to deal with all the problems he may encounter. The main

methods are:

(i) prediction (linear regression, general linear model, robust regression, non-linear

regression, PLS regression, decision trees, neural networks, k nearest neigh-

bours, etc.);

(ii) classification (linear discriminant analysis, binary logistic regression, polytomous

logistic regression (ordinal or nominal), generalized linear model, decision trees,

neural networks, k nearest neighbours);

(iii) cluster analysis (moving centres, k-means, agglomerative or divisive hierarchical

clustering, hybrid methods, density estimation methods, Kohonen maps);

(iv) association rules detection;
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(v) survival analysis;

(vi) time series analysis.

Some programs offer automatic chaining of a number of methods, with stopping points

between the methods if required (if a method does not provide suitable results, the next one

may or may not be executed).

5.2.3 Data preparation functions

The data preparation phase requires relatively extensive functionality, not provided in all

software, if we wish to avoid a high workload and excessive prolongation of this stage, which

is in any case the longest part of a study. We should therefore ensure that the following

functions are present:

(i) file handling (merging, aggregation, transposition, etc.);

(ii) data display, colouring of individuals according to a criterion;

(iii) detection, filtering and Winsorization of outliers;

(iv) analysis and imputation of missing values;

(v) transformation of variables (recoding, standardization, automatic normalization,

discretization, etc.);

(vi) creation of new variables (predetermined logical, chain, statistical, mathematical,

and other functions);

(vii) selection of the best independent variables, discretizations and interactions.

5.2.4 Other functions

The following functions are fundamental for any proper study:

(i) statistical functions (determination of central tendency, dispersion, and shape

characteristics; statistical tests of the mean, variance, distribution, independence,

heteroscedasticity, etc.);

(ii) data sampling and partitioning functions, for creating training, test and validation

samples, bootstrap functions, and jackknife functions (for cross-tabulated

validation);

(iii) functions for exploratory data analysis, especially factor analysis (principal

component analysis, PCA with rotation of axes, correspondence factor analysis,

multiple correspondence analysis);

(iv) display of results, table manipulation, 2D, 3D and interactive graphics library,

navigation through decision trees, display of statistical parameters and
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performance curves (ROC, lift, Gini index), facility for incorporating these

elements into a report, etc.;

(v) advanced programming language.

5.2.5 Technical characteristics

The technical characteristics are the main factors in determining the price of the software, as

well as the productivity of the statistician and the possibility of group working on the same

data. It is important, therefore, to make a careful estimate of the requirements for:

(i) the hardware platform (Unix, Windows, Sun, IBM MVS, etc.);

(ii) the databases accessed (Oracle, Sybase, DB2, SAS, SQL Server, Access, etc.);

(iii) native access (more reliable and much faster) or ODBC access (easier to program)

to these databases;

(iv) client–server or standalone architecture;

(v) the algorithms, parallel or not;

(vi) the maximum data volume which can be processed (in a reasonable time);

(vii) execution in deferred (batch) mode or interactive (transactional) mode;

(viii) the possibility of exporting models (C, PMML, Java, SQL, etc.).

An algorithm is parallelized when it is divided into a number of tasks that can be executed

simultaneously on several processors of a computer, or on more than one computer (grid

computing). This enables the execution speed of an algorithm to be increased significantly,

and is particularly useful for neural networks or even simple sorting.

5.3 The main software packages

5.3.1 Overview

Table 5.3 lists many of the existing software packages, divided into three main families

according to the approximate volumes of data that they can handle.

The two leading products competing in the market for data mining in large systems are

SAS and SPSS. These are also the most widely used packages in all systems.1 To this we

should add Statsoft’s Statistica Data Miner, which is very comprehensive and well developed,

making good use of the richness of its underlying S-PLUS statistical software. KXEN, which

operates as a modelling engine for implementation in IT applications or other statistical

software, should be considered separately. SPAD has always been popular in the French

academic world because of the quality of its algorithms, especially for factor analysis. From

Version 6 onwards, it has become more useful for businesses, with the development of a

client–server architecture and improvements to reduce processing time. New algorithms have

1 Source: KDnuggets survey, October 2000 (covering 698 users), June 2002 (551 users) and May 2004 (650

users).
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also appeared, for logistic regression (not included in earlier versions), the PLS approach

and (starting with Version 7) interactive hierarchical descending clustering (‘interactive

clustering tree’).

All these products are available in client–server versions and can therefore handle large

volumes of data.

Table 5.3 The main statistical and data mining software packages.

Data volume Product Speciality� Producer

Low (tens of

thousands

of records)

NeuralWorks Predict Neural networks Neuralware

NeuroOne Neural networks Netral

Wizwhy Associations Wizsoft

Weka Open Source (University of

Waikato, New Zealand)

R Open Source (initially at the

University of Auckland)

DataLab Data preprocessing Complex Systems

Medium (hundreds of

thousands of records)
Alice Decision trees Isoft

KnowledgeSEEKER Decision trees Angoss

KnowledgeSTUDIO Angoss

C5.0 (Unix) See5

(Windows)

Decision trees RuleQuest Research

Data Mining Suite Salford Systems

CART Decision trees Salford Systems

Polyanalyst Megaputer

TANAGRA University of Lyon, France

JMP SAS

S-PLUS TIBCO Software

High (millions of

records)

KXEN KXEN

Oracle Data Mining Oracle

SPAD Coheris SPAD

IBM SPSS Statistics IBM

IBM SPSS Modeler IBM

Statistica Data Miner Statsoft

Insightful Miner TIBCO Software

SAS/STAT SAS

Enterprise Miner SAS

� If no ‘speciality’ is shown in this column, the software is a suite containing a number of algorithms.
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Alongside these data mining package with user-friendly graphic interfaces, we find

less expensive statistical software. Some of these, such as SAS/STAT and SPSS, are also

offered in client–server versions. Traditionally, SAS has been more widely used in pharmacy,

finance and insurance, SPSS has been used in human sciences and distribution, and S-PLUS

in industry.

Leaving aside these ‘juggernauts’ (I will return to SAS and IBM SPSS shortly), there are

many specialist packages on the market for decision trees and neural networks.

Some free software has also spread beyond university laboratories: these products include

the excellent TANAGRA, the successor of SIPINA, Weka2 (Waikato Environment for

Knowledge Analysis), and, above all, R, a very popular free software which I will go on

to discuss more fully below.

Finally, somemajor database producers (Oracle andMicrosoft) have recently appeared on

the market, with data mining algorithms incorporated into their databases. The value of this

approach is that complex calculations can be carried out as close to the data as possible,

without costly exchanges between a voluminous database and the data mining software. The

statistical model is implemented directly in the database, and can be applied very efficiently to

all new data. The database can also execute a model sent to it in PMML format by data mining

software which has a function for export in this format.

5.3.2 IBM SPSS

SPSS (Statistical Package for the Social Sciences) appeared in 1968, and has been used very

widely in the social sciences, marketing and health. Its name was changed to IBM SPSS

Statistics in 2009, after the acquisition of the SPSS business by the IBM Group. Its

functionality is accessed via a proprietary L4G (fourth generation) programming language,

called the ‘syntax language’, or via a graphic interface of scrolling menus which generate a

syntax invisibly to the user, unless he requests the ‘pasting’ of the syntax into a command

window. The advantage of the graphic interface is its user-friendliness and simplicity of use

for a less experienced user; on the other hand, the syntax language can be used to chain lengthy

and complex operations together, and to repeat common tasks by recording their syntax. Note

that part of the functionality can only be accessed by using the syntax, not the graphic

interface. The commands can be launched in interactive mode or in batch mode, using the

Production Facility module. There is also a macro language for automating repeated

commands which may depend on parameters. A script language is available for constructing

dialogue boxes.

The main window of IBM SPSS Statistics, the Data Editor, looks like a spreadsheet, and

direct input is possible, as in Excel (Figure 5.1). The SPSS commands are executed line by

line and update the table or add results to the Output Editor window. This window also

provides an option for storing the executed syntaxes with their execution times; it is

therefore related to both the Output and Log windows of SAS. If it is necessary to input the

syntax, this takes place in the Syntax Editor, similar to the SAS Editor window. By contrast

with Excel, these software do not require the user to input syntax in the cells which will

contain the results. IBM SPSS Statistics can read from and write to ASCII files, some

2 ‘Weka’ is the name of an emblematic bird of New Zealand.
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databases and some tables of other statistical software. The basic data management

functions (sorting, aggregation, transposition, table merge, etc.) are provided. Similar to

the ODS in SAS, but less flexible and less concise, the Output Management System (OMS)

in IBM SPSS Statistics can be used to send the output to a file, instead of the Output Editor.

The file can be in SPSS (allowing it to be reinserted into another process), TXT, HTML or

XML format. The OMS can also store the results of a large number of iterated calculations

in a single file (by creating a loop with a macro), so that they can be compared subsequently

and the best ones can be saved.

IBM SPSS Statistics is available in several environments, including Windows, Mac OS X

and Unix, and a new version appears roughly once per year. Although IBM SPSS Statistics is

primarily a microcomputer tool and the management of large data volumes is not its strong

point, a client–server version has been created with some functionality not provided in the

microcomputer version, such as the application of score functions. Finally, a range of modules

which can be purchased separately allow the user to access some statistical tools that are more

advanced than those of the basic module, starting with logistic regression which is available in

the Regression module.

From Version 15 onwards, the Data Preparation add-on module has included an effective

algorithm called Optimal Binning, for discretizing (binning) continuous variables. Each

continuous variable is divided into categories in such a way that the measurement of the

association between the discretized continuous variable and the class variable is optimized. In

the Optimal Binning algorithm, this measurement is based on entropy (Fayyad and Irani,

1993),3 and the algorithm minimizes the sum of the entropies of the categories, as in the C4.5

tree (see Section 11.4.7).

Figure 5.1 IBM SPSS Statistics.

3 Fayyad, U.M. and Irani, K.B. (1993) Multi-interval discretization of continuous-valued attributes for classifi-

cation learning. InProc. 13th International Joint Conference on Artificial Intelligence, pp. 1022–1027. LosAltos, CA:

Morgan Kaufmann Publishers.
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New modules appear regularly, including a neural network module in Version 16, a

module for multiple imputation of missing values and an RFM analysis module in Version 17,

a bootstrap module and a direct marketing module (for RFM, segmentation, profile, postcode

and other analyses) in Version 18. Additionally, the Categories module has been enhanced

with the addition of ridge, lasso and elastic net regularization (see Section 11.7.2.). The basic

module has been extended with a nearest-neighbour analysis algorithm. Now it can also be

used to modify or create new dialogue boxes. But perhaps the most spectacular improvement

in recent years is the considerable extension of the programming possibilities in IBM SPSS

Statistics. This is based on the use of the Python programming language, enabling new

functions and procedures to be developed. Since Version 16, it has also been possible to call

and use R software within IBM SPSS Statistics, thus providing access to all the R packages

and a vast amount of additional functionality.

Since theweak point of R is the difficulty of handling large volumes of data (because these

are loaded into RAM), whereas IBM SPSS Statistics does not have these problems, the

integration of R is based on the following procedure. IBM SPSS Statistics reads the data,

transforms them if necessary, selects them, and only sends the subset of useful observations

and variables to R. A very simple example is shown below.

GET FILE = ’mytable.sav’.

SELECT IF (condition=1).

BEGIN PROGRAM R.

mytable <- spssdata.GetDataFromSPSS (variables=c("V1 to V5") row.

label=V1)

regression <- lm(V2 ~ V3+V4+V5, data=mytable)

print (summary(regression) )

spsspivottable.Display (anova(regression))

END PROGRAM.

IBM SPSS Statistics can also display a graphic produced by R in its Output window. It can

integrate R functions, which may be native or user-constructed, into its syntax, and it can also

integrate them in the form of dialogue boxes, to supplement the IBM SPSS Statistics menus

with new functionality.

In 1998, SPSS Inc. bought ISL, producer of the Clementine data mining software, and the

integration of this package with SPSS is bound to gather pace in future years. Decision trees,

which up to 2005 were offered in the standalone Answer Tree software of SPSS Inc., are now

integrated into IBM SPSS Statistics in the form of a module called IBM SPSS Decision Trees,

enabling them to be incorporated into IBM SPSS Statistics syntax, macro programs, etc. It is

also possible to program decision tree bagging or boosting. The tree algorithms are CART,

CHAID and QUEST, as in Answer Tree, but IBM SPSS Decision Trees has the drawback of

not allowing interactive manipulation of the trees. In 2009, Clementine was renamed ‘IBM

SPSS Modeler’.

In conclusion, I should mention the free PSPP software, distributed under the terms of the

GNUGeneral Public Licence, which is claimed to be a ‘clone’ of SPSS. It does not have all the

functionality of the latter product, but its syntax and database format are compatible with

those of SPSS, and it can handle large volumes. On the other hand, it does not exist in a

Windows version, and it can only be run on this platform by installing a Unix emulator such as

Cygwin. The address of the official PSPP website is http://www.gnu.org/software/pspp/, and

detailed documentation can be found at http://cict.fr/�stpierre/doc-pspp.pdf.
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5.3.3 SAS

SAS (Statistical Analysis System) was founded in 19764 in the IBM mainframe world, and

still retains its original capacity for handling large data volumes, a capacity which increased

still further with the implementation of a parallel architecture from 1996. With successive

versions, the language used by SAS changed from Fortran to PL/I and then C. The first version

for PC/DOS appeared in 1985; it was followed in 1986 by the first SAS/STAT module. As in

SPSS, specialist modules multiplied over the years, around the central module called SAS/

BASE. Some modules are more concerned with statistics, namely IML (Interactive Matrix

Language), STAT, ETS (Econometrics and Time Series), OR (Operational Research), and QC

(Quality Control). Other modules are dedicated to reporting (AF, EIS), but these are giving

way to the new SAS Business Intelligence platform. The SAS data mining module, Enterprise

Miner, a competitor of IBM SPSS Modeler, appeared in 1998. In 2000, the SAS Enterprise

Guide module enabled SAS users to benefit from the user-friendly interface which was

already provided in SPSS but not in SAS, where the mainframe origins were evident in a

traditionally austere interface. However, I should mention the useful SAS/INSIGHT module

which appeared in 1991, and could be used for displaying data in 2D or 3D, plotting various

graphs, carrying out calculations such as PCA, and even carrying out interactive operations on

data, for example in order to exclude some outliers from the analysis.

Version 7 brought the ODS (see the description of the OMS above), which enabled the

output of a procedure to be sent, not to the Output window, but to a file which could be in SAS,

RTF, PDF, HTML or XML format. I have given a few examples of the use of ODS (see

Section 3.8.4, for instance), a system which enables us to retrieve the results of statistical tests

conducted on an indefinite number of variables in SAS files, for subsequent formatting and

presentation in a summary file. The same approach can be used to calculate a large number of

models from a set of data, or from bootstrap samples, before comparing them and selecting the

best model or models. ODS enables us to conduct and evaluate tests automatically in large

numbers, which would be impossible otherwise. An extremely valuable tool, then. Another

aid to productivity offered by the ODS is the facility for automatic creation of a Word report

containing the results.

Starting with Version 8, SAS has been running onMicrosoftWindows, Unix, and z/OS for

IBM mainframe, using code which is portable from one version to another. The OS/2 and

Apple Macintosh versions which appeared with Version 6 of SAS have since disappeared.

Version 8 brought a number of improvements to SAS/STAT, for logistic regression for

example, and new procedures, such as GAM for generalized additive models and MI for

imputing missing values. Version 9.1, which came out in 2003, brought new procedures such

as ROBUSTREG, together with ODS GRAPHICS which is an extension of ODS for creating

high-quality graphics. They are directly integratedwith the outputs of the SAS procedures, not

produced by supplementary programming of SAS/GRAPH procedures. However, they can be

modified, either by subsequent modification in the editor of ODS GRAPHICS (Statistical

Graphics Editor), or by preliminary modification of their graphic model using the new Graph

Template Language (GTL).

4 To be precise, the SAS company was set up in 1976, but the software was developed progressively from 1966

onwards based on the work of Anthony J. Barr, followed up by his PhD students, Jim Goodnight and John Sall. For

more details, see the SAS website (http://www.sas.com/presscenter/bgndr_history.html) and Wikipedia.

122 STATISTICAL AND DATA MINING SOFTWARE



Version 9.2 was first distributed in 2008. It provided improvements to older procedures,

two new procedures, SEQDESIGN and SEGTEST, for analysing clinical trials, and the

integration of three statistical procedures which had previously been available by down-

loading for SAS 9.1.3. These are GLMSELECT (which enriches the GLM procedure with

advanced selection methods, such as Tibshirani’s lasso and Efron et al.’s least angle reression

(LAR)), GLIMMIX (for generalized linear models with random effects) and QUANTREG

(for modelling conditional quantiles, rather than a conditional expectation as in conventional

regression). Another new feature of SAS 9.2 is a worthy successor of SAS/INSIGHT, namely

SAS/IML Studio (briefly called SAS Stat Studio), which elegantly combines the functionality

of SAS/STAT with the interactivity of SAS/INSIGHT. Thus graphics such as those in

Figure 5.2 are dynamically related to the data in the table under study, and these data can

be located on either a microcomputer or a server. Following the example of IBM SPSS

Statistics, SAS decided to integrate the R software, but only in SAS/IML Studio, which can

manage the objects manipulated by R.

Like IBM SPSS Statistics, SAS has an L4G programming language, although it

is more concise and efficient, with a more flexible and powerful macro language and an

SQL procedure which substitutes SQL syntax for SAS syntax in certain cases, with a possible

gain in performance (see below). SAS also has a matrix language, IML (Interactive Matrix

Language). An SAS program is built up from DATA steps, procedure steps, and macros if

required. Several tens of procedures provide the very comprehensive range of functions

Figure 5.2 SAS/IML STUDIO.
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(statistics, graphics, utilities, etc.), while the DATA step enables the user to open files (or import

databases), read each record in turn, write to another file (or export to a database), merge a

number of files if necessary, and close the files, while concentrating more on the content of the

data than on their physical storage. It should be noted that the import/export functionwith Excel

2003 (and later versions) is very well managed, taking into account the tabs of an Excel sheet

and specific Excel formats. Plenty of clear and accurate information can be found on the SAS

technical support website (http://support.sas.com), in the articles by Olivier Decourt on his

website (see Section B.8 in Appendix B) and in books on SAS (see Section B.6).

5.3.4 R

The R software is based on the same language as the commercial S-PLUS product. This is the

S language, developed by John Chambers and others at Bell Laboratories in the 1970s. This

language, similar to Scheme, is interpreted (its commands are directly executed, unlike those

of a compiled language) and object-oriented (the data, functions and outputs are stored in the

computer’s RAM in the form of objects, each of which has a name). It differs from the SAS

and SPSS languages in its greater concision: R code is more compact and closer to

mathematical language. R was created by Robert Gentleman and Ross Ihaka at the University

of Auckland, for teaching statistics, and since 1997 its source code has been available and

distributed freely under the terms of the GNU General Public Licence.

These terms go well beyond the concept of freedom from charges. They imply four

freedoms, namely:

. freedom to run the program, for all applications;

. freedom to access the source code, to study the operation of the program, and to adapt it

to the user’s requirements;

. freedom to redistribute copies;

. freedom to publish one’s own improvements to the program, to benefit the whole

community.

R is used by enteringS commands in awindowcalled the console (Figure 5.3). It is important

to remember that R distinguishes between upper and lower case, and that the underscore (_) is

prohibited. The last commands can be recalled by the " and # keys. These commands, which

can launch statistical, graphic or data management functions, are then interpreted and

executed by R. The full list of commands is available on the ‘R Reference Card’ (http://

cran.r-project.org/doc/contrib/Short-refcard.pdf). The results are displayed on the screen in a

special graphics window (Figure 5.4), or are assigned, if they are not graphics, to an ‘object’

which can then be manipulated (see below). There is also a data editor window called by the

edit(data) command, and a program editor window called by the edit(function) command.

It is not easy tomaster the R language and its commands, but some of its functionality can

be accessed via a user-friendly graphic interface: there are several of these, for example those

provided in the Rattle (R Analytic Tool To Learn Easily) and Rcmdr (R Commander, see

Figure 5.5) packages, and in the free SciViews R software, all available from the CRAN

website. A useful guide to R Commander is the article ‘Getting Started with the R

Commander’ by John Fox, available on the Internet. The R Commander interface is
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Figure 5.3 The R console.

Figure 5.4 Graphic window in R.
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comprehensive and is the most widely used, but Rattle is useful for more typical data

mining applications.

As well as being free, R has the major advantage of benefiting from the continuing

availability of source codes and enhancements (in the form of downloadable packages) from

an active community of end user developers.5 Statisticians inventing new methods often

workwith R, enabling them tomake their methods available to other R users very quickly. Of

course, the performance (especially with large data volumes) and quality of the documen-

tation vary between packages. On the other hand, commercial software, even SAS, cannot

react as rapidly, and the integration of a new technique often takes several years. R can offer a

wide range of statistical functions, some of which are at the leading edge of research and not

available in the leading commercial software. Thus, more than 2600 modules, known as

‘packages’, were available in December 2010. There are packages for use in fields varying

from biodiversity (BiodiversityR) to the study of the human genome (GenABEL), actuarial

science (actuar) and the econometrics of financial markets (all packages of Rmetrics: www.

rmetrics.org6).

This will give you a list of the available packages, and their numbers after the elimination

of duplicates:

> myPackageNames <- available.packages()

> length(unique( rownames(myPackageNames) ))

Figure 5.5 R Commander.

5 R Development Core Team (2006). R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
6 See also the document by Daniel Herlemont at http://www.yats.com/doc/r-trading-projet-index.pdf
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The writing of R functions and packages is facilitated by the fact that they are written in

the same language as the programming language which uses functions already integrated into

R. This contrasts with SAS, which requires SAS/IML, or IBM SPSS Statistics, which uses

Python, a language external to SPSS. To consider just one example, an operation such as

variable selection does not follow the same rules in SAS/BASE and SAS/IML. Such

differences are not found in R. Consequently, the learning curve for this software is different

from that of SAS, not to mention that of IBM SPSS Statistics: although it is more

complicated at first, the use of R becomes easier in later stages, for programming repeated

tasks or new functions or algorithms, because all of these actions are based on the same

language in R.

R is also attractive because of its graphic resources (see http://addictedtor.free.fr/graphi-

ques/) and the many platforms on which it is provided (Unix, Linux, Windows, Mac/OS X).

With the foreign package, R can read SAS, SPSS or Stata tables. But R can manipulate

more varied types of data (vectors, matrices, etc.) than the rectangular tables used in these

software products.

R also has a matrix language which is as highly developed as that of MATLAB, which it

can also emulate via a special package (matlab). The Internet resources, FAQ, manuals and

discussion lists are numerous, and most of them are brought together on the website of the

Comprehensive R Archive Network (CRAN, http://cran.r-project.org/ or http://www.r-project.

org/, the site at the top of the page when you type ‘r’ into Google). Another advantage of R is

the provision of an ‘R help list’ (http://www.r-project.org/mail.html) to which users can

subscribe for discussions of problems and possible solutions, for news about R, updates to

documentation, etc. Compared with the technical support offered by commercial software

developers, the information is less focused, and several solutions may be offered by different

contributors when a problem is posted, but the response is very quick, often within an hour.

For all these reasons, R has experienced spectacular growth in a few years, to the point that

it is competing with SAS not only in academic settings, but also in industry.

Compiled (‘binary’) files for installing R and its packages are distributed from the CRAN

website, which also contains source codes and instructions for the installation of each

platform. Version 2.12.1 of R is available in December 2010. Once on the CRAN website,

you choose a mirror site (by country), choose a platform, decide whether to install R or one of

its packages, and then download the compiled file or read the installation instructions.

Installation is quick and easy. When R is installed, an additional package can be installed by

going to the Packages menu (on the Windows platform) and selecting installation from a zip

file on a local disk or installation directly from a CRAN website. The library() command

provides a list of installed packages. The library(toto) function loads an installed package

called toto into RAM. A package must be loaded into memory to be used, but the basic

packages are loaded by default. These packages which are loaded when R starts are listed by

the search command. Loading a package such as Rcmdr results in the display of the graphical

user interface of R Commander.

When you close R, by typing q(), it asks if youwish to save an image of thework session. If

you reply ‘yes’, R saves two files: Rdata, which contains the working environment and the set

of objects created; and Rhistory, which contains the set of commands entered during the

session. These files are stored in the R working directory, which is displayed by the command

getwd(). This directory can be modified by the command setwd(<directory > ), but can also

be modified continuously in Windows by right-clicking on the R icon, then clicking on

Properties and modifying the directory displayed in ‘Start in’.
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A suitable function for a problem can be found quickly in R by using the help.search

command. For example, help.search(“anova”) displays all the R functions containing the

string “anova” in the function description. The search can be extended to the Internet by the

RSiteSearch(“anova”) command or by clicking on ‘Search’ at www.r-project.org. This is

useful, because adding the letter ‘R’ in a search engine rarely limits the search to R software.

Note that the Firefox browser has an ‘Rsitesearch’ plug-in. The command help(tutu), or its

synonym ?tutu, displays the help for the function tutu() and the name of the package

containing it. For help on an operator, put the operator in quotation marks, thus: help(“<-”).

The option try.all.packages¼ TRUE extends the search for the function to all the installed

packages, even those which have not been loaded into memory. The function help(package

¼ toto) provides a list of the functions of the package toto. R help in HTML format can be

accessed by the command help.start(). This leads to documentation, manuals and FAQs.

Demonstrations can be launched with commands such as demo(lm.glm, package¼“stats”),

and examples are provided by the example command: example(lm).

R is not suitable for large data volumes, as it loads all the data it requires into RAM, and

does not use a temporary file on a local disk for its calculations. To give you an idea of the sizes

involved, with 1 GB of RAM it is possible to carry out a logistic regression on a file of several

tens of thousands of observations for a few tens of variables, but not much more than that. It

also tends to be slower than SAS, and the repetition of manymodelling operations, in bagging

for example, may take much longer in R than in SAS. The difference may vary from several

hours to a few minutes (see O’Kelly, 2009).7

The main statistical functions of R (followed by the name of the package containing them,

in brackets) are as follows:

. table (base): frequency table (one variable) or contingency table (two variables)

. mean (base): mean

. median (stats): median

. range (base): range

. var, sd (stats): variance, standard deviation

. quantile (stats): quantiles

. summary (base): basic statistics describing a quantitative variable (minimum, maxi-

mum, mean, quartiles), a qualitative variable (frequencies), a model, etc.

. cov (stats): covariance of two variables; variance–covariance matrix

. cor (stats): Pearson, Spearman, and Kendall correlation coefficient for two variables;

correlation matrix

. chisq.test (stats): w2 test

. fisher.test (stats): Fisher’s exact test

7 O’Kelly, M. (2009) R vs. SAS in model based drug development. Paper presented to UserR! The R User

Conference, Rennes, France. http://www.agrocampus-ouest.fr/math/useR-2009/slides/OKelly.pdf
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. t.test (stats): Student’s test

. aov, anova (stats): analysis of variance

. manova (stats): multivariate analysis of variance

. var.test (stats): Fisher’s variance test

. bartlett.test (stats): Bartlett’s variance test

. levene.test (car): Levene’s variance test

. wilcox.test (stats): Wilcoxon test

. kruskal.test (stats): Kruskal–Wallis test

. binom.test, prop.test (stats): tests of proportion

. shapiro.test (stats): Shapiro–Wilk test for normality

. ks.test (stats): Kolmogorov–Smirnov test for normality

. lillie.test (nortest): Lilliefors test for normality

. cvm.test (nortest): Cram�er–von Mises test for normality

. ad.test (nortest): Anderson–Darling test for normality

. friedman.test (stats): Friedman rank test (ANOVA on paired samples)

. mcnemar.test (stats): McNemar test (w2 on paired samples)

. density (stats): density estimation

. boot (boot): bootstrap

. princomp (stats): PCA

. varimax (stats): PCA varimax.

The main clustering functions in R (more numerous than in SAS and IBM SPSS Statistics) are

as follows:

. hclust (stats): agglomerative hierarchical clustering

. cutree (stats): cuts a tree diagram produced by agglomerative hierarchical clustering

(similar to PROC TREE in SAS)

. kmeans (stats): k-means algorithm

. agnes (cluster): agglomerative nesting

. clara (cluster): clustering large applications

. daisy (cluster): dissimilarity matrix calculation

THE MAIN SOFTWARE PACKAGES 129



. diana (cluster): divisive analysis clustering

. fanny (cluster): fuzzy analysis clustering

. mona (cluster): monothetic analysis clustering of binary variables

. pam (cluster): partitioning around medoid

. Mclust (mclust):MCLUSTprobabilistic clustering based on a search forGaussianmodels

. pop (amap): clustering by aggregation of similarities

. som (class): Kohonen maps.

The main modelling functions in R are as follows:

. lm (stats): linear regression, analysis of variance and covariance

. lm.ridge (MASS),8 ridge (survival): ridge regression

. lars (lars): lasso regression

. glmnet (glmnet): lasso and elastic net regressions

. nls (stats): non-linear regression (by least squares)

. loess (stats): LOESS regression

. spline (stats): spline interpolation

. glm (stats): generalized linear model for the following Y/X¼x distributions: normal

(regression), binomial (logistic regression), Poisson, gamma

. lme (nlme): mixed-effects linear model

. nlme (nlme): mixed-effects non-linear model

. clogit (survival): conditional logistic regression

. gam (mgcv): generalized additive model

. gamm (mgcv): generalized additive mixed-effects model

. lda (MASS): linear discriminant analysis

. qda (MASS): quadratic discriminant analysis

. rpart (rpart), tree (tree): CART decision trees

. bagging (ipred): bagging a CART tree constructed by rpart

. randomForest (randomForest): random forests

8 The MASS package is grouped with the class, nnet and spatial packages in the VR package.
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. ada (ada): Discrete AdaBoost, Real AdaBoost, LogitBoost and Gentle AdaBoost

. adaboost (boost): AdaBoost

. logitboost (boost): LogitBoost

. gbm (gbm): boosting (generalized boosted regression modelling)

. knn (class): k-nearest-neighbour classification

. nnet (nnet): neural networks

. ksvm (kernlab), lssvm (kernlab), svmpath (svmpath): support vector machines

. ts (stats): time series

. arima (stats): ARIMA model

. survreg (survival): parametric survival model

. coxph (survival): Cox proportional hazards regression model

. survfit (survival): survival curve for censored data.

There is a package called tseries for time series. Here are some of its useful functions:

. arima.sim: for simulating ARIMA trajectories

. ARMAacf: for calculating the theoretical autocovariance function

. ar, arima, arima0, arma: for adjusting an AR, ARMA, etc. model with a choice of

different methods; returns the residuals

. acf, pacf: for plotting the autocorrelation and partial autocorrelation functions

. diff: for differentiating the series with different orders

. predict: for forecasting with different horizons

. acf2AR: can be used for one-step forecasting

. pp.test: Phillips–Perron test (unit root)

. Box.test: decorrelation test (portmanteau test combining a number of tests, such as the

Ljung–Box and Box–Pierce tests; the term ‘portmanteau’ alludes to an object for

containing several different kinds of garments)

. garch: for adjusting ARCH/GARCH models.

There is also a tm package for text mining.

Several user-friendly interfaces have been created for factor analysis, including those of

the ade4 package (http://pbil.univ-lyon1.fr/ADE-4) developed at the University of Lyon 1

(France) for analysing ecological and environmental data, and the interface of the Facto-

MineR package. The FactoMineR interface is incorporated in the interface of the Rcmdr

THE MAIN SOFTWARE PACKAGES 131



package: it is obtained simply by connecting to the Internet (first ensuring that port 80 is not

protected by a firewall) and typing the following line into the R console:

> source("http://factominer.free.fr/install-facto.r")

This only has to be done once. Then theFactoMineR scrollingmenuwill be included inRcmdr

whenever the package is loaded.

This menu (Figure 5.6) displays the methods handled by FactoMineR. Some of these are

conventional, including principal component analysis (PCA), correspondence factor analysis

(CA) andmultiple correspondence analysis (MCA). Some of them are more advanced and can

deal with structures on variables or individuals. These are multiple factor analysis (MFA),

hierarchical multiple factor analysis (HMFA), dual multiple factor analysis (DMFA), factor

analysis for mixed data (FAMD) and generalized Procrustes analysis (GPA). Unlike PCA and

MCA, factor analysis for mixed data (FAMD) deals with both quantitative and qualitative

variables. When using these data, it is possible to execute both a PCA and an MCA and to

allow for their common structure as it is manifested in a correlation of certain axes of the PCA

andMCA. FAMD constructs new axes and breaks down the inertia by axis and group (PCA or

MCA).We can thus identify the axes corresponding to directions of inertia that are important

for both groups, and others relating to only one of the groups. InMFA, devised by Escofier and

Pag�es, we consider data structured in groups of variables, these groups being hierarchically

arranged in HMFA (as in the example of an enquiry structured in themes and sub-themes). The

advantage of multiple factor analysis is that it does not start by combining all the groups of

variables, which would make the groups with higher variance eclipse the others. Instead, it

carries out separate analyses on each group of variables; these analyses are PCA if the group is

made up of quantitative variables, MCA if the variables are qualitative, and FAMD if the

Figure 5.6 FactoMineR.
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variables are mixed. It then carries out a global analysis, but only after each group of variables

has been weighted by dividing its elements by the square root of the first eigenvalue of the

group. Thus we can analyse each group in isolation (in the usual way) and then analyse all the

variables globally. In this global analysis, we are particularly interested in factors which are

common to the groups of variables and are also directions with high inertia. We can also

represent each group of variables in the form of a point in a graphic.

Here I should also mention another method called STATIS, developed by Escoufier and

others. This is similar to MFA, but weights the groups of variables differently, by under-

weighting the groups whose structure is farthest from the structure of the set. We speak of

seeking a ‘compromise’, and we disregard the groups that are a long way from the

compromise. STATIS is not implemented in FactoMineR, but is in the ade4 package.

Like MFA, Procrustes analysis deals with several groups of variables, provided that they

are all quantitative. Another generalization of MFA is dual multiple factor analysis, in which

the data are structured in groups of variables and groups of individuals.

The FactoMineR interface can be used to save the outputs (such as eigenvalues,

contributions, and factor coordinates) to an R file (named ‘res’ by default) or to a CSV

file which can be read in Excel. Like Rcmdr, it can be used to save the R code that is generated

in a script window. For example, the eigenvalues can be read in res$eig. This interface

also produces carefully designed graphics. Supplementary individuals and variables can

be handled.

5.3.5 Some elements of the R language

Here is a small sample of the R language.

To read a CSV file, containing the name of the variables on the first line, with the separator

‘;’, with the decimal separator ‘,’, and adding ‘blanks’ if the lines do not all have the same

number of variables:

read.table(file, header = TRUE, sep = ";", dec=",", fill = TRUE)

To assign the Napierian logarithm of the weight to the object lweight:

lweight <- log(weight)

To calculate the specified quantiles for the variable ‘weight’ of the file File, disregarding

observations containing missing values (represented by NA: ‘not available’):

quantile(File$weight, c( 0, .25, .5, .75, 1), na.rm=TRUE)

To display the descriptive statistics of the file File:

summary(File)

To carry out the test of variance on the qualitative variable ‘sex’ and the variable ‘size’:

var.test(size,sex)
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To carry out the w2 test on the contingency table of the variables ‘situation’ and ‘purchase’:

chisq.test(table(situation,purchase))

To carry out a linear regression of theweight on size and age, and display the results of this

regression (coefficients, R2, F-ratio, RSE, etc.) and the main graphics (residual plot, Q-Q

diagram, Cook’s distance):

Linear.Model <- lm(formula = weight � (size + age), data = File)

Summary(Linear.Model)

Plot(Linear.Model)

This final example shows how models are specified in the R syntax. The response is the

term on the left of the symbol ‘�’, and the expression y� x1 þ x2 specifies a model of the

form y¼ a0 þ a1x1 þ a2x2. To specify a model

of the form we write:

y¼ a0 þ a(x1 þ x2) y� I (x1 þ x2)

y¼ a1x1 þ a2x2 y� x1 þ x2 – 1

y¼ a0 þ a1x þ a2x
2 y� poly(x, 2)

with interaction between x1 and x2: x1 : x2
with additive and interactive effects: x1

� x2 (equivalent to x1 þ x2 þ x1 : x2).

This example also provides an illustration of object-oriented language. The result of the

linear regression is copied into an object assigned to the variable ‘Linear.Model’, to which

the ‘summary’ function can be applied to provide the main outputs of the linear regression, in

the sameway that this function can be applied to a file to provide themain descriptive statistics

of the variables of this file. It is a general principle of R that the functions act specifically in

accordance with the nature of the objects entered into the argument. Instead of immediately

displaying all the results of the linear regression, as most software do, R stores them in an

object from which the desired results are extracted subsequently, using the ‘summary’

function or the ‘print’ function to provide the minimum information, or the ‘plot’ function

to generate graphics, etc. This procedure is unusual, but may be useful for comparing the

results of a large number of tests, where it is undesirable to display all the results. Admittedly,

the outputs in software such as SAS or IBM SPSS Statistics can be limited to what is strictly

necessary, but if the user forgets to request the display of even one result, all the calculations

have to be repeated. In this respect, the operation of R is somewhat similar to that of the ODS

(see Section 3.8.4), which enables the results of the calculations to be sent to SAS files instead

of being sent directly to the output window.

However, it should be noted that the outputs of R are much more rough-and-ready, using a

notepad-style character set without formatting. On the other hand, the prettyR package can be

used to export outputs in HTML.

There are other differences between the R language and the SAS and SPSS languages. In

these languages, there are procedures which process a file ‘vertically’ by analysing all the

observations (‘cases’ in the SPSS language) to produce results, while the functions process a

file ‘horizontally’ by creating new variables from the existing ones, this being done for each

observation independently of the others (with exceptions such as the ‘delay’ or ‘lag’ function).
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In R, the functions do both, according to the arguments sent to them. For example, the

apply function can apply the same function to the margins of the table, either horizontally or

vertically. Thus apply(x,1, mean) calculates the means of each row of a table x, and apply(x,2,

sum) calculates the sums of each column of x.

Like themacro language of SAS and SPSS, R offers solutions to thosewho need to execute

identical tasks several times but with parameters which may be different. Instead of typing the

commands into the R console one by one, we can write them to a file saved in ASCII format

with the extension ‘.R’. A first method of writing syntax to execute repeated commands is to

use vector writing, placing the values of the parameters in vectors of mode character, and then

using indexation to execute the command with different values of the parameters. Another

method, similar to the SAS or SPSS macro language, is that of defining a function. Emmanuel

Paradis, in his excellent brief guide R for Beginners, available on the Internet, gives the

example of a scatter diagram to be produced for three data sets contained in three different

files. Instead of writing the same commands three times:

layout(matrix(1:3, 3, 1)) # partitions the graphic

data <- read.table("Swal.dat") # reads the data

plot(data$V1, data$V2, type="l")

title("swallow") # adds the title

data <- read.table("Wren.dat")

plot(data$V1, data$V2, type="l")

title("wren")

data <- read.table("Dunn.dat")

plot(data$V1, data$V2, type="l")

title("dunnock")

he defines the function:

myfun <- function(S, F)

{

data <- read.table(F)

plot(data$V1, data$V2, type="l")

title(S)

}

which is called in this way:

layout(matrix(1:3, 3, 1))

myfun("swallow", "Swal.dat")

myfun("wren", "Wrenn.dat")

myfun("dunnock", "Dunn.dat")

or as follows:

layout(matrix(1:3, 3, 1))

species <- c("swallow", "wren", "dunnock")

file <- c("Swal.dat" , "Wren.dat", "Dunn.dat")

sapply(species, myfun, file)
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These instructions can be written to a file MyBirds.R, which will be called by the command

source("Mybirds.R")

AnR function can include loops (for, repeat, while), conditions (if, ifelse), etc. The general

syntax of a function is:

function_name <- function (arguments)

{body of the function}.

Other illustrations of the R language will be provided later in this book, especially in the

section on regression.

5.4 Comparison of R, SAS and IBM SPSS

Several comparisons of software packages are available in the literature, but as far as I know

none of these deals with the details of their functionality. Table 5.4 is an attempt to fill this gap,

for the three leading packages, namely:

. the IBM SPSS suite (IBM SPSS� Statistics 19, IBM SPSS� Modeler 14);

. the SAS suite (SAS� 9.2, SAS� Enterprise MinerTM 6.1);

. R and its packages.

The functions, grouped by type, are shown in the rows, and the packages are shown in the

columns. Of course, the information given is for guidance only, based onwhat was available to

the author at the time of writing, but the reader can contact the developers to obtain the latest

official documentation, and visit the R project site for the R software.

Note that only the native functions are shown, not those which can be obtained by special-

purpose developments or macros which are more or less accessible and more or less

maintained by authors who are not necessarily linked to the software developers. Some

SASmacros are available on the INSEEwebsite at www.insee.fr/fr/nom_def_met/outils_stat/

macro.htm, and quite a large number of SPSS macros can be found at www.spsstools.net/

Macros.htm. This selective approach was necessary in order to fix the boundary of the

functionality (and limit the number of lines in the table!), even though it has to be admitted that

this is rather restrictive in the case of R, which allows functions to be written quickly to meet

specific needs.

In the SPSS column, ‘MOD’ indicates proprietary functions of IBM SPSSModeler. In the

SAS column, ‘SEM’means proprietary functions of EnterpriseMiner. Since SEM is an ‘upper

layer’ of SAS, a function is indicated in SAS itself even if it is also available in SEM.

Similarly, a function is shown in IBM SPSS Statistics even if it is also available in IBM SPSS

Modeler. For R, all the packages are at the same level. Their names are shown in the rightmost

column, unless they are included in the basic packages. The name of the R function is usually

shown in brackets when it is different from the package name, and if the package contains

more than one function. Remember that the case is significant in the name of an R object:

Imrob and ImRob are names of different functions. The last column of the table also shows the

names of the SAS and IBM SPSS procedures.
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Table 5.4 Comparison of IBM SPSS, SAS and R.

Functions SPSS SAS R Proceduresa

Data reading File formats flat x x x

CSV x x x

Excel x x x R: xlsReadWrite, gdata (read.xls)

Access x x x R: via ODBC

SAS x x x R: foreign, Hmisc (sasxport.get)

SPSS x x x R: foreign, Hmisc (spss.get)

DBMS Oracle x x x R: ROracle

SQL Server x x x

DB2 x x

Teradata x x

MySQL x x x R: RMySQL

others, if ODBC driver x x x R: RODBC

Automatic variable type recognition x SEM and SAS� Enterprise Guide

Variable labels import x x x

Data writing File formats flat x x x

CSV x x x

Excel x x x R: xlsReadWrite

Access x x x R: via ODBC

SAS x x x R: foreign (write.foreign)

SPSS x x x R: foreign (write.foreign)

DBMS Oracle x x x R: ROracle

SQL Server x x x

DB2 x x

Teradata x x
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

MySQL x x x R: RMySQL

others, if ODBC driver x x x R: RODBC

Data preparation File handling selection x x x

deduplication x x x R: base (unique)

aggregation x x x

merge x x x

transposition x x x SAS: TRANSPOSE – SPSS: FLIP

transposition by groups

of observations

x SAS: TRANSPOSE

SQL language x x x R: RODBC, RMySQL

copying the data

dictionary from one file

to another

x

Data display navigation in spreadsheet

mode in the file

x x x R: Rcmdr

2D and 3D display of

individuals (scatter plot)

x x x R: lattice, rgl

display of data in n

dimensions (Radviz

methodb)

x R: dprep (radviz2d)

colouring of individuals

according to a variable

different from the axes

x x x R: lattice

interactive selection of

observations

MOD SEM x þ SAS/IML Studio – SPSS: the

Modeler graphics allow this selection –

R: rggobi
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Cleaning outlier detection MOD SEM x R: dprep (baysout, lofactor, mahaout,

maxlof, robout), mvoutlier

outlier filtering MOD SEM x R: outlier (rm.outlier)

Winsorization SEM x R: psych (winsor)

Automatic

management of

missing values

detection of missing

values

x x x R: VIM, dprep (imagmiss, clean)

linking of missing values x x x SPSS: MVA – SAS: MI – R: VIM

elementary imputation

(mean, median,

maximum, etc.)

x x x SAS: STANDARD, STDIZE,

PRINQUAL – R: dprep (ce.impute, ce.

mimp), Hmisc (impute)

imputation by EM

(expectation

maximization) algorithm

x x x SAS: MI, MIANALYSE – R: mix, cat

imputation by regression x x x SAS: MI, MIANALYSE – R: mi (mi.

continuous, mi.method), mice, Hmisc

(transcan)

imputation by logistic

regression

x x x SAS: MI, MIANALYSE – R: mic,

Hmisc (transcan)

imputation by

discriminant analysis

x x SAS: MI, MIANALYSE – R: mice

imputation by k nearest

neighbours

x R: dprep (ce.impute)

imputation by Markov

chains

x x x SAS: MI, MIANALYSE – SPSS:

MULTIPLE IMPUTATION (Missing

Values module) – R: mix

imputation by decision

tree

MOD SEM x R: Hmisc (transcan)

(continued )

C
O
M
P
A
R
IS
O
N

O
F
R
,
S
A
S
A
N
D

IB
M

S
P
S
S

1
3
9



Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

multiple imputation x x x SAS: MI, MIANALYSE – SPSS:

MULTIPLE IMPUTATION (Missing

Values module) – R:mitools, mice, mix,

cat, Hmisc (transcan), Amelia

Transformation of

variables

recoding x x x R: dprep (baysout, rangenorm)

automatic normalization x x SAS: TRANSREG – R: car, MASS

(Box–Cox transformation)

automatic

standardization

x x x SAS: STANDARD, STDIZE,

DISTANCE

automatic

transformation of a

numeric variable by a

spline function

x x SAS: TRANSREG, PRINQUAL – R:

Hmisc (transcan), acepack (ace)

optimal automatic

digitization of

categorical variables

x x x SAS: TRANSREG, PRINQUAL –

SPSS: CATREG, CATPCA, OVERALS

– R: Hmisc (transcan), acepack (ace)

creation of new variables x x x

character functions x x x

logic functions x x x

mathematical functions x x x

statistical functions x x x

financial functions x x x R: Rmetrics

automatic discretization

(in equal frequency or

equal width ranges)

x x x R: dprep (disc.ef, disc.ew)
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optimal automatic

discretization (according

to a dependent variable)

x SEM x SPSS: OPTIMAL BINNING (module

Data Preparation) – R: dprep

(chiMerge, disc.lr, disc.mentr)

random number

generation

x x x

date management x x x

Selection of

variables

automatic detection of

interactions

SEM

step-by-step algorithms x x x SAS: STEPDISC – R: stats (step),

MASS (stepAIC), pps (pps1)

global algorithms

(Furnival and Wilson)

x x SAS: REG, PHREG, LOGISTIC – R:

leaps

Random sampling simple (srs: simple

random sampling)

x x x R: stats (sample), sampling (srswor,

srswr)

simple (pps: probability

proportional to size)

x x x R: stats (sample), pps (pps1, ppss,

ppswr), sampling (UPbrewer,

UPmaxentropy, UP . . .), sampfling

stratified x x x SAS: SURVEYSELECT – SPSS:

Complex Samples module – R:

sampling (strata), pps (ppssstrat)

cluster x x x SAS: SURVEYSELECT – SPSS:

Complex Samples module – R:

sampling (cluster)

bootstrap x x x SAS: SURVEYSELECT – SPSS:

Complex Samples module – R: boot

according to the a

posterior distribution of

the parameters of an

adjusted model

x R: lme4 (mcmcsamp)
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

determination of sample

sizes for significant

results

x x SAS: POWER, GLMPOWER – R:

SampleSizeProportions, samplesize,

binomSamSize

automatic division of

data into training, test

and validation samples

MOD SEM

Data analysis Descriptive statistic n-variable contingency

table

x x x

single-variable

frequency table

x x x

central tendency

characteristics

x x x

dispersion

characteristics

x x x R: stats

shape characteristics x x x R: e1071 (skewness, kurtosis)

Winsorized means x x x R: psych (winsor)

Durbin–Watson statistic x x x SAS: GLM, REG – R: lmtest

Statistical tests tests of means

(parametric or

nonparametric)

x x x SAS: MEANS, UNIVARIATE, TTEST,

GLM, NPAR1WAY MEANS, T-TEST,

ONEWAY, NPAR TESTS – R: stats

tests of variance

(parametric or

nonparametric)

x x x SAS: ANOVA NPAR1WAY – SPSS

ONEWAY – R: stats (var.test. fligner,

test)

tests of distribution

(parametric or

nonparametric)

x x x SAS: NPAR1WAY – R: stats, nortest
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tests of normality x x x SAS: NPAR1WAY, UNIVARIATE –

SPSS: EXAMINE, NPAR TESTS – R:

stats (Shapiro.test), nortest, dprep

(mardia), tseries (jarque.bera.test)

tests on independent

samples

x x x R: stats

tests on paired samples x x x R: stats

tests of correlations

(parametric or

nonparametric)

x x x SAS: CORR – SPSS:

CORRELATIONS, NONPAR COR –

R: stats

tests of independence x x x SAS: FREQ – SPSS: CROSSTABS – R:

stats

tests of multicollinearity

(VIF. . .)
x x x SAS: REG - SPSS: REGRESSION – R:

car

Levene’s test of

homoscedasticity

x x x SAS: ANOVA, GLM –SPSS:

EXAMINE, UNIANOVA, GLM – R:

car (levene.test)

Bartlett’s test of

homoscedasticity

x x SAS: ANOVA, GLM – R: stats (bartlett.

test)

White’s test (equality of

the variance of residuals)

x SAS: REG and MODEL

exact tests x x x SAS: FREQ, NPAR1WAY – R: stats

tests by the Monte Carlo

method

x x x SAS: FREQ, NPAR1WAY– R: stats . . .

Graphics bar, curve, area, and pie

charts, etc.

x x x

histograms x x x

scatter plots x x x

box plot x x x SAS: BOXPLOT
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

stem and leaf x x x R: aplpack (stem.leaf)

P-P plot x x x R: e1071 (probplot)

Q-Q plot x x x R: stats (qqplot)

3D graphics x x x

rotating graphics x x x

time series graphics x x x R: stats (plot.ts, monthplot, lag.plot,

tsdiag, ts.plot), tseries (seqplot.ts)

colouring of selected

individuals in the file

x x

Factor analysis PCA x x x SAS: PRINCOMP, FACTOR – SPSS:

FACTOR – R: stats (princomp,

prcomp), FactoMineR (PCA), ade4

(dudi.pca)

PCA with orthogonal

rotation

x x x SAS and SPSS: FACTOR – R: stats

(varimax, factanal), psych (fa),

GPArotation (GPA)

PCA with oblique

rotation

x x x SAS and SPSS: FACTOR – R: stats

(varimax, factanal), psych (fa),

GPArotation (GPA)

PCA on transformed

numeric variablesc
x SAS: PRINQUAL

PCA on categorical

variablesd
x x SAS: PRINQUAL – SPSS: CATPCA

CA x x x SAS: CORRESP - SPSS:

CORRESPONDENCE – R: MASS

(corresp), FactoMineR (CA), ade4

(dudi.coa), ca (ca)
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MCA x x x SAS: CORRESP - SPSS: HOMALSe -

R: MASS (mca), FactoMineR (MCA),

homals, ade4 (dudi.acm), ca (mjca)

linear canonical

correlation analysis

(continuous or binary

variables) with two

groups of variables

x x SAS: CANCORR – R: CCA (cc)

regularized (ridge) linear

canonical correlation

analysis with two groups

of variables

x R: CCA (rcc)

non-linear canonical

correlation analysisf

with two groups of

variables

x x SPSS: OVERALS – SAS: TRANSREG

non-linear canonical

correlation analysis with

more than two groups of

variables

x SPSS: OVERALS

Factor analysis of

multiple tables

multiple factor analysis x FactoMineR (MFA), ade4 (mfa)

hierarchical multiple

factor analysis

x FactoMineR (HMFA)

dual multiple factor

analysis

x FactoMineR (DMFA)

factor analysis for

mixed data

x FactoMineR (FAMD)
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

generalized Procrustes

analysis

x FactoMineR (GPA)

STATIS method x ade4 (statis)

Positioning analysis calculation of distances,

similarities,

dissimilarities

x x x SAS: DISTANCE – R: diss

Modelling/

prediction

Calculation of confidence intervals of

estimators

x x x

Simple and multiple

linear regression

ordinary least squares x x x SAS: REG, GLM – SPSS:

REGRESSION – R: stats (lm), biglmg

median least squares x x SAS: QUANTREG – R: quantreg (rq)h

quantile regression x x SAS: QUANTREG – R: quantreg (rq)

weighted least squares x x x SAS: REG, GLM – SPSS: WLS – R:

MASS

least trimmed squares x x SAS: ROBUSTREG - R: robustbase

(ltsReg)

regression on principal

components

x x SAS: REG – R: pls

ridge regression x x SAS: REG – R: MASS (lm.ridge),

penalized, survival

lasso regression x x SAS: GLMSELECT – R: lars, lasso2

(l1ce), penalized, biglarsi, relaxo

elastic net regression x R: elasticnet, glmnet

multivariate regressionj x SAS: TRANSREG
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Regression on

transformed

variables

quadratic or cubic

transformation

x x SAS: TRANSREG, REG, RSREG,

GLM – SPSS: CURVEFIT

general polynomial

transformation

x x SAS: TRANSREG – R: mda (polyreg)

logarithmic, logistic,

exponential, power,

inverse hyperbolic,

arcsine transformations

x x SAS: TRANSREG – SPSS:

CURVEFIT

spline transformation x SAS: TRANSREG

regression on categorical

variables by optimal

codingk

x x SAS: TRANSREG – SPSS: CATREG

Non-parametric

regression

locally weighted least

squares on neighbours

(LOESS)

x x SAS: LOESS – R: stats (loess, lowessl)

spline regression x x SAS: TPSPLINE – R: spline, stats

(smooth.spline)

kernel method x x SAS: KDE – R: ks

Theil–Sen robust

regressionm
x R: mblm

other robust regression x x SAS: ROBUSTREG - R: MASS (rlm,

lqs), robustbase (lmrob), robust (lmRob)

Non-linear

regression

without constraint x x x SAS: NLIN – SPSS: NLR –R: stats (nls)

with constraints x x x SAS: NLIN – SPSS: CNLR – R: stats

(nls)

robust x R: robustbase (nlrob)

quantile x R: quantreg (nlrq)

with mixed effects x R: nlme (nlme), lme4 (nlmer)
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

Friedman’s ‘projection

pursuit regression’

x R: stats (ppr)

PLS regression classical x x x SAS: PLS – SPSS: PLSn – R: pls, ade4

(nipals)

penalized x R: ppls

General linear

model

ANOVA x x x SAS: ANOVA, GLM, MIXED – SPSS:

GLM, MANOVA – R: stats (lm, anova)

MANOVA x x x SAS: ANOVA, GLM, MIXED – SPSS:

GLM, MANOVA – R: stats (lm, anova)

ANCOVA x x x SAS: GLM, MIXED – SPSS: GLM,

MANOVA – R: stats (aov)

MANCOVA x x x SAS: GLM, MIXED – SPSS: GLM,

MANOVA, UNIANOVA – R: stats

(aov)

ANOVA, MANOVA,

ANCOVA, MANCOVA

for noisy data

x SAS: ORTHOREG

linear models with lasso

penalization

(x) x SAS: GLMSELECTo - R: lasso2 (l1ce),

penalized

fixed effect models x x x SAS: GLM,MIXED – SPSS: GLM –R:

nlme (lme)

random effect models x x x SAS: GLM, MIXED, VARCOMP –

SPSS: GLM – R: nlme (lme)

mixed models x x x SAS: GLM, MIXED, VARCOMP –

SPSS: MIXED, GLM – R: nlme (lme),

lme4 (lmer)
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models with repeated

measurements

x x x SAS: ANOVA, GLM, CATMOD,

MIXED – SPSS: MIXED, GLM – R:

stats (aov), nlme (lme)

mixed models with

repeated measurements

x x x SAS: MIXED – SPSS: MIXED – R:

nlme (lme)

hierarchical linear

models

x x x SAS: NESTED, GLM,MIXED – SPSS:

MIXED – R: nlme (lme)

Decision trees CHAID x SEM SPSS: TREE

CART or equivalent x SEM x SPSS: TREE – R: rpart (recommended

package), tree

C4.5/C5.0 or equivalent MOD SEM x R: RWeka (J48)

CTree (conditional

inference algorithm)

x R: party (ctree)

LMT (logistic model

trees)

x R: RWeka (LMT)

multivariate tree (several

responses to predict)

x R: mvpart, party (ctree)

automatic pruning by

validation on a test

sample

x SEM SPSS: TREE

automatic pruning by

cross-validation

x SEM x SPSS: TREE – R: rpart

interactive construction

with choice of variable

for development of a

node

MOD SEM

interactive construction

with choice of categories

for development of a node

MOD SEM

(continued )

C
O
M
P
A
R
IS
O
N

O
F
R
,
S
A
S
A
N
D

IB
M

S
P
S
S

1
4
9



Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

Neural networks MLP MOD SEM x SPSS: MLP (Neural Networks module)

– R: nnet

RBF MOD SEM SPSS: RBF (Neural Networks module)

gradient back-

propagation

x SEM

quick propagation MOD SEM

conjugate gradient

descent

x SEM

Quasi-Newton SEM x R: nnet

Levenberg–Marquardt SEM

choice of transfer

function

x SEM x R: nnet

interactive learning

control

MOD SEM

k nearest neighbours x SEM x SPSS: KNN- R: knnflex, kknn

Modelling/

classification

Fisher’s

discriminant

analysis

linear x x x SAS: DISCRIM, CANDISC – SPSS:

DISCRIMINANT – R: MASS

(lda), candisc

quadratic x x x SAS: DISCRIM – SPSS:

DISCRIMINANT – R: MASS (qda)

regularizedp x R: klaR (rda)

flexibleq x R: mda (fda)

Gaussian mixturer x R: mda (mda)

DISQUAL can be programmed
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Non-parametric Bayesian discriminant analysis x SAS: DISCRIM

Logistic regression

(logit)

binary x x x SAS: LOGISTIC, GENMOD,

CATMOD, PROBIT – SPSS:

LOGISTIC – R: stats (glm), elrm, biglm

nominal polytomous x x SAS: CATMOD, LOGISTIC – SPSS:

NOMREG

ordinal polytomous x x x SAS: CATMOD, GENMOD,

LOGISTIC, PROBIT – SPSS: PLUM –

R: MASS (polr)

PLS logistic regression x R: gpls

Other logistic

regressions

(binomial

distribution)

probit model x x x SAS: GENMOD, PROBIT, LOGISTIC

– SPSS: PROBIT, PLUM – R: stats

(glm)

log-log model x x x SAS: GENMOD, PROBIT, LOGISTIC

– SPSS: PLUM – R: stats (glm)

cauchit model x x SPSS: PLUM – R: stats (glm)

ordinal probit model x x x SAS: GENMOD – SPSS: PLUM – R:

stats (polr)

ordinal log-log model x x SAS: GENMOD – SPSS: PLUM

ordinal cauchit model x SPSS: PLUM

Other counting

models (discrete

distributions)

Poisson model x x x SAS: GENMOD – SPSS: GENLOG –

R: stats (glm)

multinomial model x x SAS: GENMOD, CATMOD - SPSS:

GENLOG, HILOGLINEAR

log-linear model

(Poisson distribution)

x x SAS: GENMOD – SPSS: GENLOG
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

log-linear model

(multinomial

distribution)

x x SAS: GENMOD, CATMOD - SPSS:

GENLOG, LOGLINEAR,

HILOGLINEAR

Other generalized

linear models

(continuous

distributions)

gamma model x x x SAS: GENMOD – SPSS: GENLIN – R:

stats (glm)

lognormal model x SAS: GENMOD

random effects models

and mixed models

x SAS: NLMIXED (non-linear random

effects), GLIMMIX

mixed models with

repeated measurements

x SAS: GLIMMIX

free choice of specified

distribution and link

function

x x SAS: GENMOD – SPSS: GENLIN

free specification of

distribution or link

function

x x SAS: GENMOD, NLMIXED – R: stats

(power)

Penalized ridge models (logistic, Poisson, Cox) x R: penalized

Penalized lasso models (logistic, Poisson, Cox,

gamma, inverse Gaussian)

x R: penalized, lasso2 (gl1ce)

Robust models (logistic, Poisson) x R: robustbase (glmrob), robust

(glmRob)

Models with repeated measurements x x SAS: GENMOD, CATMOD,

GLIMMIX – R: repolr, mprobit
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Decision trees see above

(Prediction) þ QUEST

x x SPSS: TREE – R: LohTools

Neural networks see above (Prediction)

naive Bayesian classifier x x SPSS: NAIVEBAYES – R: e1071

(naiveBayes), klaR (NaiveBayes),

predbayescor

k nearest neighbours x SEM x SPSS: KNN – R: class (knn), knncat,

klaR (sknn), knnflex, knnTree, kknn

Advanced

modelling

generalized additive model x x SAS: GAM – R: mgcv (gam, gamm)

vector generalized additive model/vector

generalized linear model

x R: VGAM

MARS (multivariate adaptive regression

splines)

x R: mda (mars), polspline (polymars),

earth

structural equation models AMOS x x SAS: CALIS – R: sem

genetic algorithms x x SAS/OR (proc GA) - SAS/IML – R:

gafit, rgenoud

SVM (support vector machines) MOD x R: kemlab, svmpath, e1071 (svm)

automatic optimization of the parameters of a

predictive model (linear, tree, SVM, k nearest

neighbours, etc.)

x R: e1071 (tune)

Ensemble

methods

bagging MOD SEM x R: adabag, ipred (bagging)

arcing x4 SEM

discrete adaboost MOD x R: ada, adabag, boost (adaboost), gbm

real adaboost, gentleadaboost x R: ada

logitboost x R: ada, caTools (LogitBoost), boost

(logitboost)

gradient boosting SEM x R: gbm, mboost

(continued )
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

boosting for generalized linear models x R: GLMBoost, mboost (glmboost)

boosting for generalized additive models x R: GAMBoost, mboost (gamboost)

random forests x R: randomForest, party (cforest)

Cluster analysis Agglomerative

hierarchical

methods

hierarchical clustering

(distance based)

x x x SAS and SPSS: CLUSTER – R: stats

(hclust), flashClusts, cluster (agnes),

FactoMineR (HCPC)

hierarchical clustering

(density based)

x SAS: CLUSTER

Wong’s hybrid method x SAS: CLUSTER

hybrid BIRCH method x SPSS: TWOSTEP

hierarchical clustering of

variables

x x x SAS: VARCLUS – R: Hmisc (varclus)

Divisive hierarchical methods x R: cluster (diana, mona)

Partitioning

methods

k-means, dynamic

clouds

x x x SAS: FASTCLUS - SPSS: QUICK

CLUSTER – R: stats (kmeans)

k-means for truncated

data

x R: trimcluster

k-means, dynamic

clouds: searching for

strong forms

non-parametric methods

(density estimation)

x x SAS: MODECLUS – R: fpc (dbscan),

RWeka (DBScan)

k-medoids (PAM,

CLARA)

x R: cluster (pam, clara), fpc (pamk)

Gaussianmixturemodels x R: mclust
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k-modes x R: klaR (kmodes)

aggregation of

similarities

x R: amap

Kohonen maps MOD SEM x R: class (SOM), kohonen

Survival analysis Cox proportional hazards regression model x x x SAS: PHREG and TPHREG - SPSS:

COXREG – R: survival (coxph),

coxrobust

Kaplan–Meier model for estimating the survival

function

x x x SAS: LIFETEST - SPSS: KM – R:

survival (survfit), rms

tobit model x x SAS: LIFEREG – R: survival (tobin)

other x x R: survival, timereg

Time series decomposition, filtering, deseasonalization x x x SAS/ETS: X11, X12, TIMESERIES -

SPSS: SEASON – R: forecast (seasadj),

stats (decompose, stl, filter)

X12 deseasonalization x x SAS/ETS: X12 – R: x12

automatic generation of time series models CLEM x x with SAS High-Performance

Forecasting or SAS/ETS Time Series

Forecasting System – R: forecast (auto.

arima, ets)

spectral analysis x x x SAS/ETS and SPSS: SPECTRA – R:

stats (spectrum, spec.ar, spec.pgram)

non-parametric models (simple and Holt-

Winters exponential smoothing)

x x x SAS/ETS: FORECAST - SPSS:

EXSMOOTH – R: forecast (etst), stats

(HoltWinters)

parametric models (ARMA) x x x SAS/ETS and SPSS: ARIMA – R:

tseries (arma)

(continued )
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

semi-parametric models (ARIMA, SARIMA) x x x SAS/ETS and SPSS: ARIMA – R: stats

(arima), forecast (Arima)

vector autoregressive models (VAR, VECM,

etc.)

x x SAS/ETS: VARMAX – R: vars

autoregressive models x x x SAS/ETS: AUTOREG - SPSS: AREG –

R: stats (ar, ar.ols)

non-linear processes – generalized

autoregressive models (ARCH, GARCH)

x x SAS/ETS: AUTOREG – R: tseries

(garch)

long memory models x x SAS/ETS: AUTOREG – R: longmemo

Association Rules

detection

MOD SEM x R: arules, RWeka

Optimization x x SAS/OR (OPTMODEL procedure) – R:

stats (optimu, optimize, nlm), gasl,

maxLik

Matrix calculation x x x SAS/IML – SPSS ‘Matrix’ instruction –

R: matlab, Matrix, sparseM

Text Mining x x x SAS Text Miner

IBM SPSS Text Analytics

R: tm

Visualization of

results

Reporting editable and

reformattable tables

x x

library of model tables x x

graphics x x x R: lattice

interactive graphics x x x R: iplots, rgl, Rcmdr (Scatter3DDialog)
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3D graphics x x x R: rgl

graphics gallery x x x R: R Graph Gallery

library ofmodel graphics x x x

Control of graphics

creation in R and

inclusion in Output

Viewer

x x ns SPSS: using a plug-in Python – SAS/

IML Studio

incorporation into a

report

x x

export to Word or Excel x x

saving in PostScript,

JPEG, TIFF, PNG,

Windows metafile,

bitmap

x x x

saving in HTML, RTF

(or DOC) and PDF

x x SAS: Output Delivery System – SPSS:

Output Management System

Performance

evaluation

confusion matrix x x x

lift curve MOD SEM x IBM SPSS Modeler: with graphic

selection of the score zone chosen for

filtering the observations – R: ROCR

ROC curve x x x SAS: ROCPLOT macro, LOGISTIC

procedure – R: ROCR, Epi (ROC)

Gini index/area under

the ROC curve

x x x SAS: ROC macro, LOGISTIC

procedure – R: ROCR, Epi (ROC)

ROC curves with

superimposition of

models

x x x SAS: ROCCOMP macro – R: ROCR

(continued )
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

Automatic report creation SEM

Statistical help contextual interpretation

of the results (on-line

help by right clicking on

a result)

x

case studies – examples

with comments

x x

detailed manual on

statistics supplied by the

developer with the

software, with examples,

theory and details of

algorithms

x x SPSS manual is less detailed and is

presented in two documents:

‘Command Syntax Reference’ and

‘Algorithms’

Industrialization Metadata

management

declaration of the role of

a variable (identifier,

dependent, independent,

illustrative, useless, etc.)

x x

creation of subgroups of

the set of variables

x SPSS: use of subgroups in the dialogue

boxes

Programming

language

script language to create

a graphic interface

x x x

library of predefined

functions

x x x

user definition of

functions

x x x

programming of

complex operations

x x x
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calling C and Fortran x x x SPSS: by DLL declaration

integration into MS

Excel for data exchange

and use of functions

x R: RExcelInstaller (installs the RExcel

add-in)

colouring of syntax in

the programming

window to help with

syntax checking

x x x R: in various editors, e.g.: Tinn-R,v

Emacs, WinEdt

colouring of messages in

the ‘log’ window to

highlight errors and

warnings

x

debugger x x x

production (batch)

functions

x x x

Platforms Windows x x x

AIX x x

HP UX x x

Linux x x x

Solaris x x

Mac OS x x

z/OS x

Export of models C-Cþ þ MOD x

Java x x SPSS: Java class supplied for PMML

interpretation

XML-PMML x x x R: pmml, XML

(continued )
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Table 5.4 (Continued)

Functions SPSS SAS R Proceduresa

Computing power client–server architecture x x

working in client–server mode and on local

workstation in the same session

x

parallelization of the data mining algorithms

(more specific than the parallelization of the

SQL database processes)

x x x SAS: use of SPDE (scalable parallel data

engine) in some procedures, and

possibility of grid computing – SPSS:

sort andmultinomial logistic regression–

R: a list of packages can be found under

‘High-Performance and Parallel

Computing’
a See also Kleinman, K. and Horton, N.J. (2009) SAS and R: Data Management, Statistical Analysis, and Graphics. Boca Raton, FL: Chapman & Hall.
b In this method of ‘radial coordinate visualization’, the observations described by n variables are represented in a plane, inside a circle in which a polygon is

inscribed, with each vertex corresponding to one variable. The variables are normalized between 0 and 1. An observation is closer to one of the vertices of the

polygon when the value of the variable associated with this vertex is greater than the others for this observation. An observation is close to the centre if all the

variables have approximately the same values for this observation.
c The PRINQUAL procedure uses the alternating least squares method to find the transformations of the initial variables which maximize the variance of the

first axes. These transformations may or may not be linear, and use spline functions and the power, exponential, logarithm, rank, logistic and arcsine functions.
d The PRINQUAL (SAS) and CATPCA (SPSS) procedures use the alternating least squares method to find the numeric codings of the initial categorical

variables which maximize the variance of the first axes (‘optimal scoring’).
e The principle of HOMALS is different from that of anMCA procedure like SAS CORRESP, since HOMALS uses the alternating least squares method (with

longer calculation time) instead of simple diagonalization. In practice, however, we often have to go to the fourth decimal place to find any difference between

the two procedures.
f Optimal transformation of the variables by alternating least squares.
g The biglm package should be used for data volumes which are too large to be stored in memory.
h Median regression is a special case of quantile regression, processed by the quantreg package.
i The biglars package should be used for data volumes which are too large to be stored in memory.
j There are several dependent variables Yi for the same independent variables X and the aim is to find regressions Yi/X which have the same constants, or the

same slopes, or which satisfy certain conditions. Multivariate regression can be applied to transformed variables (splines, etc.).
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k The TRANSREG (SAS) and CATREG (SPSS) procedures use the alternating least squares method to find the numeric codings of the initial categorical

variables which optimize the adjustment of the regression. This method is also used by the TRANSREG procedure to find the best spline transformation of

numeric variables. This method involves alternating a search for the best adjustment (in the sense of the least squares) of the parameters with allowance for the

coding of the data with a search for the best coding with allowance for the preceding adjustment of the parameters.
l Note the syntax lowess(x,y) which is different from the syntax loess(y�x) which is used more widely in R.
m This regression involves calculating the slopes of the straight lines passing through all possible pairs of points, and taking themedian of these as the estimator.
n The PLS procedure in SPSS requires the preliminary installation of a Python editor programming module, downloadable from the SPSS website.
o The GLMSELECT procedure is designed purely for the selection of variables, not for modelling: it does not provide regression diagnostics, for example. It

implements the LAR method as well as the lasso.
p Regularized discriminant analysis (Friedman, J. H. (1989) Regularized discriminant analysis. Journal of the American Statistical Association, 84, 165–175)

is a compromise between linear discriminant analysis and quadratic discriminant analysis. It operates on a similar principle to ridge regression, and is useful

when the predictors are collinear. It is controlled by a parameter in the range from 0 to 1, which progressively limits the covariancematrices by classes towards a

common covariance matrix as in linear discriminant analysis.
q Flexible discriminant analysis (Hastie, T., Tibshirani, R. and Buja, A. (1994) Flexible discriminant analysis by optimal scoring. Journal of the American

Statistical Association, 89, 1255–1270) makes use of the link between linear discriminant analysis andmultiple linear regression, and applies generalizations of

linear regression, such as spline regression or theMARSmethod, to discriminant analysis. As in the case of support vector machines, this represents amove into

a larger variable space.
r In discriminant analysis by Gaussian mixtures (Hastie, T. and Tibshirani, R. (1976) Discriminant analysis by Gaussian mixtures. Journal of the Royal

Statistical Society, Series B, 58, 155–176), the conditional law P(x/Gi) (see Section 11.6.4) is assumed to be not a Gaussian (of dimension p), but a mixtureP
kpikjðx; mik;

PÞ of Gaussians. A simplification is provided by the assumption that all the Gaussians have the same covariance matrix S. The Gaussian

mixture can be used to model non-homogenous classes. The parameters of the Gaussians are found by maximizing the likelihood, which does not appear to be

easy, but can be donewith the EM algorithm of Dempster et al. (Dempster, A.P., Laird, N.M. andRubin, D.B. (1977)Maximum likelihood from incomplete data

via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38).
s The flashClust package is faster than hclust.
t The ets function is preferable to the forecast HoltWinters function in the same package.
u The optim function implements the conjugate gradient, Nelder–Mead, quasi-Newton and simulated annealing methods.
v http://www.sciviews.org/Tinn-R/.
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To sum up, the advantages of IBM SPSS Statistics are its ease of installation and use, as

well as its practical and user-friendly data import assistant. And before SAS Enterprise Guide

came on the scene, SPSS was significantly ahead in terms of user-friendliness, with an

interface closer to the Microsoft standards. This also explains its success in sectors such as

marketing and the social sciences. As mentioned above, IBM SPSS Statistics has a graphic

interface with scrolling menus which make it unnecessary to know a programming language,

even where such a language exists and is useful for repeated operations. However, R does not

have a universal graphic interface, and by no means all of its functions have been integrated

into the various graphic interfaces distributed in its packages.

IBM SPSS Statistics also has an advantage over SAS in its lower price and the possibility

of obtaining Answer Tree for decision trees without having to buy the data mining suite,

whereas anyonewanting to construct decision trees with SAS has to buy EnterpriseMiner. For

decision trees, IBM SPSS is also more competitive than R, which does not offer many tree

algorithms. Most of the packages only implement CART, and their interface is very

unfriendly. However, it is worth noting the useful CTree algorithm (Hothorn, Hornik and

Zeileis, 2006),9 implemented in the party package.

For its part, SAS is more comprehensive and flexible in terms of file management; for

example, it has an improved TRANSPOSE procedure. The SQL procedure can be used to

manipulate not only relational tables, but also SAS tables, with better performance in some

cases than when using native SAS instructions. For example, if there is no index on the join

keys, it will be quicker to merge two tables by using an SQL ‘join’ rather than an SAS ‘merge’

(equivalent to ‘match files’ in IBM SPSS Statistics), which requires a preliminary sort of the

tables to be merged. SAS is also unequalled in its processing speed for large volumes. As

regards performance, SAS is probably the most stable of the three systems: it is very difficult

to make SAS crash, but it is by no means unusual for IBM SPSS Statistics to freeze when

processing large volumes.

In terms of these ‘data management’ aspects, IBM SPSS performs less well than SAS but

better than R. A major drawback of R is that most of its functions have to load all the data into

memory before execution, which sets a serious limit on the volumes that can be handled.

However, some packages are beginning to break free of this constraint: one example is the

biglm package for linear models.

The technical documentation of SAS is very comprehensive (almost 8000 pages covering

the procedures of the SAS/STAT module alone) and is not dispersed in the same way as the

documentation for R.

Lastly, SAS is much more widely used than IBM SPSS Statistics, and therefore has more

sources and resources devoted to it, such as forums, user clubs, trainers, websites, macro

libraries, books, etc. From this point of view, R is also well served, with a very comprehensive

website, many contributions, conferences and articles, an increasing number of books, and

even an on-line journal (http://journal.r-project.org/index.html).

SAS offers many more predefined functions, such as mathematical and financial func-

tions, than IBM SPSS Statistics. These include depreciation, compound interest, cash flow,

hyperbolic functions, factorials, combinations and arrangements, and others. There are also

more predictive and descriptive algorithms in R and SAS than in IBM SPSS Statistics; the

9 Hothorn, T., Hornik, K. and Zeileis, A. (2006) Unbiased recursive partitioning: a conditional inference

framework. Journal of Computational and Graphical Statistics, 15(3), 651–674. Preprint available from http://

statmath.wu-wien.ac.at/�zeileis/papers/HothornþHornikþZeileis-2006.pdf
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statistical indicators are more detailed and the parameter setting possibilities are much greater.

Finally, the SAS macro language is more flexible and complete than that of SPSS.

SAS offers better aids to productivity, for example with the possibility of saving the

logistic regression model obtained for a sample in an SAS ‘model’ file, so that it can

subsequently be applied to any other sample. Another very useful SAS procedure that has no

equivalent in SPSS is FORMAT, which is used to associate labels with data values. FORMAT

enables formats to be defined globally, without reference to any given table, unlike SPSS

where labels are defined only for the working table and are attached to this table. When a

SAS format has been defined, it can be used with any table without modifying it, to format

the display of its data in procedures such as PRINT, TABULATE, GCHART and GPLOT.

Formats can even be stored in a permanent catalogue and re-used without any need to

redefine them for each session. And this is not all: unlike the SPSS labels which are only

applied to precise values, the FORMAT procedure in SAS is applied to ranges of values, as in

the example below. Moreover, the FORMAT procedure operates not only in display but also

in the calculation of data. Thus, FORMAT can be used to discretize a continuous variable

‘logically’, simply by applying a suitable format to it, without any need to modify it

physically. This eliminates the step of transforming and recording the data, and, by way of

example, a logistic regression can be calculated on continuous variables as if they had been

discretized. Clearly, this makes it much quicker to test more than one discretization. The

syntax of the FORMAT procedure is:

PROC FORMAT;

VALUE age

0-<18 = ’< 18 years’

18-<25 = ’18-24 years’

25-<35 = ’25-34 years’

35-<45 = ’35-44 years’

45-<55 = ’45-54 years’

55-<65 = ’55-64 years’

65-<75 = ’65-74 years’

75-high = ’>= 75 years’ ;

In automatic clustering, the hybrid Wong method implemented by SAS (chaining the

FASTCLUS and CLUSTER procedures) is superior to the IBM SPSS Statistics ‘two-step’

method because of its capacity to detect clusters of different shapes (non-spherical) and

optimize the choice of the number of clusters.Moreover, SAS has implemented algorithms for

clustering by density estimation. R has its own useful clustering algorithms, but none of them

appears to compare with SAS in terms of handling large volumes.

But the superiority of SAS over IBM SPSS is possibly seen most clearly in the area of

prediction. The links between SAS and a large number of universities have enabled it to

implement methods and algorithms not found in IBM SPSS Statistics: These include

generalized additive models, numerous refinements of generalized linear models, genetic

algorithms, and boosting. The new versions of SAS regularly implement some of the very

latest statistical discoveries, onanexperimental basis in somecases.However,we shouldnote

the initiative taken by SPSS in implementing in an IBM SPSS Statistics module the neural

network algorithms which are traditionally reserved for data mining software such as IBM

SPSS Modeler or SAS Enterprise Miner, and which are rather poorly provided for in R (the

nnetpackage ispractically theonlyone, and isnotverycomprehensive).Furthermore, its IBM
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SPSS Data Preparation module includes much advanced data preparation functionality,

particularly an efficient algorithm for automatic discretization of continuous variables.

The advantages of R have been mentioned already, but let me summarize them here. First

of all, there is the price: R is free! Then there are the number and richness of the packages,

unequalled in some fields (econometrics, actuarial science, biostatistics, etc.). These packages

are also updated frequently and the user only has to connect to the Internet and run the Update

packages command to benefit automatically from all the latest updates.

This richness is particularly evident as regards regression methods where the

explained variable is continuous, robust and non-linear methods, and ensemble methods,

especially boosting. R also has the benefit of some very well-designed graphics and

advanced display functions.

The user will also appreciate the flexible programming and matrix calculation offered by

R, even if it requires a rather longer learning period than SAS or IBM SPSS. It is certainly

easier for an SAS user to switch to IBM SPSS, or vice versa, than to R. But anyone who is

willing to spend some time learning R will have the satisfaction of programming his own

functions or even creating his own packages.

For a user who is just looking for the simplest possible way of using R, the RExcel add-in

integrates R with Excel, offering the benefit of the familiar Excel interface for reading or

writing R data, and the possibility of calling thousands of R functions, either as macros, or

directly in the cells of Excel.

5.5 How to reduce processing time

Processing times can be shortened – drastically in some cases – by following a few rules:

. Work on structured files (SAS, SPSS, DB2, etc.) rather than flat files.

. Limit the analysed file to the lines and variables relevant to the current process (by

careful selection and using the KEEP and DROP commands).

. Recode the variables and make them smaller by using formats. Formats enable

numerous categories of variables to be replaced with codes which are much more

compact and economical in terms of disc space.

. Create Booleans such as alphanumeric variables of length 1, rather than numerical

variables.

. Clearly define the length of the variables used, limiting it to the minimum possible (e.g.

use the LENGTH command in SAS).

. Remove intermediate files which are no longer required, and especially (in SAS)

clear out the temporary WORK directory as often as possible (PROC DATASETS

LIB¼WORK KILL NOLIST), since it is not automatically purged until the end of the

SAS session.

. Keep enough free space on the hard disk: at least four times the size of the file to

be analysed.

. Defragment the hard disk if necessary.
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. Do not place the analysed file or the temporary workspace on a remote network.

. Increase the amount of RAM.

. (IBM SPSS Statistics) Avoid unnecessary EXECUTE commands.

. (IBM SPSS Statistics) Use the PRESORTED option in aggregations.

. (IBM SPSS Statistics) Clean out the log file regularly.

. (SAS) Use BY rather than CLASS in the MEANS procedure.

. (SAS) If a request uses a variable at least three times in aWHEREfilter or in a BY, create

an index on this variable, which will optimize the WHERE (making it unnecessary to

read the whole table) and ensure that the BY is not preceded by a SORTwhich is more

time-consuming; a single index can avoid several sorts; a simple index or a compound

index can be created on several variable; an index also reduces the execution times for

table joining in PROC SQL.

. (SAS) Use compression to reduce the disk space occupied by a file and save time for its

processing if necessary (but this is not always possible: check the message in the log);

this option is written in the form COMPRESS¼YES if the variables are mostly

alphanumeric, or COMPRESS¼BINARY if the variables are mostly numeric; it is

possible to write either

DATA Table 2 (COMPRESS = YES) ;

SET Table 1;

RUN ;

or

OPTIONS COMPRESS = YES ;

DATA Table 2;

SET Table 1 ;

RUN ;

according to whether you need to compress a specific table (DATA SET option) or all

tables (SYSTEM option).

. (SAS) For copying tables, use PROC COPYor PROC DATASETS (COPY instruction)

rather than a DATA SET step.

. (SAS) For sorting a large table with a small sort key, the TAGSORToption can save a lot

of time by avoiding loading into memory the data which do not appear in the BY. The

saving can be more than 40%, as shown for example in the book by Olivier Decourt and

H�el�ene Kontchou (see Section B.6). This option is useful if there is insufficient memory,

but it requires many read/write operations and a lot of processor capacity; it should

therefore be kept for cases in which saving takes a relatively long time with respect to

the sort key.
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. (SAS) On the other hand, if there is insufficient memory for the sort, the memory

allocated to sorting can be maximized by the SORTSIZE¼MAX option.

. (SAS) Since SAS 9.2, the PRESORTED option has been available for making SAS

analyse the table at the outset and only sort it if this has not been done already; this

option is recommended if there is a suspicion that the table has been already been sorted.

. (SAS) Other PROC SORT options can provide a significant time saving. The NOEQ-

UALS option tells SAS that there is no need to keep the same order in the table for

observations which have the same values for all the variables of the BY. The THREADS

option, which appeared with SAS 9, enables the sort calculations to be parallelized on a

multi-processor machine. If this option is not specified in the PROC SORT, then the one

defined in the SYSTEM options is used (another option for specifying the number of

processors). For sorting, the THREADS option is incompatible with TAGSORT. Note

that parallelization is available for procedures other than sorting, i.e. SUMMARY,

MEANS, REPORT, TABULATE, and SQL, as well as some SAS/STAT procedures. By

default, in the SYSTEM options, THREADS is activated and CPUCOUNT is equal to

the number of processors of the computer.

. (SAS)With theMULTIPASS option, the LOGISTIC procedure (since SAS 9.2) extends

its capacities by rereading the input data if necessary, instead of trying to store them in

memory or on disk.
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6

An outline of data mining methods

This chapter introduces the five chapters which form the core technical content of this book.

They are rather more accessible than some specialist books on statistics, data analysis and

neural networks, and I hope that they will be enjoyable to read. However, a reader who is only

interested in the applications of data mining and the procedures for implementing it in

a business may omit these chapters. On the other hand, they are essential for anyone wishing

not only to understand the working of the tools, in order to use them more successfully, but

also to know when and where to use any particular algorithm. In this first technical chapter, I

shall outline the descriptive and predictive methods of data mining and statistics as a whole,

and compare their main features, which will be discussed in detail in the following chapters.

It is important to note that the logarithms used in this book are Napierian (natural)

logarithms in all cases.

6.1 Classification of the methods

As mentioned in Chapter 1, the main data mining and data analysis methods can be divided

into two large families: descriptive methods and predictive methods. In descriptive methods,

for reducing, summarizing and grouping data, there is no dependent variable, i.e. no privileged

variable. In predictive methods, which explain data, there is a dependent variable, in other

words a variable to be explained, or a privileged variable.

A more detailed version of this classification is shown in Table 6.1, where methods

forming part of conventional statistics and data analysis have been given grey backgrounds.

Considering predictive methods only (Table 6.2), we can be more precise by distinguish-

ing the differences relating to the type of variable, namely independent (in the rows) and

dependent (in the columns). Clearly, the rows ‘n quantitative (representing different

quantities)’ and ‘n qualitative’ are only relevant if the dependent variables are correlated

with each other. Otherwise, it is sufficient to carry out n analyses of the ‘1 quantitative’ or

‘1 qualitative’ type.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.
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Table 6.1 Classification of methods.

Type Family Sub-family Algorithm

descriptive

methods

geometrical models factor analysis (projection and

visualization in a space of lower

dimension)

principal component analysis (PCA) (continuous

variables)

correspondence analysis (CA) (qualitative and

binary variables)

multiple correspondence analysis (MCA) (qualitative

and binary variables)

cluster analysis (grouping in

homogeneous clusters in the whole

space)

partitioning methods (moving centres, k-means,

dynamic clouds, k-medoids, etc.)

hierarchical methods (agglomerative, divisive)

cluster analysis þ dimension

reduction

neural clustering (Kohonen maps)

combinatory models clustering by aggregation of similarities (qualitative

variables)

logical rule-based

models

link detection search for association rules

search for similar sequences
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predictive

methods

logical rule-based

models

decision trees decision trees (dependent variable is numeric or

qualitative)

models based on

mathematical

functions

neural networks supervised learning networks (perceptron, radial basis

function network, etc.)

parametric or semi-parametric

models

linear regression, ANOVA, MANOVA, ANCOVA,

MANCOVA, general linear model (GLM), PLS

regression (continuous dependent variable)

Fisher’s discriminant analysis, logistic regression,

PLS logistic regression (qualitative dependent

variable)

log-linear model (dependent

variable¼ counting¼ number of individuals have a

given combination of categories of qualitative

variables)

generalized linear model (GLM), generalized additive

model (GAM) (dependent variable continuous,

discrete, counting or qualitative)

prediction without

model

probabilistic analysis k nearest neighbours
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Table 6.2 Predictive methods.

Independent !
# Dependent

1 quantitative

(covariable)

n quantitative

(covariables)

1 qualitative (factor) n qualitative (factors) Combination

1 quantitative simple linear

regression, spline

regression, robust

regression, decision

trees, MARS, SVR

(support vector

regression), k nearest

neighbours

multiple linear,

regression, spline

regression, robust

regression,� PLS

regression, decision

trees, MARS, neural

networks, SVR, k

nearest neighbours

ANOVA, decision

trees, MARS, SVR, k

nearest neighbours

ANOVA, decision

trees, MARS,

neural networks, SVR,

k-nearest neighbours

ANCOVA,

univariate GLM,

decision trees,

MARS, neural

networks, SVR, k

nearest neighbours

n quantitative

(representing
different

quantities)

multivariate

regression, PLS2

regression

multivariate

regression, PLS2

regression, neural

networks

MANOVA MANOVA, neural

networks

MANCOVA,

multivariate GLM,

neural networks

1 qualitative

nominal or binary

Fisher’s discriminant

analysis, logistic

regression,

regularized

generalized linear

models, decision

trees, MARS, SVM,

naive Bayesian

classifier, k nearest

neighbours

Fisher’s discriminant

analysis, logistic

regression, PLS

logistic regression,

regularized

generalized linear

models, decision trees,

MARS, neural

networks, SVM,

naive Bayesian

classifier, k nearest

neighbours

logistic regression,

DISQUAL

discriminant analysis,

regularized

generalized linear

models, decision trees,

MARS, SVM, naive

Bayesian classifier, k

nearest neighbours

logistic regression,

DISQUAL discriminant

analysis, regularized

generalized linear

models, decision trees,

MARS, neural

networks, SVM, naive

Bayesian classifier, k

nearest neighbours

logistic regression,

regularized

generalized linear

models, decision

trees, MARS, neural

networks, SVM,

naive Bayesian

classifier, k nearest

neighbours
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n qualitative

nominal or binary

(representing

different

characteristics)

decision trees,

vector generalized

linear model,

vector generalized

additive model

decision trees, vector

generalized linear

model, vector

generalized additive

model, neural

networks

decision trees, vector

generalized linear

model, vector

generalized additive

model

decision trees, vector

generalized linear

model, vector

generalized

additive model, neural

networks

decision trees, vector

generalized linear

model, vector

generalized additive

model, neural

networks

1 quantitative
asymmetrical

gamma and

log-normal

regressions

gamma and log-

normal regressions

gamma and log-

normal regressions

gamma and

log-normal regressions

gamma and log-

normal regressions

1 discrete

(counting)

Poisson regression,

log-linear model

Poisson regression,

log-linear model

Poisson regression,

log-linear model

Poisson regression,

log-linear model

Poisson regression,

log-linear model

1 qualitative

ordinal (at least
3 groups)

ordinal logistic

regression

ordinal logistic

regression

ordinal logistic

regression

ordinal logistic

regression

ordinal logistic

regression

n quantitative or
qualitative

(representing

repeated

measurements

of the same

characteristic)

generalized linear

models with

repeated measures

generalized linear

models with repeated

measures

generalized linear

models with repeated

measures

generalized linear

models with

repeated measures

generalized linear

models with

repeated measures

�LOESS, ridge, lasso, LARS, and other robust regressions.
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Table 6.3 Comparison of methods.

Method Absence of assumptions

concerning the problem

to be solved

Exhaustive processing

of databases

Heterogeneous or incomplete data

processed

Clustering

moving centres method

and its variants

no (fixed number of initial

clusters and centres)

yes numerical variables and variables

without missing values

hierarchical clustering yes, but the clusters at level

n are determined by those at

level n� 1

no (non-linear algorithm),

impossible to process more than

several thousand observations

yes (possible to process non-

numeric variables with an ad hoc

distance)

neural clustering

(Kohonen)

no (fixed number of clusters) yes the variables 2 [0,1] must be

transformed

clustering by

aggregation of

similarities

yes in principle yes, but depends on the

implementation

qualitative variables

Classification and prediction

decision trees as for hierarchical clustering

(a kind of ‘reverse tree’)

no (but does not reach the limit as

soon as hierarchical clustering)

some trees, such as CHAID, must

discretize continuous variables

neural networks

perceptrons

yes (but the number of hidden

neurons must be specified)

no (no learning on several hundred

variables)

the variables 2 [0,1] must be

transformed

radial basis function

networks

as for perceptrons yes the variables 2 [0,1] must be

transformed

discriminant analysis no (assumptions on the

conditional distributions

Xi/Y)

yes numerical variables and variables

without missing values
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discriminant analysis

on factorial coordinates

of MCA (DISQUAL

method)

yes (assumptions on

conditional distributions

Xi/Y can generally be

dispensed with)

yes yes (missing values are treated as

entirely separate values)

linear regression no (linearity in x of

E(Y|X¼x) þ assumptions on

the residuals)

yes numerical variables and variables

without missing values

logistic regression,

generalized linear

model

no (linearity in x of

g(E(Y|X¼x)) þ non-

complete separation (see

Section 11.8.7))

yes (provided that a sufficiently

powerful machine is used, if the

number of observations is very

large)

yes (continuous variables with

missing values are divided into

classes)

Associations

search for association

rules

yes depends on the parameter settings yes

similar sequences yes yes (same remarks apply) yes
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As for the descriptive methods of clustering, these are detailed in a summary table at the

end of Chapter 9.

6.2 Comparison of the methods

Table 6.3 summarizes the advantages and disadvantages of the various data miningmethods in

relation to these three essential qualities that are expected:

. the absence of restrictive assumptions concerning the problem to be solved;

. the capacity of treating the data exhaustively within a reasonable period in all cases;

. the possibility of handling incomplete and heterogeneous data which may or may

not be numerical (in the case of independent variables for the classification and

prediction methods).
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7

Factor analysis

In multivariate analysis, the factor methods described in this chapter are much appreciated by

statisticians, who use them as a way of representing the individuals of a population in two or

three dimensions as faithfully as possible, while also detecting the links between the variables

as well as the variables which separate the individuals most clearly. These methods are based

on linear algebra, and also on a tool which is very useful for clustering and pattern recognition:

the human eye. A simple glance is enough to locate large clusters of individuals, detect

exceptional individuals and find any isolated groups of individuals. Thus factor analysis is also

a powerful resource for reducing the dimensions of a problem, decreasing the number of

variables to be studied while losing as little information as possible. In some cases, it is very

useful as a preliminary process before using certain algorithms, such as neural networks,

which are sensitive to the number of input variables; it may also be useful before clustering.

Transformation of qualitative variables into continuous variables by multiple correspondence

analysis is quite widely used, especially in discriminant analysis on qualitative variables

(DISQUAL). Finally, principal component analysis with rotation can be used to create groups

of variables based on their correlations, and is the foundation for an effective variable

clustering algorithm (VARCLUS).

7.1 Principal component analysis

7.1.1 Introduction

When the p variables describing the n individuals of a population are all numerical, each

individual can be represented by a point in a p-dimensional spaceRp. The set of individuals is

a ‘cloud of points’. When p� 2, the distances between individuals can be seen clearly by

simple observation of the cloud; this observation becomes more difficult when p¼ 3, and is

impossible when p> 3. Evidently, it would be desirable to reduce the spaceRp toR2 orR3 –

we speak of the projection of the variables of Rp on to R2 or R3. The problem is that the

choice of two or three variables, such as age, wages, or length of service, is intrinsically
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arbitrary, and may result in a considerable loss of information from the data, since there is no

way of knowing in advance whether these are the most discriminating variables. At one

extreme, if all the individuals in a study have the same age, the same wages and the same

length of service, the projection in these three axes will shrink to a point, even if some

individuals may be very different in other respects. The projection of the cloud of individuals

from the initial p-dimensional space into a space with fewer dimensions automatically

decreases the distances between individuals: clearly, we must try to decrease these distances

as little as possible, if we want to distinguish between the individuals and understand what

they have in common and what separates them.

Principal component analysis (PCA), which will be examined in this section, is a method

for projecting the cloud of individuals on to subspaces with fewer dimensions while

maintaining the distances between individuals as much as possible. We begin by systemati-

cally centring all the variables, by subtracting their means, so that we areworking on variables

with a zero mean. This simplifies the calculation and geometrical representations, because

the centre of gravity of the cloud of individuals then coincides with the origin 0 of the axes

and subspaces.

The determination of these subspaces is carried out for each axis in turn. Each individual xi
has a weight pi. This weight is generally pi¼ 1/n for every i, but different weights can be given

to individuals belonging to different sub-populations. The sum of squares of the distances

of the individuals xi from their centre of gravity, multiplied by their weight pi, is called the

total inertia:

I ¼
Xn
i¼1

pidð0; xiÞ2:

We can say that the aim of PCA is to find the axis for which the inertia projected on this

axis is maximized. The inertia projected on an axis is, by definition, the sum of squares of the

coordinates vi of the individuals on the axis, these squares being weighted by pi. In other

words, we look for the axis for which the sumX
i

pivi

reaches a maximum and is thus as close as possible to I. This is equivalent to minimizing the

difference between each individual and its projection, in other words providing maximum

elongation of the projection of the cloud of individuals on the axis. Having done this, we look

for a second axis which, out of all the axes orthogonal (i.e. perpendicular and therefore not

correlated) to the first axis, will be the one which maximizes the inertia projected on it. This

inertia projected on the second axis is, by construction, less than that projected on the first axis.

A number of factor axes can thus be determined in succession with decreasing projected

inertias. Because of their orthogonality, the total inertia of the cloud of individuals is broken

down into the sum of inertias projected on each axis.

As we have seen, the concept of distance is used here. In the space of the individuals, the

simplest distance is the Euclidean distance, according towhich the distance of two individuals

x¼ (x1, x2, . . ., xp) and y¼ (y1, y2, . . ., yp) is:

dðx; yÞ ¼ ðx1�y1Þ2 þðx2�y2Þ2 þ . . . þðxp�ypÞ2:
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This distance is very useful in the physical world, but less so in theworld of economics and

social sciences, where the data x1, x2, . . ., xp to be manipulated may be as unlike and non-

comparable as age, income, turnover, number of children, etc.

In practice, the ‘inverse of variances’ is practically always used as the distance. It is

defined thus:

dðx; yÞ ¼ ððx1�y1Þ=s1Þ2 þððx2�y2Þ=s2Þ2 þ . . . þððxp�ypÞ=spÞ2;

where each si is the standard deviation of the ith variable. With this new distance, which is a

way of reducing the variables (dividing them by their standard deviation), the distance

between two individuals no longer depends on the unit of measurement, and the more

dispersed variables are not favoured. Even if the units of measurement are not the same for all

variables, the ‘inverse of variances’ distance brings them all to the same level. We speak of

normalized PCA as opposed to non-normalized PCA, in which the variables are centred but

not reduced. In my discussion of this topic I will assume that we are dealing with this ‘inverse

of variances’ distance, but will occasionally point out certain special features which arise from

the use of simple Euclidean distance.

Before examining the cloud of variables, let us recall that the covariance cov(X,Y) of two

numeric variables X and Y is an indicator of their simultaneous variation, which is positive if Y

increases whenever X increases, and is zero if X and Yare independent, although the opposite

is false (it is possible to have dependence and zero covariance) as for the linear correlation

coefficient. If the standard deviations of the variables X and Y are denoted sX and sY, their
means are denoted mX and mY, their values are denoted (xi)i and (yi)i, and their linear correlation
coefficient is rXY, then the covariance is

covðX; YÞ ¼ 1

n

Xn
i¼1

ðxi�mXÞðyi�mYÞ;

and we find that

covðX; YÞ ¼ sX � sY � rXY : ð7:1Þ

If we use sij as a simpler notation for the covariance of Xi and Xj, the covariance matrix

(also called the variance–covariance matrix) is given by

Mcov ¼
s21 s12 . . . s1n
. . . s22 . . . s2n
. . . . . . . . . . . .
sn1 sn2 . . . s2n

0
BB@

1
CCA:

This is a matrix in which the diagonal terms are the variances of the variables, and

in which the trace, i.e. the sum of the diagonal terms, is the sum of the variances of

the variables. This matrix is also positive, semi-definite and symmetric, meaning that it

is diagonalizable with orthogonal eigenvectors and eigenvalues, all non-negative. By

changing the variables, therefore, it is possible to find a base in which the non-diagonal

terms are all zero.
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When the variables are reduced, formula (7.1) shows that the covariance matrix

becomes

Mcorr ¼
1 r12 . . . r1n
. . . 1 . . . r2n
. . . . . . . . . . . .
rn1 rn2 . . . 1

0
BB@

1
CCA;

which is the matrix of the linear correlation coefficients (rXY) and is therefore called the

correlation matrix. Its trace is equal to the number p of variables.

In the variable space, the norm ||V|| of a variable V (its ‘length’) is equal to its standard

deviation, and is therefore 1 when V is reduced. The scalar product of two centred variables is

equal to their covariance cov(X,Y), and the cosine of their angle is equal to their scalar product

divided by the product of their norms; in other words, it is equal to their linear correlation

coefficient rXY¼ cov(X,Y)/sX�sY.
More particularly, since it is generally assumed that ||V||¼ 1, the coordinate of the

projection of a variable on an axis is equal to its linear correlation coefficient with this axis

(norm of the variable multiplied by its cosine with the axis).

Given this definition of the norm of a variable, we can see that the total inertia of the cloud

of variables, which is the sum of squares of the norms of the variables, i.e. the sum of their

variances, is equal to the total inertia of the cloud of individuals defined previously, assuming

that pi¼ 1/n. This inertia is equal to the number of variables in normalized PCA.

In the cloud of variables, we aim to maximize the projected inertia, as for the cloud of

individuals. However, in this case we are not looking for the direction of maximum

elongation of the cloud, since all the variables have the same norm of 1 and are therefore

on a hypersphere with radius 1. The aim is to maximize the sum of squares of the coordinates

of the projections of the variables on an axis, in other words to maximize the sums of the

squared cosines of the angles formed by the axis with the variables. This is equivalent to

maximizing the sum of squares of the correlation coefficients of the variables and the axis

which we are seeking, where this axis gives the direction of maximum inertia. The axis

having this property is called the factor axis. In PCA, we determine a first factor axis in this

way, then a second factor axis which is the one out of all the axes orthogonal to the first that

has the maximum inertia projected on it. This inertia projected on the second axis is, by

construction, less than that projected on the first axis. A number of factor axes can thus be

determined in succession with decreasing projected inertias. Because of their orthogonality,

the total inertia of the cloud of variables is broken down into the sum of inertias projected on

each axis. This total inertia is equal to the sum of the variances of the variables, and therefore

to the trace of the covariance matrix (equal to the correlation matrix in normalized PCA).

The sum of the projected inertias is expressed as the trace of amatrix because of theway in

which the inertias are found, as the eigenvalues of the covariance matrix (for non-normalized

PCA) or the correlation matrix (for normalized PCA). As for the factor axes, these are the

eigenvectors of the matrix in question. Thus the diagonalization of the matrix enables us to

find the axes and their inertia, bearing in mind that, in practice, it is usually the correlation

matrix that is diagonalized.

A subspace generated by two factor axes is a factorial plane (or factorial plot).
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The objective of PCA can be expressed in the form of dual conditions on the variables and

the individuals (‘dual’ because they originate from the same data table showing ‘individuals

� variables’). The aim is to find the axis which:

. in the cloud of variables, maximizes the squares of the correlation coefficients of

the variables with this axis (which defines a variable C because we are in the

variable space):

X
i

rðXi;CÞ2 ¼ l;

. in the cloud of individuals, maximizes the weighted squares of the coordinates of the

individuals on this axis: X
i

pivi
2 ¼ l; ð7:2Þ

bearing in mind that, generally, all the individuals xi have the same weight pi¼ 1/n,

and (7.2) can be written more simply as

1

n

X
i

vi
2 ¼ l: ð7:3Þ

The left-hand term of equation (7.3) is the variance of c, where c is the variable defined

by the axis, in other words the variable which, for each individual, associates its projection on

the axis.

The aim is therefore to find the variable, the linear combination of the variables analysed,

which is both most closely correlated with the set of variables analysed and has the

maximum variance, these two conditions being equivalent and based on a projected inertia

l� 0, the same in the cloud of variables and the cloud of individuals. This variable c, called

the principal component, is a linear combination of the centred and reduced analysed

variables, and it can be shown (see Escofier and Pag�es, Analyses factorielles simples et

multiples, Section 5.4.1) that the coefficients of this linear combination are equal to 1=
ffiffiffi
l

p
times the coordinates of the variables on the factor axis, in other words their linear

correlation with the axis.

This last point can be explained as follows. In the variable space, the projection of the p

variables on the jth factor axis defines a numerical value xjm for each of the p variables: these

values form what is called the jth factor Fj and correspond to a point (xj1, . . ., xjp) in the

individual space. We can show that this point is located in Rp on the jth factor axis uj of the

cloud of individuals, and we have

uj ¼ 1ffiffiffiffi
lj

p Fj: ð7:4Þ

Finally, the above set of inertias l corresponding to each factor axes is added up, giving the
total inertia, which as we have seen is the same in the cloud of variables and the cloud of

individuals. In both clouds, we have the same total inertia and the same inertia projected on
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each factor axis, this inertia decreasing with the rank of the axis, as can be seen in the example

in Figure 7.1, which also shows that the sum of the eigenvalues is 8, which is the number of

variables (we shall return to this example in the following pages).

Figure 7.1 is one of the tables provided by the PRINCOMP procedure, the PCA procedure

of the SAS package, which has the following basic syntax:

PROC PRINCOMP DATA=sasuser.case_study OUT=individuals OUTSTAT=stat;

VAR age seniority income nbproducts nbpurchases nbpoints changeconsum

usecredit;

WEIGHT weight;

RUN;

Note that the correlation matrix (normalized PCA) is used by default, and if wewish to use

the covariance matrix (for non-normalized PCA) we must include the COVoption on the first

line. The variable following the keywordWEIGHTallows us to specify a weight other than 1/

n for an individual. This weight must be non-negative and can be zero for an individual who is

to be represented in the cloud but not taken into account in the calculations: such an individual

is called illustrative or supplementary.

A parameter N¼ p can be added on the first line to calculate only the first p factor axes.

The OUTSTAT data set contains a column for each variable analysed, and one or more

rows for each type of statistic (the type is indicated by the variable _TYPE_): i.e. mean of

variables, standard deviation, correlation coefficients and eigenvalues, and a row (with

_TYPE_¼ SCORE) for each factor axis requested, containing not the coordinate of each

variable on the factor axis, but the coefficient of each variable in the expression of the principal

component as a linear combination of the initial centred and reduced variables. According to

the above formula (7.4), this coefficient has to be multiplied by the square root of the

eigenvalue to give the coordinate of each variable on the factor axis, in other words its

correlation coefficient with the axis.

Thus we cannot directly trace the cloud of variables by a graphic procedure (PLOT or

GPLOT) applied to the observations PRIN1, PRIN2. . . in the OUTSTAT data set (where each

observation PRINx contains the coefficients ai of the different variables Vi in the expression

Eigenvalues of the Correlation Matrix

CumulativeProportionDifferenceEigenvalue

0.33700.33701.212860112.69628418

0.52250.18540.544757891.48342407

0.63980.11730.007856580.93866619

0.75610.11640.261029630.93080961

0.83990.08370.100796350.66977998

0.91100.07110.178826980.56898363

0.95980.04880.068260970.39015665

1.00000.04020.32189568

1

2

3

4

5

6

7

8

Figure 7.1 Eigenvalues of the correlation matrix.
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PRINx¼PiaiVi). We must first multiply each ai by the square root of the eigenvalue of

PRINx, or use a macro such as the %ACP macro of INSEE (see the following section) which

carries out this operation automatically.

As for the OUT data set, this is used to trace the cloud of individuals directly (the GPLOT

procedure is preferable because of its higher resolution), as it contains one observation for

each individual, as well as the DATA input data set, with the same number of variables plus a

variable for each factor axis, which contains the coordinate of the individual on this axis. An

example of a cloud is shown in Figure 7.8.

7.1.2 Representation of variables

The cloud of variables is analysedmore often than the cloud of individuals because, especially

when the individuals are numerous (more than a few hundred), the projections of the

individuals on the factor axes and their contributions are not usually of interest. In

the individual space the distances between points are important, whereas in the variable

space the angles between the variables are most significant. This is due to the property

mentioned above, namely that the cosine of the angle between two centred and reduced

variables is equal to their linear correlation coefficient, and that a search for two positively

correlated variables is equivalent to a search for two variables at an acute angle.

The quality of representation of a variable X on a factor axis is the square of its cosine with

this axis, this definition being based on its relationship with the correlation coefficient. The

sum of the qualities of representation on the set of factor axes is 1:

X
i

rðXi;CÞ2 ¼ 1: ð7:5Þ

This equality is due to the fact that ||X||¼ 1 and {Ci}i is an orthonormal basis.

The quality of representation of a variable on a factor plane (Ci, Cj) is the sum of the

squares of the cosines of the variable with the axes Ci and Cj. This quality varies between 0

(if the variable is entirely uncorrelated with Ci and Cj) and 1 (if the variable belongs to the

factor plane and is independent of the other Ck). In the variable space, the intersection

of the unit sphere, which contains all the variables (which are assumed to be reduced and

therefore with a norm of 1), with the plane (Ci, Cj) is called the circle of correlation. It

therefore follows that:

. the variable is perfectly represented on the plane (quality¼ 1) if and only if its

projection is on the circle of correlation;

. the quality of representation of the variable is strictly between 0 and 1 if and only if its

projection is within the circle of correlation;

. the variable is not represented on the plane at all (quality¼ 0) if and only if its projection

is in the centre of the plane and of the circle of correlation.

In PCA, the choice of the first two factor axes is that in which the projection of the

variables is as close as possible to the circle of correlation.

Two variables which are close together on the factor plane may actually be poorly

correlated if they are distant from the circle of correlations and close to the centre of the plane.
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Consider, for example, the projections of the two poles of a sphere on the plane passing

through the equator: the projections meet in the centre, although the poles are diametrically

opposed. On the other hand, if two variables are both close to each other and close to the circle

of correlation, their correlation coefficient is close to 1. If they are diametrically opposed on

the circle of correlation, their correlation coefficient is close to �1.

Note that, unfortunately, the SAS PRINCOMP procedure does not display the quality of

representation of the variables, although this is done in SPAD or IBM SPSS Statistics. The

FACTOR procedure in IBM SPSS Statistics displays the quality of representation corre-

sponding to the number k of axes selected (i.e. the sum of the first k squared cosines). To

perform the same calculation with SAS, we must write a macro to supplement the

PRINCOMP procedure; some specialists, particularly at INSEE, have already done this.

Figure 7.2 shows the output from the PCAmacro developed at INSEE (available for download

from www.insee.fr). This shows, for each of the first k axes selected:

. the coordinate COORD of each active variable on the axis;

. the contribution CTR of the variable to the axis, i.e. (see below) COORD2 divided by the

eigenvalue of the axis, expressed as a percentage;

. the rank RCTR of the variable, the variables being classified by decreasing contribution;

. the quality CO2 of representation of the variable on the axis, i.e. COORD2, expressed as

a percentage;

. the sum QLT of the qualities of the variable on this axis and on all the preceding axes.

Thus, overall, we have:

. the contribution CONTR of the variable to the total inertia of the cloud of variables;

. the weight WEIGHT of the variable in the cloud.

Variables actives _ AXE1 _ _ AXE2 _ 

Ident. CONTR POIDS COORD CTR RCTR CO2 QLT COORD CTR RCTR CO2 QLT

age 60.6 60.3 1 40.6 0.78 0.3 0.3 7 0.1 0.06 12.50 12.50 

seniority 63.5 54.5 2 36.7 0.74 9.0 9.0 6 3.3 0.30 12.50 12.50 

income 53.9 1.0 7 0.6 0.10 52.9 52.9 4 19.6 0.73 12.50 12.50 

nbproducts 66.1 0.0 8 0.0 0.00 66.1 66.1 1 24.5 0.81 12.50 12.50 

nbpurchases 66.4 1.3 5 0.9 -0.11 65.1 65.1 2 24.1 0.81 12.50 12.50 

nbpoints 67.1 5.5 4 3.7 -0.23 61.7 61.7 3 22.9 0.79 12.50 12.50 

changeconsum 25.0 24.8 3 16.7 -0.50 0.2 0.2 8 0.1 0.05 12.50 12.50 

usecredit 15.3 1.1 6 0.7 -0.10 14.2 14.2 5 5.3 0.38 12.50 12.50 

Figure 7.2 Interpreting the INSEE PCA macro.
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The best way to interpret the factor axes is to observe their correlations with the variables

analysed. So nowwe change our point of view. Instead of fixing a variable, we fix a factor axis

Ck and calculate the sum of squares of the linear correlation coefficients,

Xp
j¼i

rðXj;CkÞ2;

where {Xj}j is the set of analysed variables. By the definition of the projected inertia, this

sum is equal to the eigenvalue lk of Ck. We say that rðXj;CkÞ2=lk is the contribution of Xj

to the axis Ck. It is also, according to equation (7.4) above, the square of the centred

and reduced coefficient of Xj in the expression of Ck as the linear combination of the Xj.

Since the sum of contributions of the p variables Xj to the axis is equal to 1, the mean

contribution of a variable is 1/p and a contribution of more than 1/p is considered to

be important.

Figure 7.3, calculated by the SAS PRINCOMP procedure, provides an example of the

coefficients of the principal components as linear combinations of the centred and reduced

analysed variables. It therefore contains the quantities rðXj;CkÞ=
ffiffiffiffiffi
lk

p
. If, for example, we

require the correlation coefficients of the first axis with the variables analysed, in other words

the coordinates of these variables on the axis, then we must multiply all the terms in the Prin1

column by
ffiffiffiffiffi
l1

p
. The first principal component is written:

ð0:035722*agecentred-reducedÞþ ð0:182484*senioritycentred-reducedÞþ . . .

The sum of squares of each column is 1, because it is the sum of contributions of the

variables to the corresponding axis. Equation (7.5) shows that the sum of squares of a row is 1.

We can also see that the scalar product of two columns is 0, corresponding to the value 0 of the

correlation coefficient of two different axes.

The FACTOR procedure in IBM SPSS Statistics does not display this table, but displays

two others. The first of these, called the ‘component matrix’, contains the coordinates

rðXj;CkÞ of the variables on the factor axes (Figure 7.4). The second table, called the ‘matrix

of the coefficients of the coordinates of the components’, contains, oddly enough, the

Eigenvectors

Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8

age age 0.035722 0.637571 0.258608 0.314857 0.332034 -.485766 0.260887 0.109258

seniority client seniority 0.182484 0.605982 0.187981 0.057860 -.389761 0.622209 -.049299 -.138971

income client income 0.443030 0.080052 -.040509 -.273237 0.651810 0.117833 -.318435 -.425293

nbproducts nb of products 0.495244 0.001202 0.117938 0.022297 -.306377 -.337970 -.616976 0.389326

nbpurchases nb of purchases 0.491426 -.093575 0.003426 -.304492 0.130701 0.220890 0.542087 0.545237

nbpoints nb of points 0.478177 -.191761 0.030312 0.110554 -.381114 -.308847 0.389827 -.573440

changeconsum change in 
consumption

0.029868 -.408820 0.770733 0.384360 0.184274 0.234905 -.032310 0.005507

usecredit use of credit 0.229862 -.084950 -.535980 0.754779 0.151093 0.222308 -.024057 0.100762

Figure 7.3 Coefficients of the principal components.
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quantities rðXj;CkÞ=lk (without the square root of the eigenvalue!), which have no

obvious use.

Figure 7.5 shows the factor plane for the above data, plotted with the GPLOT procedure of

SAS/GRAPH, the circle being constructed according to the instructions in an ANNOTATE

table used by the GPLOT procedure, as in the example described in Section 1.3.4 of my book

Étude de cas en statistique d�ecisionnelle.1 The result is satisfactory, but not very easy to

obtain. It is fairly similar to the output of the FactoMineR package in R.

A more elegant result can be obtained using a rather more concise syntax, which uses

GTL, a new language that appeared with SAS 9.1.3. An application of GTL to a multiple

correspondence analysis graph is described in Section 12.7.

We can also construct a graph (not quite as pleasing to look at, but still better than a simple

output from the PLOT procedure) by using the%PLOTACPmacro developed by INSEE, if we

have used the %ACP macro beforehand. For an example of application, see Section 1.7 of

Étude de cas en statistique d�ecisionnelle.
We can also use the SAS %PLOTIT macro (see Section 7.3.2) after the PRINCOMP

procedure, specifying the name DATA of the data set containing the coordinates PRIN1 and

PRIN2 of the variables on the two factor axes, the label LABELVAR of the points (identical to

the name of the variables in this case), the plotting of the horizontal axis 0 and vertical axis 0,

the frame colour, COLOR, and the internal graph colour, COLORS. The result is shown in

Figure 7.6.

%PLOTIT(DATA=sortie, plotvars=prin2 prin1, labelvar=_name_, href=0,

vref=0, color=black, colors=black)

Wefind that all the variables are on the same side of the first factor axis: this is because they

are all positively correlated with each other. This is what is called the size effect (or size

Component matrixa

Component

1 2 3 4 5 6 7 8

age .059 .777 .251 .304 .272 �.366 .163 .062

seniority .300 .738 .182 .056 �.319 .469 �.031 �.079

income .727 .097 �.039 �.264 .533 .089 �.199 �.241

nbproducts .813 .001 .114 .022 �.251 �.255 �.385 .221

nbpurchases .807 �.114 .003 �.294 .107 .167 .339 .309

nbpoints .785 �.234 .029 .107 �.312 �.233 .243 �.325

changeconsum .049 �.498 .747 .371 .151 .177 �.020 .003

usecredit .377 �.103 �.519 .728 .124 .168 �.015 .057

Extraction method: Principal component analysis.
a8 components extracted.

Figure 7.4 Coordinates of the variables on the axes.

1 Tuff�ery, S. (2009) Étude de Cas en Statistique D�ecisionnelle. Paris: Technip.
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factor), a reference to the size that has an effect on a whole set of measurements, such that

some individuals have high values for the set of variables while others have low values for the

set of variables. In this case, the first axis is seen as a factor summarizing the strength of an

underlying factor based on a number of different measurements. It is then useful to examine

the plane intersecting the second and third factor axes.

7.1.3 Representation of individuals

Usually, when the cloud of individuals is represented, we are interested less in the individuals

in isolation than as a set. The only relatively common exception relates to the individuals

which, because of their abnormally high contribution to the factor axes, may be ‘outliers’, or

extremes, which we may prefer to omit from the analysis to avoid falsifying the results.

For a more precise concept of the contribution of an individual to an axis, let us recall that,

by definition of the projected inertia (see the start of this section), if pi denotes the weight of

the individual i and vik is the individual’s coordinate on the kth axis (with an inertia lk), then

Xn
i¼1

piv
2
ik ¼ lk:

coord2

-1.0

-0.5

0.0

0.5

1.0

coord1

1.00.50.0-0.5-1.0

age seniority

income
nb products

nb purchases

nb points

change in consumption

use of credit

Figure 7.5 Representation of the variables.
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By analogy with the previously introduced concept of the contribution of a variable to the

kth axis, we can then define the contribution of the individual i to the kth axis by

piv
2
ik

lk
;

in such a way that the sum of the n contributions is 1. A contribution that exceeds theweight pi
of the individual is considered to be important, while a contribution exceeding 0.25 is

dangerously high for the stability of the PCA. If this case arises, the WEIGHT instruction of

the SAS PRINCOMP procedure (see the example of syntax above) can be used to assign a

weight of 0 to this individual (and aweight of 1 to the others) to transform it into an illustrative

(or supplementary) individual, which is not used in the analyses but whose factor coordinates

are calculated so that it can be represented.

If we look at the two clouds of points (individuals and variables) simultaneously, we will

see that an individual is on the side of the variables for which it has high values and is on the

opposite side from the variables for which it has low values. The values increase with the

distance of the individual from the origin (the centre of the cloud); if the individual has mean

values for all variables, it is at the origin. However, do not be led astray by the superimposition

of the two clouds of points, which are located in different spaces which have different

distances: they are not directly comparable. Furthermore, the cloud of variables is contained in

a hypersphere with radius 1, but the cloud of individuals is not.

1.0

0.5

0.0

-0.5

1.00.50.0

Pr
in
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Prin1

age
seniority

income

nbproducts

usecredit nbpurchases
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changeconsum

Figure 7.6 Representation of variables with the PLOTIT macro.
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7.1.4 Use of PCA

Although there are software packages offering user-friendly and relatively simple PCA

procedures, there are still some pitfalls to avoid when interpreting PCA. Some of the ones I

have encountered are as follows:

. The individual space and the variable space must not be superimposed.

. In a factor plane, the proximity of two variables does not mean anything unless they are

near the circle of correlation.

. The first factor plane (intersection of the first two factor axes) is not the only one that

offers useful information; it is also profitable to intersect the first and third axes, or the

second and third axes, and so on.

. Avoid letting an individual (or a small group of individuals) have too great a

contribution to the first axes; in theworst case, an axis may be almost entirely accounted

for by a single individual.

Having said this, the representation of the variables in a factor plane is the most intuitive

and most practical method of identifying which variables are interrelated or opposed to each

other; it is far more satisfactory than the correlation matrix. PCA, in the form using rotation

(Section 7.2.1), is also the essential ingredient of one of the best methods of variable

clustering, used in the SAS VARCLUS procedure (see Section 9.14).

PCA can also be used to represent on the factor plane variables which were not used in

the construction of the axes. Just as some individuals are defined as illustrative (see above)

when they are to be excluded from the construction of the axes because they are suspected

of being the result of measurement errors or because they contribute too strongly to an

axis, some continuous variables may be defined as supplementary or illustrative, in contrast to

the active variables.

Supplementary variables may be, for example, variables that are to be related to the active

variables but not to each other, or variables that are to be accounted for by the active variables,

or possibly variables that are to be used to reinforce the interpretation of the axeswithout using

the variables that were used to determine the axes.

Unfortunately, the SAS PRINCOMP procedure is rather outdated, and cannot generate

supplementary variables, unlike itsmost recent competitor, theCORRESPprocedure formultiple

correspondence analysis (see below). However, we can position supplementary variables on the

circle of correlation, making use of the fact that the coordinates of these variables on the axes are

their correlation coefficients with the axes. SASmacros have been developed in various places to

compensate for these deficiencies (and the small number of printed outputs) of the PRINCOMP

procedure; once again, the INSEE ACP macro is useful here (see above).

Users of R have access to the FactoMineR package (Figure 7.7), described in Chapter 5 on

software.This includesall the requisite functionality, even if thegraphsare lacking in readability

when the number of variables is large (the SAS GTL language is better for these cases).

Another advantage of PCA is that its graphic representation can be used to check the

outcome of a clustering procedure (see Chapter 9) carried out either independently or based on

the principal components. This representation enables us to:

. check the relevance of the clustering visually (the human eye is a very efficient

instrument for detecting clusters);
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. choose the most appropriate number of clusters where necessary;

. easily isolate certain individuals if their data appear to be extreme, possibly due to a

measurement or input error;

. select the most typical individuals in a cluster, or conversely those which are similar to

an adjacent cluster towards which they may develop, this being of interest to a

commercial business if the second cluster is a more profitable customer segment.

Figure 7.7 PCA with FactoMineR.
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This is done by ‘colouring’ (or representing by different symbols) the points in a cloud of

individuals according to the clusters they belong to (Figure 7.8). Suppose that this cluster is

contained in the variable CLUSTER, and that PRIN1 and PRIN2 are the first two principal

components. In SAS, we can write:

SYMBOL1 V=CIRCLE C=BLACK;

SYMBOL2 V=TRIANGLE C=BLACK;

SYMBOL3 V=SQUARE C=BLACK;

PROC GPLOT;

PLOT PRIN2*PRIN1=CLUSTER;

RUN;

QUIT;

7.1.5 Choosing the number of factor axes

The inertia projected on a factor axis, in other words its eigenvalue, corresponds to the share of

information carried by this axis. According to the statistical principle of parsimony, wewish to

‘summarize’ the information as neatly as possible, or in other words to find a minimum

Figure 7.8 Representation of PCA-based clustering.
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number of axes which provide the maximum information, given that the first two axes are not

always enough, especially if there are many variables.

To determine how many axes to use, we often make use of the Kaiser criterion: for the

centred and reduced data (when the correlation matrix is used) we retain the axes correspond-

ing to eigenvalues greater than 1. The explanation of this criterion is that we retain the axes

whose variance, in other words their eigenvalue, is greater than that of the variables analysed,

equal to 1 in this case.

The most widely used criterion is that of the percentage of total inertia explained. Since

the axes are ordered by decreasing eigenvalues li, we start with eigenvalues greater than or

equal to 1 (there must always be some of these), followed by eigenvalues less than 1. If we

simply apply the Kaiser criterion, wewill only retain the first of these. However, we should be

careful when applying this criterion: in some biometric studies, owing to a very large size

factor, the second and subsequent eigenvalues are very small, but the first axis is not the only

one that is of interest.

Whatever the method used (correlation matrix or covariance matrix), we can represent the

values l1, l2, . . . on a diagram and attempt to find the existence of a bend there, as seen in the

third value in Figure 7.9, where we only retain the first two eigenvalues (those located before

the bend). This test is stated in analytical terms as Cattell’s scree test: the existence of a bend

(at the ith eigenvalue) corresponds to the vanishing (at the (i þ 1)th eigenvalue) of the second

derivative of the function f(k)¼ kth eigenvalue, and we stop selecting new axes before this

second derivative vanishes. It is calculated as follows:

No. of axis k Eigenvalue lk First derivative f 0(k) Second derivative f 00(k)
1 l1 m1¼ l1� l2 m1� m2
2 l2 m2¼ l2 – l3 m2� m3
3 l3 m3¼ l3� l4 m3� m4
4 l4 m4¼ l4� l5 m4� m5
. . . . . . . . . . . .

Taking the example of Figure 7.1, we have:

No. of axis k Eigenvalue lk First derivative f 0(k) Second derivative f 00(k)
1 2.69628418 1.21286011 0.66810222

2 1.48342407 0.54475789 0.53690131

3 0.93866619 0.00785658 –0.25317305

4 0.93080961 0.26102963 . . .

. . . . . . . . . . . .

We find that the bend in the third eigenvalue appears in the form of an inflection point in the

fourth eigenvalue.

A third criterion requires the calculation of successive cumulative values l1/
P

ili,
(l1 þ l2)/

P
ili, (l1 þ l2 þ l3)/

P
ili, . . ., 1, to see what proportion of the sum of variancesP

ili (equal to the total inertia) is provided by the first axis, the first two axes, the first three,
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etc. If the first p axes provide a proportion of the total inertia that is considered satisfactory, we

stop at that point and do not select any further axes. For example, if the first two axes provide

80% of the total inertia, it is clear that the cloud of individuals is virtually flat, in a two-

dimensional subspace, and that a projection on the factor plane will be highly satisfactory.

This is more likely to happen as the correlations among the analysed variables increase, or in

other words if the correlation matrix has terms greater than 0.

When this criterion is used to determine the number of axes to be retained, we must be

careful, because the fact that 40% of the inertia is provided by the first axis does not have the

same meaning regardless of whether we are dealing with 10 or 50 variables (it is much more

significant in the second case).
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Figure 7.9 Choosing the number of factor axes.
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7.1.6 Summary

Principal component analysis is a data analysis method which enables us to start with p

analysed numeric variables and construct m (�p) other variables, called the principal

components or factors, which are linear combinations of the analysed variables, and which

have the following useful characteristics:

. The principal components are ordered according to the information they provide, the

first being the one which returns most information.

. We know the share of the information provided by each principal component, and there

are criteria for deciding how many principal components should be retained.

. The principal components are independent vectors, in other words variables not

linearly correlated with each other (so the PCA is not affected by the presence of

correlated data).

. There is a strict inequality m< p if there are linear relations between the

variables analysed.

. The principal components (or at least the first) are less subject to random fluctuations

than the variables analysed.

7.2 Variants of principal component analysis

7.2.1 PCA with rotation

The strength of PCA, which is that the maximum inertia is projected on the first axis, may

become a weakness when we wish to identify groups of variables. The factor plane clearly

shows the correlations between variables, but the variables all tend to be orientated in the

direction of the first axis (because of the ‘size’ effect, which opposes high values to low values

of the variables), some of them lie between a number of axes, and the natural groups of

variables are not always visible. One way of resolving this is to rotate the PCA axes to obtain

the best distribution of variables on the different axes, replacing the criterion of maximum

inertia provided on the first axis with another criterion which makes for easier interpretation.

This criterion depends on the method, but in any case the total inertia does not change after

rotation – only its breakdown changes.

Rotation may be orthogonal or oblique. In the first case, the factors are not correlated,

allowing easier interpretation. In the second case, the factors are no longer orthogonal, making

interpretation more difficult, but it has the advantage that the eigenvalues are stronger and the

correlation of the factors with the variables is stronger.

Themain oblique forms of PCA are oblimin and promax PCA; the second of these is faster

and is used for large volumes of data.

The main orthogonal forms of PCA are varimax, quartimax and equamax PCA, the last of

which is a compromise between the first two (while orthomax PCA is a generalization of the

first three). In quartimax PCA, all the variables have a high contribution to the same factor, and

each variable has a non-zero contribution to another factor and practically zero contributions

to all the other factors.
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The most widely used form of PCAwith rotation is varimax PCA. This is based on the

principle of maximizing, for each factor, not the sum of squares of the correlation

coefficients of this factor with the set of variables, but the variance of these correlation

coefficients, with the result that each factor is strongly correlated with some

variables and weakly correlated with the others. Thus some variables have a high

contribution to each axis, while the others have a very low contribution, and the axes

are easy to interpret.

Herv�e Abdi (www.utdallas.edu/�herve/Abdi-rotations-pretty.pdf) gives an example of

five wines, described in terms of acidity, sugar and alcohol content, matching with meat and

desserts, the hedonic dimension, and price. He shows (Figure 7.10) that varimax PCA

provides the best interpretation of the price and sugar axes.

Promax PCA is a hybrid method, consisting of a varimax rotation followed by an oblique

rotation such that the high and low factor coordinates of the variable space correspond to the

same variables, but with low values of coordinates which are even weaker.

These variants of PCA are provided in IBM SPSS Statistics and in the SAS/STAT

FACTOR procedure, which is more generally applicable but more complex and slower

than PRINCOMP which is used for ordinary PCA. Quartimax PCA also forms the basis of

the VARCLUS procedure in SAS/STAT, used for clustering numeric variables (see

Section 9.14). However, the forms of PCA with rotation preferred in English-speaking

countries are not included in the SPAD software which relates more to French-style

data processing.

7.2.2 PCA of ranks

If extreme values (outliers) or totally asymmetric distributions are present, the reduction of

variables provided by PCA may be insufficient to yield good results, and it may be helpful to

work on the ranks of the variables rather than on the variables themselves. This gives us a form

Figure 7.10 Example of VARIMAX rotation.
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of PCA on ranks (non-parametric PCA) which is more robust than ordinary PCA. In this

method, the Pearson correlation matrix is replaced with the Spearman rank correlation matrix.

In fact, Spearman’s correlation coefficient r is calculated in the same way as Pearson’s

coefficient, after replacing the values of the variables with their ranks (see Appendix A):

r ¼ covðrx; ryÞ
srx � sry

:

The interpretation of PCA on ranks is as simple as that of ordinary PCA. Two variables are

close on the factor plane if they classify the set of individuals in the sameway. Two individuals

are close if they have similar ranks for the set of variables.

7.2.3 PCA on qualitative variables

This form of PCA is used for qualitative variables or numeric variables with non-linear

relationships, and consists of a PCA applied to variables which have undergone an optimal

transformation into numeric variables. This method is described by Gifi (1990);2 it is

implemented in the CATPCA procedure (an update of PRINCALS) in IBM SPSS Statistics,

and in the SAS PRINQUAL procedure.

7.3 Correspondence analysis

7.3.1 Introduction

You will recall that the contingency table of two qualitative (or discretized) variables A and B,

with categories (ak)k and (bl)l, is the table (xij) in which the value xij is the number of

individuals x such that A(x)¼ ai and B(x)¼ bj.

The w2 test enables us to detect a dependence between the two variables. The frequencies

and the contribution to the w2 of each cell of the contingency table show the association between

the categories of the twovariables: a high frequency denotes a strong positive relationship, a low

frequency denotes a strong negative relationship, and an intermediate frequency denotes aweak

relationship. By examining this table we can obtain a good description of the relationships

between the two variables, but if there are numerous categories it is tiresome to have to inspect

all the cells. It would be even harder to read the table if thereweremore than two variables to be

cross-referenced.

Correspondence analysis (CA) or binary correspondence analysis overcomes this

problem by providing a two-dimensional view of contingency tables, thus:

. two positively related categories of A and B (high frequency) are close;

. two negatively related categories of A and B (low frequency) are opposed;

. the strongest oppositions are on the first axis (horizontal);

. the categories not related to others are in the centre.

2 Gifi, A. (1990) Nonlinear Multivariate Analysis. Chichester: John Wiley & Sons, Ltd.
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The idea behind CA is clearly attractive, which explains its popularity among data

analysts. I will not describe the theoretical principles of CA, since it can be considered as a

form of PCAwith a specific distance, namely the w2distance. This distance is used to compare

two categories of a single variable A by comparing their relative frequencies on the set of

categories of B, while complying with two properties:

. On the one hand, the distance of the two categories of A must be independent of their

total frequencies, which are independent of B and do not correspond to the desired aim.

. On the other hand, the distance of the categories of A, which is calculated on the basis of

their frequencies on each of the categories of B, must not be affected by the high-

frequency categories ofB; this is achieved by giving each category ofB aweight equal to

the inverse of the frequency of this category.

Thus two categories of a single variable are close if the two groups of individuals

which possess them also have the same characteristics (with respect to the other variables).

To see how the w2 distance is calculated, let us take an example (Figure 7.11) from

Section 1.3.2 of Lebart et al. (2006).3 The distance (hazel eyes; blue eyes) is equal to the

following sum:

1

18

3

16
� 3

36

� �2

þ 1

48

9

16
� 14

36

� �2

þ 1

12

2

16
� 3

36

� �2

þ 1

21

2

16
� 16

36

� �2

:

This formula,which enables us to evaluate the proximity of twocategories of a singlevariable, is

clearly inapplicable when there are two different variables. However, we may, as suggested

above, show the categories of A and B simultaneously in a graph, thus giving a meaning to the

distance of a category Ai of A and a category Bj of B. Without going into the rather complicated

details and the concept of axial expansion (see Lebart et al.), we can say that the idea is to

represent the categories of A, then position each category Bj of B as the centre of gravity of the

categories Ai, each Ai being weighted by the relative frequency of Ai, given Bj. In the example

above, the relative frequency of brown eyes, given that the hair colour is brown, is 20/48.

In the same way as in PCA, we diagonalize a matrix to find eigenvalues for which we

examine the proportion of the total inertia that they provide, and we obtain the appropriate

number of factor axes by observing the decrease in the eigenvalues. The total inertia,

3 Lebart, L., Morineau, A. and Piron, M. (2006) Statistique Exploratoire Multidimensionnelle: Visualisations et

Inf�erences en Fouille de Donn�ees, 4th edn. Paris: Dunod.

colour of hair mean

profile

dark brown red fair

colour of eyes

brown 11 20 4 1 37

hazel 3 9 2 2 16

green 1 5 2 3 11

blue 3 14 3 16 36

mean profile 18 48 12 21 100

Figure 7.11 Example of CA.
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measured by the w2 metric as the weighted mean of the squares of the distances of the

individuals from their centre of gravity, is here equal to w2 divided by the number of

individuals, which explains the name given to this measurement system. As in PCA, the total

inertia is the sum of the eigenvalues. It measures the scatter of the cloud of points and the

relation between the two variables. As in PCA, we must avoid interpreting the proximities of

categories on the factor plane before we are sure that this plane represents the categories

correctly, in other words that the squared cosines of the angles of the categories with the plane

are sufficiently close to 1. In this case, though, we do not speak of the ‘circle of correlation’,

since the variables are qualitative, not continuous. However, it is worth noting that we can

superimpose categories and individuals in a single plane here, which is not the case in PCA.

This is due to the fact that the point representing a category is actually the centre of gravity of

the individuals having this category. More precisely, its coordinate on an axis is the mean

of the coordinates on this axis of the individuals having this category, this mean being divided

by the square root of the eigenvalue of the axis. Thus two categories of different variables are

close if they tend to relate to the same individuals. We have the dual property: the coordinate

of an individual on an axis is the mean of the coordinates of the categories of the individual on

this axis, this mean being divided by the square root of the eigenvalue of the axis. I will show

later, when discussing MCA, that this property can be used profitably to calculate the

coordinates of an individual from the coordinates of its categories, found by analysing the Burt

table. This property can also be expressed as follows: an axis is the sum of the indicators of the

categories, divided by the number of variables and the root of the eigenvalue of the axis. In

particular, a factor axis is a linear combination of the indicators of the categories of the

variables analysed. This is also true ofMCA. Two individuals are close if they tend to have the

same categories for the set of variables.

In this factor plane, the centre is the mean profile for the two variables. A category Ai is

distant from the centre if the distribution of the categories of the other variable differs widely

between the set of individuals for which Ai is true and the set of all the individuals. Two

categories Ai and Aj of the same variable A are close if the other variable B has the same

restricted distribution atAi andAj. The proximity of two categoriesAi andBj of two variablesA

and B generally corresponds to an excess frequency of the intersection Ai�Bj.

The eigenvalues are all less than or equal to 1. If we have k eigenvalues equal to 1, the rows

and columns of the contingency table can be divided into k þ 1 groups and each group of rows

is associated with one group of columns only (and vice versa), so that the table (xij) is split into

k þ 1 blocks, and the cloud of points is split into k þ 1 groups. Each factor axis associated

with an eigenvalue of 1 is a perfect reflection of this association between groups I1 and I2 of

rows and groups J1 and J2 of columns (Ik being associated with Jk):

l1 0 l2 axis associated with l ¼ 1

j1 j2

Within each group (e.g. l1), the variables have exactly the same coordinate on the associated

factor axis.

If all the eigenvalues are equal (or close) to 1, each category ofA corresponds to a single (or

almost a single) category ofB. IfA andB are ordered and if these order structures are associated,

so that the table canbe reordered to forma tablewith ‘0’ throughout except in a strip surrounding

the diagonal, the first factor axis opposes the extremes to each other (scale factor), while the

second axis opposes the extremes and the means, and the cloud of points takes a parabolic form
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called a ‘horseshoe’ (the Guttman effect). More generally, the rank factor r is a polynomial

function of degree r of the first factor. If the Guttman effect is very pronounced (a very clear

parabola on the first factor plane), factors with a rank of 3 or greater will be disregarded. This

effect is particularly likely to occur in CA or MCA when the qualitative variables being

examined are the result of a clustering of initially continuous variables, and when these

continuous variables are related by a size effect (see Section 7.1 on PCA).

A classic example of this situation is one in which A and B are the educational

qualifications and the posts of a population of employees: the parabola opposes top executives

and postgraduate degrees, on the one hand, tomanual workers and non-graduates or thosewith

vocational qualifications on the other, while the base of the parabola corresponds to

intermediate technical and business diplomas and posts (middle management, engineers).

Brigitte Escofier and J�erôme Pag�es give a comprehensive discussion of this subject.4

7.3.2 Implementing CA with IBM SPSS Statistics

Since the SAS procedure used for CA, CORRESP, is the same as that used forMCAwhichwill

be examined below, I will simply mention it here and refer the reader to Section 7.4.3 for a

detailed example of implementation.

For the time being, I will concentrate on the CORRESPONDENCE procedure of IBM

SPSS Statistics, which is reserved for CA, and which provides similar results to those of the

SAS CORRESP procedure in this context.

For this purpose, wewill use a data set which is also used in the section onMCA. It relates

to visits to a department store by 582 customers, whose ages and the departments they visited

are known (it is assumed that there is only one department per customer).

As we shall see in Section 7.4.3, the SAS syntax for CA is as follows:

PROC CORRESP DATA=sasuser.survey OUT=output ALL ;

TABLES age , department ;

RUN ;

%PLOTIT(DATA=output, datatype=corresp, plotvars=Dim2 Dim1, symvar=_

type_, href=0, vref=0, tsize=0.5, color=black, colors=black)

Thisprovides anumberofoutputswhichwill be studied later, similar to theoutputs of IBMSPSS

Statistics reviewed below. Figure 7.12 has been produced by the %PLOTIT macro developed

and supplied by SAS for creating high resolution graphics, or more specifically clouds of points

labelled by the value of a variable. This macro has filled an important gap, because:

. the GPLOT procedure produces high resolution graphics, but is not good at controlling

the automatic label positioning (this requires the additional use of the ANNOTATE

instruction, which complicates the syntax);

. and the PLOT procedure can only produce low resolution graphics.

The %PLOTIT macro can be used to provide displays after the CORRESP, PRINCOMP,

PRINQUAL, MDS and TRANSREG procedures. It makes use of the GANNO procedure and

requires the SAS/GRAPH module. It provides optimal label positioning by an iterative

process, hence the name: PLOT ITeratively.

4 Escofier, B. and J�erôme Pag�es, J. (2008) Analyses Factorielles Simples et Multiples, 4th edn. Paris: Dunod.
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Figure 7.12 Factor plane of a CA.

The %PLOTIT macro is therefore called at the end of the CORRESP procedure in this

case, by specifying the name DATA of the data set containing the coordinates DIM1 and

DIM2 of the categories to be represented on the two factor axes, the type DATATYPE of the

data to be plotted (originating from PROC CORRESP in this case, resulting in the display of

the proportion of inertia in the description of each axis), the variable SYMVAR whose first

character (more characters can be requested with SYMLEN¼n) is the symbol representing

each point on the graphic, the size TSIZE of the texts and symbols in the graphic, the plotting

of the horizontal axis 0 and vertical axis 0, and the frame colours COLOR and the internal

graphic colours COLORS.

In IBM SPSS Statistics, the syntax is:

CORRESPONDENCE

TABLE = age(1 5) BY department (1 7)

/PRINT = TABLE RPOINTS CPOINTS

/PLOT = NDIM(1,MAX) BIPLOT(20)

The CORRESPONDENCE procedure is applicable to numeric variables only, for which the

ranges of values are to be specified. However, they are treated as qualitative variables.

Alphanumeric variables must therefore be recoded as numeric variables, but may have value

labels associated with them:

VALUE LABELS AGE 1 ’18-24’ 2 ’25-34’ 3 ’35-49’ 4 ’50-64’ 5 ’65+’.

VALUE LABELS DEPARTMENT 1 ’Motoring’ 2 ’Sport’ 3 ’Clothes’ 4 ’Domestic

appliances’ 5 ’HIFI’ 6 ’DIY’ 7 ’Other’.
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The procedure begins by producing the contingency table of the two variables being

analysed. For example, we may find 46 individuals aged 18–24 out of 582, i.e. 7.9%, which is

shown in the row point table below as a ‘mass’ of 0.079.

Correspondence table

Age

category

Primary Department

Motoring Sport Clothes Domestic

appliances

Hi-Fi DIY Other Active

margin

18–24 2 6 10 15 8 3 2 46

25–34 8 16 21 31 21 10 20 127

35–49 22 17 47 54 34 21 35 230

50–64 12 17 27 40 17 11 23 147

65þ 4 3 9 6 3 2 5 32

Active margin 48 59 114 146 83 47 85 582

The program then displays the table showing the inertia of each axis, with its proportion in

the total inertia and its cumulative proportion. We can see that the first two axes account for

78% of the total inertia. The latter value is equal to the w2 divided by the total population, i.e.
0.028¼ 16.341/582. The table also contains the singular value of each axis, which is the

square root of its inertia.

Summary

Dimension Singular

value

Inertia Chi

square

Sig. Proportion of inertia Confidence

Singular Value

Accounted

for

Cumulative Standard

deviation

Correlation

2

1 .124 .015 .548 .548 .039 �.139

2 .081 .007 .232 .780 .039

3 .068 .005 .163 .943

4 .040 .002 .057 1.000

Total .028 16.341 .875a 1.000 1.000

a. 24 degrees of freedom

The next two tables show, in the right-hand columns for ‘contribution of dimension (1, 2)

to inertia of point’, the squares of the cosines of the categories with each axis. The ‘total’

column is the sum of the squares of the cosines on each axis, which is called the ‘quality’ of the

factor representation. We can see that the categories are represented well on the factor plane,

except for the 50–64 category of the ‘Age’ variable, and the Hi-Fi and DIY categories of the

‘Department’ variable. This must be taken into account in the interpretation of the proximity

of the categories on the factor plane.

The columns showing the ‘contribution of point to inertia of dimension (1, 2)’ contain the

proportion of the inertia of each category in the inertia of each axis: this is the contribution of

the category to the axis.
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The ‘Score in dimension (1, 2)’ columns contain the coordinates of each category on each

axis (which are not calculated in the same way as in the SAS CORRESP procedure, although

the other results are identical).

The content of the ‘mass’ column has already been mentioned.

Finally, the ‘Inertia’ column contains the contribution of each category to the total inertia, a

quantity that is analysed less than thecontribution toeachaxis.This inertia is the sumofcontributions

to the total w2, calculated for all the cells of the contingency table corresponding to the category

analysed and divided by the total number of individuals. In the example of the 18–24 category, the

addition takes place on the first row of the contingency table. Neither the CORRESPONDENCE

procedure nor the IBMSPSSStatisticsCROSSTABSprocedure yield these contributions to the total

w2, but all that needs to be done is to calculate the following ratio for each cell (see Appendix A):

ð observed frequency� theoretical frequencyÞ2
theoretical frequency

Overview row pointsa

Score in

Dimension

Contribution

Of Point to

Inertia of

Dimension

Of Dimension to

Inertia of Point

Age Mass 1 2 Inertia 1 2 1 2 Total

18–24 .079 .898 �.644 .011 .514 .406 .749 .251 1.000

25–34 .218 .237 .355 .004 .099 .340 .347 .506 .852

35–49 .395 �.259 �.102 .005 .214 .051 .651 .066 .717

50–64 .253 .053 .151 .003 .006 .071 .032 .170 .202

65þ .055 �.615 �.441 .005 .168 .132 .482 .162 .644

Active Total 1.000 .028 1.000 1.000

a. Symmetrical normalization

Overview column pointsa

Score in

dimension

Contribution

Primary

department

Of Point to

Inertia of

Dimension

Of Dimension to Inertia

of Point

Mass 1 2 Inertia 1 2 1 2 Total

Motoring .082 �.643 �.168 .005 .275 .029 .939 .042 .980

Sport .101 .525 .276 .005 .225 .096 .636 .115 .751

Clothes .196 �.163 �.400 .004 .042 .388 .180 .703 .883

Domestic appliances .251 .291 �.067 .004 .172 .014 .741 .026 .766

Hi-Fi .143 .235 .010 .004 .063 .000 .270 .000 .270

DIY .081 �.175 .065 .001 .020 .004 .271 .025 .295

Other .146 �.415 .509 .006 .203 .469 .502 .492 .995

Active Total 1.000 .028 1.000 1.000

a. Symmetrical normalization
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The CORRESPONDENCE procedure also plots the factor plane shown in Figure 7.13.

The logical proximity of some categories, such as 25–34 and Sport, can be seen here.

7.4 Multiple correspondence analysis

7.4.1 Introduction

Multiple correspondence analysis (MCA) is an extension of correspondence analysis, applied

to more than two qualitative variables. In this case, we cannot use the simple contingency

table, which must either be generalized or replaced with the indicator matrix.

The generalization of the simple contingency table is the multiple contingency table, also

called the Burt table. In this symmetrical square table, instead of having rows showing the

categories of a single variable and columns showing the categories of another variable, both

the rows and the columns correspond to the categories of the set of variables X1, X2, . . ., Xp. At

the intersection of two identical categories, we find the number of individuals having this

category. At the intersection of two different categories, belonging to different variables, we

find the number of individuals having both the first and the second category. At the intersection

of the kth category xik of Xi and the lth category xjl of Xj, we find the number a of individuals x

Figure 7.13 Factor plane of a CA (in IBM SPSS Statistics).
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such that Xi(x)¼ xik and Xj(x)¼ xjl. The multiple contingency table is made up of blocks, the

diagonal blocks being the simple contingency tables of variables with themselves, while the

other blocks are the simple contingency tables for variables considered in pairs.

::

::

.......................................

::

:.....

:.:

.....................................

:.:

::

ik

jl

x

x

The indicator (or binary) matrix is filled with 0s and 1s only, has one row per individual,

and has a number of columns equal to the sum of the number of categories
Pp

k¼1 mk of the set

of variables X1,X2, . . .,Xp. The intersection of the ith row and the column corresponding to the

category xjk of the variable Xj is 1 if Xj(ith individual)¼ xjk; otherwise it is 0.

This is the table that can be used to obtain results on individuals instead of just the

variables, so it is very useful.5

::

::

::

:00100:..

:.:

:.:

:.:

::

::

i

x

X

jk

j

The possibility of carrying out an MCA based on a complete indicator matrix arises

because a CA provides the same factor axes regardless of whether it is calculated on the

contingency table or on the complete indicator matrix. The principles of CA, especially the

use of the w2metric, can be applied to the complete indicator matrix. However, the eigenvalues

differ considerably depending on the table from which they are calculated (if l is the

eigenvalue of the complete indicator matrix, then l2 is the eigenvalue of the Burt table), as

5 The use of the complete indicator matrix was first reported by Jean-Pierre Nakache in 1970 and is described in

Nakache, J.-P. (1973) Influence du codage des donn�ees en analyse factorielle des correspondances. Étude d’un

exemple pratique medical. Revue de Statistique Appliqu�ee, 21(2). Subsequently, Ludovic Lebart described MCA as

CA carried out on a complete indicator matrix. Anyone interested in the history of data analysis will enjoy the

flamboyant style of Benz�ecri, J.-P. (1982) Histoire et Pr�ehistoire de l’Analyse des Donn�ees, new edn. Paris: Dunod.
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does the sum of these eigenvalues, which is equal to the total inertia, as in the case of principal

component analysis. In CA, this total inertia is equal to the w2 divided by the total number of

individuals in the population when the contingency table is used; with the complete indicator

matrix, it is

m1 þm2

2
�1;

wherem1 andm2 are the numbers of categories of the two variablesX1 andX2. In aMCAon the

complete indicator matrix, we find a total inertia of

1

p

Xp
i¼1

mi

 !
�1;

where p is the number of variables andmi is the number of categories of the ith variable. As in

PCA, and unlike CA, this sum of eigenvalues does not depend on the structure of the data (in

CA, it depends on w2, i.e. on the association betweenvariables).When it is not related to w2, the
total inertia does not depend on the association between variables, so it has no particular

statistical significance.

The inertia of a category with frequency nj, in other words its contribution to the total

inertia, is

1

p
1� nj

n

� �
;

which, incidentally, shows that we must avoid having categories with frequencies that are too

low, in order not to unbalance the results.

The inertia of a variable with mi categories is therefore

Xmi

j¼1

1

p
1� nj

n

� �
¼ mi�1

p
;

and, since it depends on its number of categories, we can see that it is preferable to avoid

disparities between the numbers of categories of the different variables.

These points should be taken into account in the data preparation phase, as already

mentioned in Chapter 3 on data.

Of course, we still have the problem of knowing how many factor axes to use, and how to

interpret them, just as in PCA. First of all, we need to know that the number of eigenvalues

which are not simply equal to 0 or 1, in other words the number of factor axes, is

Xp
i¼1

mi�p;

and therefore, in view of the value of the sum of eigenvalues shown above for the complete

indicator matrix, the mean value of the eigenvalues is 1/p. In PCA, we would use the Kaiser
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criterion, but in this case we must retain only the axes whose eigenvalues are greater than 1/p.

A second criterion, as in PCA, is the presence of a bend in the bar chart of eigenvalues. By

contrast with PCA, however, the percentage of total inertia explained by the first axes is not

necessarily significant; it is often rather low, because of the large number of categories found.

The case of an eigenvalue equal to 1, sometimes encountered in CA (see above), is the

exception here. The percentage of inertia explained is even smaller when the MCA is carried

out on the complete indicator matrix, because of the number of columns created by the

indicator coding. A solution to this problem was proposed by J.-P. Nakache and others in

1977.6 This involves considering the squares or other special functions of the eigenvalues,

rather than the eigenvalues themselves (see Sections 1.4.8 and 4.15 of the book by Lebart et al.

cited earlier in this chapter). As a result of these transformations, the first eigenvalues

represent a higher percentage of inertia than the first eigenvalues of the complete indicator

matrix. Because of the low percentage of inertia explained and its dependence on the method

used, the eigenvalues and the percentages of inertia are rarely important in the interpretation

of a MCA. They are pessimistic measurements of the quality of a MCA, and it is incorrect to

speak of a proportion of information delivered when dealing with percentages of inertia. In

practice, we rarely go beyond the first five axes.

When we have decided which factor axes to keep, how dowe interpret them? The best way

is to find the categories that make the strongest contribution to each factor axis. This

contribution is

1

l
nj

n � p ðvjÞ
2

where l is the eigenvalue of the axis, vj is the coordinate of the category on this axis, and the
other quantities are as described above. We will generally prefer the categories whose

contribution is greater than the weight

nj

n � p ;

in other words those whose coordinate vj is greater than
ffiffiffi
l

p
. An axis is accounted for by

categories with strong contributions.

When we look at the representation of a category on an axis, as in CA, we must check the

quality of this representation. It is measured by the square of the cosine of the angle of

the category with the axis (Table 7.1). This squared cosine is the percentage accounted for by

the axis in the scatter of the category, and the representation of the category improves as this

value approaches 1. The proximity of two categories on an axis should not be evaluated unless

they both have a reasonably large squared cosine on this axis. If two categories have high

coordinates on the same axis (meaning that they are distant from the centre), but one has a

higher squared cosine than the other, then both are different from the mean profile

(represented by the centre) but the difference from the mean is accounted for by this axis,

more for one than for the other, and not by other characteristics. Note that the sum of the

6 Nakache, J.-P., Lorente, P., Benz�ecri, J.-P. and Chastang C. (1977) Aspects pronostiques et th�erapeutiques de
l’infarctus myocardique compliqu�e. Cahiers de l’Analyse des Donn�ees, 2(4), 415–434.
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squared cosine values over all the axes is 1. As for the supplementary variables, their squared

cosine can also be analysed, even if they do not contribute to the axes.

In the example of Table 7.1, the ‘18–24’ and ‘1st time’ categories are very poorly

represented on the first axis, and therefore we should not place any reliance on their

proximity on the first axis (moreover, they are near the origin). However, their proximity on

the second axis is much more significant. Figure 7.14 superimposes the categories of the

supplementary variable ‘satisfaction’ (represented by ‘o’) on those of the active variables

(represented by ‘x’). All these variables relate to visits to a department store by 582

customers, and include the age, sex, departments visited, frequency of visits and satisfaction

of each customer. They are mentioned in Section 7.3.2 and will be analysed in greater detail

in Section 7.4.3 to illustrate the implementation of MCA with the SAS software, which

provided the initial results above.

7.4.2 Review of CA and MCA

CA and MCA provide many benefits:

. The factors are the numeric variables that provide the best separation of the categories of

the qualitative variables under examination.

Table 7.1 Squared cosines at the end of a MCA.

Squared cosines for the column points

Dim1 Dim2 Dim3 Dim4

Female 0.4328 0.0983 0.0452 0.0328

Male 0.4328 0.0983 0.0452 0.0328

18–24 0.0001 0.2284 0.0003 0.0935

25–34 0.0019 0.1601 0.1011 0.0030

35–49 0.0580 0.0205 0.1706 0.0008

50–64 0.0111 0.1569 0.0252 0.1008

65þ 0.1472 0.0523 0.0002 0.1617

1 per month 0.0564 0.0111 0.3032 0.0200

1 per week 0.0226 0.1777 0.0008 0.2069

1st time 0.0002 0.2353 0.0153 0.0034

< 1 per month 0.0064 0.0162 0.2210 0.0002

> 1 per week 0.1398 0.0732 0.0184 0.2040

Motoring 0.0532 0.0328 0.0021 0.0332

Other 0.0092 0.0374 0.0457 0.0634

DIY 0.2397 0.0038 0.0238 0.0031

Domestic_appl 0.1378 0.0769 0.0003 0.1725

Hi-Fi 0.0115 0.0659 0.1047 0.0001

Clothes 0.0570 0.0336 0.0429 0.1990

Sport 0.0334 0.0001 0.3639 0.0315
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. CA and MCA can be used to transform qualitative (initial) variables into quantita-

tive variables (the projections of the categories of the initial variables on the

factor axes).

. They can be used to find non-linear relationships (of degree greater than 1) between the

previously discretized continuous variables, and, on the other hand, to detect depen-

dences between variables whose linear correlation coefficient is close to 0 (relationships

of degree greater than 1; see Section A.2.7).

Figure 7.14 Multiple correspondence analysis on commercial data.
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. They can be used to represent individuals and categories simultaneously on the same

plane (using squared cosines to ensure the quality of the projection).

. They can be used to filter random fluctuations of data by replacing the original

variables with the first factor axes, which is useful before clustering or neural

network processing.

. Some software enable supplementary variables to be displayed (see above), as for PCA,

without taking them into account in the calculation of correspondences.

In the graphic representation of CA and MCA:

. two individuals are close together if they have almost the same categories;

. two categories of two different variables are close together if they are possessed

by almost the same individuals (a high frequency in the contingency table);

more particularly, they merge together if they are possessed by exactly the same

individuals;

. two categories of the same variable are close together if the two groups of individuals

which possess them resemble each other in respect of the other variables.

Also, the distance of a category from the centre increases as its frequency decreases, since

the square of distance to the centre, d2, is inversely proportional to the frequency. We have

d2¼ (n/nj)� 1. Such categories can be enough to determine the first factor axes almost

exclusively, completely hiding any interesting general phenomena behind specific phenome-

na which only relate to a few individuals. This is why we should avoid having categories with

excessively low frequencies.

To summarize the benefits of this powerful method, we can say that examining a factorial

plane is both more efficient than examining all the planes (x, y) of the original variables, and

much faster than scanning all the contingency tables.

7.4.3 Implementing MCA and CA with SAS

IBMSPSS Statistics, with its HOMALS procedure, is not really suitable forMCA as practised

by its founders, so I will concentrate on the SAS CORRESP procedure which is dedicated to

factor analysis. The CORRESP procedure is quite comprehensive and can be used to process

both types of data encountered in this form of analysis.

In the first type, which is more common, the data set contains ‘raw’ data: each row of the

data set corresponds to one individual, each column corresponds to a qualitative variable

characterizing the individuals, and each row/column intersection contains the category of the

variable for the individual.

In the second type, the data in the data set are already in the form of a contingency table,

Burt table, or indicator matrix.

I will illustrate this with a small example. When the data are arranged in the data set as in

the following table, they are of the first type:
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Name Sex Status

Mr Smith Male Married

Mrs Smith Female Married

Mr Brown Male Unmarried

Mr Wood Male Married

Mrs Wood Female Married

Mrs Black Female Widowed

The contingency table for these data is:

Married Unmarried Widowed

Female 2 0 1

Male 2 1 0

The Burt table is:

Female Male Married Unmarried Widowed

Female 3 0 2 0 1

Male 0 3 2 1 0

Married 2 2 4 0 0

Unmarried 0 1 0 1 0

Widowed 1 0 0 0 1

The indicator matrix is:

Female Male Married Unmarried Widowed

1 0 1 1 0 0

2 1 0 1 0 0

3 0 1 0 1 0

4 0 1 1 0 0

5 1 0 1 0 0

6 1 0 0 0 1

These three tables illustrate the second type of data processed by the CORRESP procedure.

With the first type of data, CORRESP must be used with the instruction TABLES, which

creates a contingency table, a Burt table (multiple contingency table) or an indicator matrix,

depending on the options, and then carries out the CA or MCA. The SAS syntax is in the

following form:

PROC CORRESP DATA=survey MCA DIMENS=4 OUT=output ALL;

TABLES sex age frequency department satisfaction;

SUPPLEMENTARY satisfaction;

RUN;
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The variables following the TABLES instruction can be numeric or alphanumeric, but in any

case they are considered to be qualitative.

TheMCAoption creates aBurt table (use theBINARYoption to obtain an indicatormatrix)

of thevariableswritten after the TABLES instruction. InCA,when there are only twovariables

to examine, neither the MCA nor the BINARY option is used, and the contingency table is

createdbywriting the twovariables, separatedbyacomma, thevariableon the left of thecomma

being the row variable and the variable on the right being the column variable:

TABLES sex , status;

We can also analyse the simple contingency table of the variables X1 . . .XM (in the rows) by Y1
. . . YN (in the columns) by writing the following syntax:

TABLES X1 . . . XM , Y1 . . . YN;

In particular, the instruction

TABLES X1 . . . XM;

with the MCA option is equivalent to the instruction

TABLES X1 . . . XM , X1 . . . XM;

without the MCA option.

The SUPPLEMENTARY row contains the supplementary variables, which must also be

entered in the TABLES row. The desired number of factor axes is specified by the DIMENS

command (default value 2). The OUT data set contains the inertia, coordinates on the axes,

contributions to the axes and squared cosines for the rows (_type_¼ ‘OBS’) and columns

(_type_¼ ‘VAR’). The coordinates of these can be used to draw the factor plane as in

Figure 7.14 of Section 7.4.1. The SAS macro %PLOTIT (see Section 7.3.2 on CA) is

commonly used for this purpose. The DATA data set of the%PLOTITmacromust be the OUT

data set at the output of the CORRESP procedure, and the parameter PLOTVARS specifies the

axes to be represented:

%PLOTIT(DATA=output, DATATYPE=corresp, PLOTVARS=Dim2 Dim1)

The ‘VAR’ type entries are always present and correspond to the categories following the

instruction TABLES (and anywhichmay follow SUPPLEMENTARY), except for the categories

to the left of the comma, if any. On the other hand, the ‘OBS’ type entries are not always present.

With the MCA option, these entries do no exist, because the Burt table is symmetrical. With the

BINARYoption, the ‘OBS’ entries correspond to the individuals analysed. In thecaseofCA, these

entries correspond to the categories of the rowvariable (to the left of the comma). Ifwewish tofind

results on the individuals themselves, not just on their variables, wemust use the BINARYoption.

This enables us to represent the individuals and the categories on the same plane.

One drawback of the CORRESP procedure, not found in PRINCOMP which is used for

PCA, is that the output data set OUT contains the inertia, the coordinates on the axes, the

contributions and the squared cosines for each observation, but not the variables of the input
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data set DATA, nor even the identifier of this data set which would enable the data set DATA to

be matched with the OUT data set to enrich it. If we wish to enrich the input data set with the

coordinates of the individuals on the factor axes, inorder to transformqualitative toquantitative

data before clustering or discriminant analysis for example (see Section 12.9), we can start by

executing an MCA on the Burt table, as indicated in the SAS syntax example above, with the

optionMCA.The advantage ofMCAon theBurt table is that the calculations are faster than for

the indicator matrix. It is then simply necessary to recover the coordinates of the categories of

the variables on the axes, then calculate the sum of the coordinates of the categories of each

individual, divided by the number of variables and by the square root of the eigenvalue of the

axis. The result of this calculation is the coordinate of the individual on the axis, found without

using the indicatormatrix! This is based on the fact that, as seen in Section 7.3.1, the coordinate

of an individual on an axis is the mean of the coordinates of the individual’s categories on this

axis, divided by the square root of the eigenvalue of the axis (meaning that an axis is a linear

combination of the indicators of the categories of the analysed variables, a property which is

used in DISQUAL discriminant analysis as described in Section 11.6.7).

Figure 7.15 illustrates this resultwith the example of customers’ visits to a department store

which we have looked at before. Columns B to E on the left of the spreadsheet contain the

categories of the variables of each customer (the customers are numbered in column A). The

coordinates of these categories on the first two factor axes are shown in columns L and M,

obtained from the OUT data set which is the output of the CORRESP procedure. These are the

coordinates reproduced in Figure 7.17. Column F contains the mean of the coordinates on the

firstaxisof thecategoriesofsex,age,departmentandfrequencyofvisits, thismeanbeingdivided

by the square root of the eigenvalue of the axis (in cell N2). This eigenvalue is shown in

Figure 7.16. The same applies to columnGand the second factor axis. Thuswefind that the first

customerismale(coordinate0.87891onthefirstaxis),agedbetween35and49years(coordinate

0.29799), visits theDIYdepartment (coordinate 1.65167), and comes to the store less thanonce

per month (coordinate 0.13411). The mean of these four coordinates is 2.96268/4¼ 0.74067.

After dividing by the square root of 0.31833, we have 1.312761918, as shown in cell F2. This is

the coordinate of the first customer on the first axis of the factor plane of individuals.

If we wish to use the BINARYoption but without representing the individuals, we specify

this when calling the %PLOTIT macro:

%PLOTIT(DATA=output (WHERE = (_type_ ne ’OBS’)), DATATYPE=corresp,

PLOTVARS=Dim2 Dim1)

If we are interested in the results for the categories of the variables (_type_¼ ‘VAR’ in the

OUT data set), we can find them with either the MCA or the BINARY option.

For the second type of data processed by CORRESP, we have seen that the data in the data

set are already in the form of a contingency table,7 a Burt table or an indicator matrix: each line

of the data set corresponds to one row of the table and each column corresponds to a category

specified in the VAR instruction, and this category has to be numeric. Each intersection of a

row and column contains the frequency of a cell of the table, this intersection being a numeric

data element greater than or equal to 0 (if it is less than 0 or missing, the line is not included in

the analysis). The Burt table is symmetrical and its rows do not have to be specified, because

7 The TRANSREG procedure can be used to construct an indicator matrix and store in a macro variable the list of

indicators created.
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Figure 7.15 Coordinates of categories and individuals on the factor axes.
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they are equal to its columns. On the other hand, the rows of a contingency table or indicator

matrix must be specified: this is done with the ID instruction.

CORRESP has to be used with the VAR instruction which directly executes the CA or

MCA. To tell SAS that the input is a Burt table, we use the MCA option below, indicating the

number of variables with the NVARS command. This is because SAS does not know this

number of variables, because it is the categories of these variables, rather than the variables

themselves, that appear after the VAR instructions (care must be taken to list them correctly in

the order of the data set).

PROC CORRESP DATA=table MCA NVARS=2 OUT=output ALL;

VAR male female married unmarried widowed;

RUN;

If the input is an indicator matrix or a simple contingency table, the syntax is simplified by

removing theMCA and NVARS instructions, as the distinction between the two types of table

(indicator matrix or contingency table) is shown by the ID instruction, followed by the name

of the row variable for a contingency table, or by a variable identifying the individuals for an

indicator matrix.

Inertia and Chi-Square Decomposition 

Singular
Value

Principal
Inertia

Chi-
Square Percent

Cumulative
Percent

8.498.49759.10 0.31833 0.56420 

16.868.38748.97 0.31408 0.56043 

24.567.70688.21 0.28860 0.53721 

32.037.47667.61 0.27996 0.52911 

39.357.32654.80 0.27459 0.52401 

46.316.96622.66 0.26111 0.51099 

53.026.71599.77 0.25151 0.50151 

59.536.51582.04 0.24408 0.49404 

65.946.42573.77 0.24061 0.49052 

72.226.28561.31 0.23538 0.48516 

78.366.14549.40 0.23039 0.47999 

84.315.95531.75 0.22299 0.47222 

90.085.77515.61 0.21622 0.46499 

95.285.20465.41 0.19517 0.44178 

100.004.72422.09 0.17700 0.42071 

100.008942.50 3.75000 Total 

Degrees of freedom = 324 

Figure 7.16 Eigenvalues of the MCA.
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In the case of the Burt table, the OUT data set only contains results (coordinates,

contributions, etc.) for the categories following the VAR instruction, with _type_¼ ‘VAR’

entries in OUT. In other cases, the OUT data set also contains results on the lines

corresponding to the ID instruction, with _type_¼ ‘OBS’ entries in OUT: thus there are

results for the categories of the row variable (contingency table) and results for individuals

(indicator matrix). These _type_¼ ‘OBS’ entries in the OUT data set contain the variable ID.

As before, it is the indicator matrix that is used to obtain results on individuals and represent

them on the same plane as the categories. As before, the results on the categories of the

variables are the same with the indicator matrix and the Burt table. We can also add a

SUPPLEMENTARY line containing supplementary variables, which must also appear on

the VAR line.

A contingency table is indicated by a command of the following type:

PROC CORRESP DATA=table OUT=output ALL;

VAR married unmarried widowed;

ID sex;

RUN;

Column Coordinates 

Dim1 Dim2 Dim3 Dim4

Female -0.1355-0.1592-0.2347-0.4925

Male 0.24180.28420.41890.8789

18-24 1.04400.0627-1.6313-0.0312

25-34 -0.10370.6018-0.75730.0824

35-49 -0.0344-0.51090.17700.2980

50-64 -0.54620.27330.6814-0.1814

65+ 1.6670-0.06210.9484-1.5907

1 per month 0.1949-0.7581-0.14520.3271

1 par week -0.8008-0.04980.7421-0.2645

1st time 0.18580.3944-1.54860.0447

< 1 per month 0.02110.7872-0.21310.1341

> 1 per week 1.81320.54461.0865-1.5009

Motoring 0.6080-0.15110.60390.7695

Other -0.60900.51690.4674-0.2313

DIY -0.1879-0.52050.20731.6517

Domestic_appl -0.7177-0.0306-0.4791-0.6415

HIFI 0.0237-0.7936-0.62950.2628

Clothes 0.9038-0.41970.3713-0.4837

Sport 0.52861.79600.02420.5439

Figure 7.17 Coordinates of the categories on the factor axes.
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An indicator matrix will be indicated by a command of the following type:

PROC CORRESP DATA=table OUT=output NOROW=print;

VAR male female married unmarried widowed;

ID label;

RUN;

Here, the NOROW¼ print command is used to prevent the display of the factor coordinates,

contributions and squared cosines of the observations (of which there may be several thousand

or more) while retaining the corresponding display for the variables.

For the complete indicator matrix, the variable label specified in the ID label instruction is

the identifier of the individual. There is one line per individual in the processed data set, each

one marked by the variable label in the OUT data set, and the variables of the VAR line are

dichotomous variables (0/1).

With the MISSING option, the missing values of the qualitative variables are treated as if

they formed a specific category and the observations are not excluded.

Summary Statistics for the Column Points 

Quality Mass Inertia

Female 0.02390.16020.6092

Male 0.04270.08980.6092

18-24 0.06140.01980.3223

25-34 0.05210.05460.2660

35-49 0.04030.09880.2498

50-64 0.04980.06310.2941

65+ 0.06300.01370.3615

1 per month 0.04360.08630.3908

1 par week 0.05040.06100.4080

1st time 0.06070.02230.2541

< 1 per month 0.04910.06570.2438

> 1 per week 0.06280.01460.4354

Motoring 0.06120.02060.1213

Other 0.05690.03650.1556

DIY 0.06130.02020.2703

Domestic_appl 0.04990.06270.3875

HIFI 0.05720.03570.1823

Clothes 0.05360.04900.3325

Sport 0.05990.02530.4289

Figure 7.18 Quality of representation on the first four factor axes.
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The WEIGHT variable command is used to assign weights to the observations, telling

SAS that the weight of each observation is different from 1 and is contained in the variable

variable. An observation with a non-positive weight is a supplementary observation

that is delivered but not taken into account in the calculations. This option cannot be

used when the input to the procedure is a Burt table (VAR and MCA options), because

this table is symmetrical and the supplementary variables are indicated by

SUPPLEMENTARY.

Returning to the example in the previous section (visits to departments of a store), we

obtain the following tables at the output of PROC CORRESP. They are the same regardless of

whether the table constructed was a Burt table (MCA option) or the indicator matrix

(BINARY option).

The table of eigenvalues is shown in Figure 7.16, with the values of the indicator matrix in

the second column and their square roots in the first column. The eigenvalues of the Burt table,

which are the squares of the second column, are not shown. According to the formulae in the

Partial Contributions to Inertia for the 
Column Points 

Dim1 Dim2 Dim3 Dim4

Female 0.01050.01410.02810.1221

Male 0.01880.02510.05020.2179

18-24 0.07690.00030.16740.0001

25-34 0.00210.06850.09960.0012

35-49 0.00040.08940.00990.0276

50-64 0.06730.01630.09330.0065

65+ 0.13640.00020.03940.1093

1 per month 0.01170.17200.00580.0290

1 par week 0.13970.00050.10700.0134

1st time 0.00280.01200.17050.0001

< 1 per month 0.00010.14110.00950.0037

> 1 per week 0.17150.01500.05490.1034

Motoring 0.02720.00160.02390.0384

Other 0.04840.03380.02540.0061

DIY 0.00250.01900.00280.1730

Domestic_appl 0.11540.00020.04580.0811

HIFI 0.00010.07780.04500.0077

Clothes 0.14290.02990.02150.0360

Sport 0.02530.28330.00000.0236

Figure 7.19 Contributions of the categories to the factor axes.
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previous section, the sum of the eigenvalues is 3.75, i.e.

total number of categories

number of variables
�1 ¼ 19

4
�1:

The usual rule for selecting the axes would be to keep all those whose eigenvalues

exceeded 0.25 (the inverse of the number of variables). In this case, this would result in the

selection of the first seven axes, but I have chosen a smaller number, four, for this description.

These first four eigenvalues represent 32% of the inertia, while we can see that the first four

eigenvalues of the Burt table represent 38% of the inertia, illustrating the usefulness of the

proposal of J.P. Nakache mentioned above.

Figure 7.17 shows the coordinates of the categories on the factor axes, which are very

useful, not only for graphic representation, but alsowhenever we need to transform qualitative

variables into continuous variables.

Then we have the squares of the cosines whichmeasure the quality of the representation of

a category on a factor axis. The table produced by CORRESP was shown as Table 7.1 in

Section 7.4.1. It will be recalled that the representation of the category on the axis improves as

the square of the cosine approaches 1. Additionally, the sum of squares of the cosines for all

the axes is 1 for each category. As in this case, I have not kept all the axes, but only four of

them, and the sum of the first four squares of the cosines of a variable appears in Figure 7.18 in

the ‘quality’ column. The categories having low qualities are those which are poorly

represented on the four chosen factor axes, and which are better represented on axes which

have not been retained.

Figure 7.19 shows the contribution of the categories to the factor axes. It is a kind of

inverse of the squared cosines which measures the explanation of the category per axis.

This contribution is the proportion of the inertia of the category in the inertia of the axis, and

the sum of contributions of all the categories for a given axis is, of course, 1. An axis is

accounted for by its categories having high contributions.
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8

Neural networks

Data mining would be not be the samewithout neural networks, which lie at the root of certain

descriptive and predictivemethods of data mining. These networks have becomewidely used,

owing to their modelling power (they can approximate any sufficiently regular function), with

excellent results across a broad range of problems, even when faced with complex phenome-

na, irregular forms, and data that are difficult to grasp and follow no particular probability law.

In some cases, however, their use is impeded by certain difficulties in implementation, such as

the ‘black box’ nature of the networks, the delicacy of the necessary adjustments, the amount

of computing power required, and especially the risks of overfitting and convergence to a

globally non-optimal solution.

This chapter has been placed before the chapters on clustering, classification and

predictionmethods, because neural networks are used both for clustering (Kohonen networks)

and classification and prediction (perceptrons, radial basis function networks). Any reader not

interested in the details of these methods may skip this chapter.

8.1 General information on neural networks

Following the initial description of a formal neuron by McCulloch and Pitts in 1943, the first

neural networks appeared in 1958 with the ‘perceptron’ of Rosenblatt. They were developed

rapidly in the 1980s and have been used widely in industry since the 1990s. A neural network

has an architecture based on that of the brain, organized in neurons and synapses, and takes the

form of a set of interconnected units (or formal neurons), with each continuous input variable

corresponding to a unit at a first level, called the input layer, and each category of a qualitative

variable also corresponding to a unit of the input layer. In some cases, when the network is

used in a predictive technique, there may be one or more dependent variables: in this case each

of them corresponds to one unit (or several units in the case of qualitative variables – see

below) at a final level, called the output layer. Predictive networks are called ‘supervised

learning’ networks, and descriptive networks are called ‘unsupervised learning’ networks.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



Units belonging to an intermediate level, the hidden layer, are sometimes connected between

the input layer and the output layer. There may be several hidden layers.

A unit receives values at its input and returns 0 to n values at the output. All these values

are normalized so that they lie between 0 and 1 (or sometimes between �1 and 1, depending

on the limits of the transfer function described below). A combination function calculates

a first value from the units connected at the input and the weight of the connections. Thus,

in the most widely used networks, this is the weighted sum
P

inipi of the input values ni of

the units. To determine an output value, a second function, called the transfer function

(or activation function), is applied to this value. The units in the input layer are simple, in the

sense that they do not create any combinations but only transmit the values of the variables

corresponding to them.

Thus a perceptron unit takes the form shown in Figure 8.1. The notation used in this

diagram is as follows:

. ni is the value of unit i at the preceding level (the summation over i corresponds to all the

units at the preceding level connected to the unit being observed);

. pi is the weight associated with the connection between unit i and the observed unit;

. f is the transfer function associated with the observed unit.

The learning of the neural network takes place on the basis of a sample of the population

under study; it uses the individuals in the sample to adjust the weights of the connections

between the units. In the course of learning, the value delivered by the output unit is compared

with the actual value, and the weights pi of all the units are adjusted so as to improve the

prediction, by a mechanism which depends on the type of neural network. One mechanism

which is still widely used is ‘gradient back-propagation’, but there are more recent and more

effective ones such as the Levenberg–Marquardt, quasi-Newton, conjugate gradient, quick

propagation, and genetic algorithms (see Section 11.13). The network runs through the

learning sample many (often several thousand) times. Learning is completed when an optimal

solution1 has been found and the weights pi are no longer modified significantly, or when

a previously specified number of iterations have been run. At the end of the learning phase,

the network forms a function which associates the variables with each other. In the perceptron,

the transfer function may be the linear function f(x)¼ x, but it is best to choose a function that

behaves linearly in the neighbourhood of 0 (when the weights of the units are small) and non-

linearly at the limits, so that both linear and non-linear phenomena can be modelled. In almost

Input 1

Input 2

Input n

∑nipi (∑nf ipi) Output

Figure 8.1 Unit of a neural network.

1 This optimum may be global or only local: see Section 8.7.1 on the multilayer perceptron.
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all cases, a sigmoid function is chosen, more specifically the logistic sigmoid

sðxÞ ¼ 1=ð1þ e�xÞ (which we will meet again in the section on logistic regression), or the

tangent sigmoid, which is simply the hyperbolic tangent function:

tanhðxÞ ¼ ex�e�x

ex þ e�x

There are other sigmoid functions, but the performance is very similar regardless of which

is chosen. Although these functions are constantly increasing, they can approach any

continuous function when they are combined with each other (see Section 8.7.1), in other

words when the activation of a several units is combined.

The capacity to handle non-linear relations between the variables is a major benefit of

neural networks.

The necessity of normalizing the values of the input data can be seen with the logistic

function (Figure 8.2). If this were not done, the data with large values would ‘crush’ the others,

and the adjustments of the weights would have no effect on the value 1= 1þ exp �P
nipið Þð Þ,

as this value does not vary greatly around 0 or 1 when the absolute value of
P

nipi is large.

Also, the fact that all the values lie between 0 and 1 (or�1 and 1) means that a unit can receive

the output of a preceding unit at its input without encountering problems due to excessively

large values.

As a general rule, the stages in the implementation of a neural network for prediction or

classification are:

(i) identification of the input and output data;

(ii) normalization of these data;

Sigmoid Function
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Figure 8.2 The logistic function.
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(iii) establishment of a network with a suitable structure;

(iv) learning;

(v) testing;

(vi) application of the model generated by learning;

(vii) denormalization of the output data.

8.2 Structure of a neural network

The structure of a neural network, also referred to as its ‘architecture’ or ‘topology’, consists

of the number of layers and units, the way in which the different units are interconnected

(the choice of combination and transfer functions) and theweight adjustment mechanism. The

choice of this structure will largely determine the results that will be obtained, and is the most

critical part of the implementation of a neural network.

The simplest structure is one in which the units are distributed in two layers: an input layer

and an output layer. Each unit in the input layer has a single input and a single output which is

equal to the input (see Figure 8.3). The output unit has all the units of the input layer connected

to its input, with a combination function and a transfer function. There may be more than one

output unit. In this case, the resulting model is a linear or logistic regression, depending on

whether the transfer function is linear or logistic, and the weights of the network are the

regression coefficients.

The predictive power can be increased by adding one or more hidden layers between the

input and output layers (Figure 8.4). Although the predictive power increases with the number

p1

p2

p3

p5

s(n1p1+ … + nkpk)

n2

n3

n4

n5

n1

input layer

output layer

data

p4

Σ

Figure 8.3 Neural network with no hidden layer.
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of hidden layers and units in these layers, this number must nevertheless be as small as

possible, to ensure that the neural network does not simply store all the information from the

learning set but can generalize it, thus avoiding what is known as ‘overfitting’ (see Section

11.3.4), which occurs when the weights simply make the system learn the details of the

learning set, instead of discovering general structures. This happens when the size of the

learning set is too small in relation to the complexity of the model, which in this case means

the complexity of the network topology. This is discussed further in Section 8.4 below.

Whether or not a hidden layer is present, the output layer of the network can sometimes

have a number of units, when there are a number of classes to predict (Figure 8.5).

8.3 Choosing the learning sample

The learning of the neural network will be improved if it takes place on a sample that is

sufficiently rich to represent all the possible values of all the layers of the network, in other

words all the possible categories of each variable, at the input or at the output. A network can

only learn from the configurations that it has encountered during its learning: customers with

overdrafts of more than D1000 may be very much at risk, but if the network’s learning sample

did not include any of these, then the network will not be able to predict anything about them.

However, we should remember that the learning time increases greatly with the size of the

sample, as the neural network runs through its learning sample many times.

For the output variables, the learning sample must include all the categories in equal

proportions, even if some categories are more frequent in the real population (for example, we

must have as many ‘negative’ events as ‘positive’ ones, even if the ‘negative’ events are much

rarer in reality).

s [Π.s(Σnipi)
+ Θ.s(Σniqi)]
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Figure 8.4 Neural network with a hidden layer.
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8.4 Some empirical rules for network design

In a back-propagation network, at least 5–10 individuals will be needed to adjust each weight.

To increase the robustness of the network, it is advisable to have a single hidden layer for

a radial basis function network, and one, or in exceptional cases two, for the multilayer

perceptron: instead of adding a third hidden layer, it is better to modify other parameters,

retest with other initial weights, or reprocess the input data.

A network with n input units, a single hidden layer,m units in the hidden layer and k output

units has m(n þ k) weights. We therefore need a sample of at least 5m(n þ k) individuals for

the learning process. If the number of input units has to be reduced, because the learning

sample is too small, then the number of predictive variables must also be reduced. Suppose

that we wish to reduce 20 predictive variables to 10. We can test all the combinations of

10 variables, changing only two or three of them each time. This is time-consuming, but takes

into account the fact that some variables only reveal their predictive nature when combined

with certain other variables. Another procedure, which is fast and elegant, involves carrying

out a principal component analysis (see Section 7.1) and substituting the first principal

components for the variables at the input of the network. A minor drawback of this technique

is that it is inherently linear, and may conceal important non-linear structures.

The value of m generally lies between n/2 and 2n. Some authors suggest extending the

range to 3n; others recommend 3n/4, and yet others prefer a value between
ffiffiffiffiffi
nk

p
=2 and 2

ffiffiffiffiffi
nk

p
.

The interested reader should consult the report by Iebeling Kaastra and Milton Boyd.2 For

n2

n3

n4

n5

n1

input layer

data

hidden layer output layer

Figure 8.5 Neural network with more than one output unit.

2 Kaastra, I. and Boyd, M. (1996) Designing a neural network for forecasting financial and economic time series.

Neurocomputing, 10, 215–236.
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classification, m is generally at least equal to the number of classes to be predicted. It is

best to proceed by conducting a number of tests, measuring the error rate on the test

sample each time, and stopping the increases in m as soon as this rate reaches a minimum, to

avoid overfitting.

8.5 Data normalization

You will recall that the data used in a neural network must be numeric and their categories

must lie within the range [0,1]; if this is not already the case, the data must be normalized. To

ensure that the normalization process described below is correct, the learning data set must

of course cover all the values found in thewhole population, particularly the extreme values of

continuous variables.

8.5.1 Continuous variables

Even when continuous variables are normalized, the extreme values may still tend to ‘bury’

the normal values. Thus most monthly income levels are in the range from D0 to D10 000, but

if an income exceeds D100 000, the standard normalization of the ‘income’ variable, i.e. its

replacement with the variable

income�minimum income

maximum income�minimum income

will make the difference between D5000 and D10 000 almost imperceptible, placing it on the

same level as the much less significant difference between D95 000 and D100 000.

There are several ways of normalizing this type of variable correctly. The variable can be

discretized, and replaced with its quartiles, for example. We could normalize the logarithm of

the variable, instead of the variable itself; this would ‘stretch’ the lower part of the scale. We

could normalize the variable in a linear way, as mentioned above, in respect of its values in the

range from �3 to þ 3 times the standard deviation3 s about the mean m, then change values

lower than m� 3s to 0 and change values greater than m þ 3s to 1. In this variant, we can

divide the range [m� 3s, m þ 3s] in two if necessary, by setting themean m to the centre of the
range, 0.5, and applying the two half-ranges in a linear way.

8.5.2 Discrete variables

To normalize discrete variables for which the difference between 0 and 1 is greater than

between 1 and 2, 2 and 3, etc., we can carry out the following translation:

. 0! 0

. 1! 1/2

. 2! 1/2 þ 1/4

3 Note that, when a variable follows a normal distribution with a mean m and standard deviation s, we find 68% of

the observations in the range [m�s, m þ s], 95% of the observations in the range [m� 2s, m þ 2s] and 99.7% of the

observations in the range [m� 3s, m þ 3s].
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k¼1 2

�k

8.5.3 Qualitative variables

The normalization of qualitative variables poses a problem: it makes an order relationship

appear among its categories, which is often artificial and leads the neural network astray.

A common way of overcoming this difficulty is to make the number of units equal to

the number of categories of the qualitative variables, by creating binary variables (called

‘indicator variables’) whose value of 1 or 0 signifies that the qualitative variable does or does

not have this category. The drawback of this solution is that it requires a larger number of

units, resulting in a more complex network with a longer learning time, as well as an increase

in the size of the sample required for learning.

Before using a neural network on qualitative data, therefore, we should reduce the number

of categories as much as possible.

8.6 Learning algorithms

At the present time, the Levenberg–Marquardt algorithm is often favoured by experts, because

it converges more quickly, and towards a better solution, than the gradient back-propagation

algorithm. However, it needs a large amount of computer memory, proportional to the square

of the number of units. It is therefore limited to small networks with only a few variables. It is

also restricted to a single output unit.

The gradient back-propagation algorithm is the oldest and most widely used method,

especially for large data volumes. But it lacks reliability because of its sensitivity to

local minima.

The conjugate gradient descent algorithm is a good compromise, because its performance

approaches that of the Levenberg–Marquardt algorithm in terms of convergence, but it can be

used on more complex networks with more than one output if necessary.

Finally, I should also mention the quasi-Newton algorithm and the genetic algorithms

which will be examined in Section 11.13.

8.7 The main neural networks

There are various neural networkmodels. Themain ones are themultilayer perceptron (MLP),

the radial basis function (RBF), and the Kohonen network, which are described below. More

recently, the density estimation networks of Specht (1990)4 have been used both for

classification (probabilistic neural networks) and for prediction (general regression neural

networks). There are also networks similar to RBF networks but based on the mathematical

theory of wavelets.

The Kohonen network is an unsupervised learning network used for clustering, while the

other networks mentioned above (MLP, RBF, etc.) are supervised learning networks, used

with one or more dependent variables at the output.

4 Specht, D.F. (1990) Probabilistic neural networks. Neural Networks, 3, 109–118.
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8.7.1 The multilayer perceptron

The archetypal neural network is the multilayer perceptron. It is particularly suitable for the

discovery of complex non-linear models. Its power is based on the possibility of approxi-

mating any sufficiently regularly function with a sum of sigmoids (Figure 8.6). As its name

indicates, this network is made up of several layers: the input variables, the output variable or

variables, and one or more hidden levels. Each unit at a level is connected to the set of units at

the preceding level.

The number of input units is always equal to the number of variables in the model; if

necessary, these variables may be the ‘indicator’ variables substituted for the original

qualitative variables (see Section 8.5.3). There is usually just one output unit. For the choice

of the number of units in the hidden layer, see Section 8.4.

To explain the operation of theMLP, let us consider the special, but quite common, case of

an MLP using gradient back-propagation.

Each connection has an associated weight, which changes in the course of learning. The

network starts its learning by assigning a random value to each of the weights and calculating

the output value on the basis of a set of records for which the expected output value is known:

this is the learning sample. The network then compares the calculated output value with the

expected value, and calculates an error function e, which can be the sum of squares of the

errors occurring for each individual in the learning sample:

X
i

X
j

ðEij�OijÞ2;

where the first summation is performed on the individuals of the learning set, the second

summation is performed on the output units, and Eij (Oij) is the expected (obtained) value of

the jth unit for the ith individual.
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Figure 8.6 Approximation of a function by a sum of sigmoids.
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The network then adjusts theweights of the different units, checking each time to see if the

error function has increased or decreased. As in a conventional regression, this is a matter of

solving a problem of least squares.

If there are n connections in the network, each n-tuplet (p1, p2, . . ., pn) of weights can be

represented in a space with n þ 1 dimensions, the last dimension representing the error

function e. The set of values (p1, p2, . . ., pn,e) is a ‘surface’ (or, rather, a hypersurface) in

a space of dimension n þ 1, the ‘error surface’, and the adjustment of theweights to minimize

the error function can be seen as a movement on the error surface with the aim of finding the

minimum point. Unlike linear models, in which the error surface is a well-defined and well-

known mathematical object (in the shape of a parabola, for example), and the minimum point

can be found by calculation, neural networks are complex non-linear models where the error

surface has an irregular layout, criss-crossed with hills, valleys, plateaux, deep ravines, and

the like. To find the minimum point on this surface, for which no maps are available, we must

explore it. In the gradient back-propagation algorithm, we move over the error surface by

following the line with the greatest slope, which offers the possibility of reaching the lowest

possible point. We then have to work out how quickly we should travel down the slope. If we

go too quickly, we may pass over the minimum point or set off in thewrong direction; if we go

too slowly, we will need too many iterations in the network to find a solution. When we speak

of an ‘iteration’, this means inputting the whole learning set into the network, comparing the

expected and obtained outputs, and calculating the error function. The range of possible

iterations is very wide, but the order of magnitude is 10 000.

The correct speed is proportional to the slope of the surface and to another important

parameter, namely the learning rate. This rate, between 0 and 1, determines the extent of the

modification of the weights during learning. It is useful to vary this rate, which will be high at

the outset (between 0.7 and 0.9) to allow a speedy exploration of the error surface and a fast

approximation to the best solutions (the minima of the surface), and then decrease at the end

of the learning to bring us as close as possible to an optimal solution. In a situation such as that

shown in Figure 8.7, this decrease in the learning rate will ensure that we do not go from the

local optimumA straight to the local optimum C, possibly with oscillations between A and C,

without reaching the global optimum B.

A second important parameter affects the performance of a multilayer perceptron: this is

the moment (of a neural network), which makes the weights tend to keep the same direction

of change, increasing or decreasing, because a factor incorporates the preceding weight

adjustments. The moment limits oscillations which could be caused by irregularities in the

A

B

C

Figure 8.7 Local optimum and global optimum.
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learning examples. The effect of the moment is that, if we move several times successively in

the same direction over the error surface, we tend to continue the movement without being

‘trapped’ by the local minima (such as point A in Figure 8.7) and pass over them to reach the

global minima (such as point B in the same figure). Just as the learning rate decreases as

learning continues, themoment often increases during learning, to enable the network tomake

a smooth approach to a globally optimal solution.

To sum up, the learning rate controls the extent of modification of the weights during the

learning process; a higher ratemeans faster learning, but there is a greater risk that the network

will converge towards a solution other than the globally optimal one. The moment acts as

a damping parameter, reducing oscillations and helping to achieve convergence; with

a smaller moment, the network is better at ‘adapting to its environment’, but extreme data

have more effect on the weights. To some extent, the learning rate controls the speed of

movement and the moment controls the speed of the changes of direction on the error surface;

at the start of the process, we move quickly in all directions, but at the end we slow down and

change direction less often.

The main danger of neural network modelling is obvious: the network may converge

towards a solution that is locally, but not globally, optimal. This risk has led to the

development of graphic tools for real-time display of the error rate in learning and validation,

enabling the learning to be interrupted as soon as there is any sign of overfitting and an

increased error rate in validation (Figure 8.8).

8.7.2 The radial basis function network

An RBF network is an supervised learning network, like the multilayer perceptron, which it

resembles in someways. However, it works with only one hidden layer, and, when calculating

Figure 8.8 Graphic monitoring of a neural network with SAS Enterprise Miner.
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the value of each unit in the hidden layer for an observation, it uses the distance in space

between this observation and the centre of the unit, instead of the sum of the weighted values

of the units of the preceding level. Unlike theweights of amultilayer perceptron, the centres of

the hidden layer of an RBF network are not adjusted at each iteration during learning (but

some may be added if the space is not sufficiently covered). In a perceptron, the modification

of a synaptic weight makes it necessary to re-evaluate all the others, but in an RBF network the

hidden neurons share the space and are virtually independent of each other. This makes for

faster convergence of RBF networks in the learning phase, which is one of their strong points.

Now, the response surface (the set of values) of a unit of a hidden layer of a multilayer

perceptron, before the application of the (generally non-linear) transfer function, is a hyperplaneP
ipiXi ¼ K, and similarly the response surface of a unit of the hidden layer of anRBF network

is a hypersphere
P

iðXi�oiÞ2 ¼ R2, and the response of the unit to an individual (xi) is a

decreasing function G of the distance between the individual and this hypersphere. As this

functionG is generally aGaussian function, the response surface of the unit, after the application

of the transfer function, is a Gaussian surface, in other words a ‘bell-shaped’ surface

(Figure 8.9). We speak of a radial function for G, i.e. a function symmetrical about a centre.

Comparing the MLP and RBF networks, we find the differences listed in Table 8.1.

Finally, the global response of the network to each individual (xi) presented to it is:

Xno: of hidden units

k¼1

lk exp � 1

2s2k

Xno: of input units

i¼1

ðxi�ok
i Þ2

" #

The learning of an RBF is a matter of determining the number of units in the hidden layer,

i.e. the number of radial functions, their centres Ok¼ (ok
i ), their radii sk, and the coefficients

lk. The critical point in learning is the choice of the number of radial functions, their centres

and their radii. When this has been done, the coefficients lk are determined in a supervised

way, as simply as in a linear regression. The coefficients can be limited if required, as in a ridge

regression (see Section 11.7.2). This is known as ‘weight decay’.

Figure 8.9 Response surface of a radial unit.
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The number of units is generally specified by the user, even if the network can create others

to improve the accuracy of the results. A sufficiently high number must be provided, generally

more than in a multilayer perceptron, to enable the data structure to be modelled correctly. The

unitsmay commonly number several hundred. This is because the fast decrease of theGaussian

means that theRBFnetwork has a lower extrapolation capacitywhen farther from the centres of

the units of the hidden layer. These units must therefore be sufficiently numerous to ensure that

at least one unit is activated for each observation; in other words, at least one radial function

must have a non-negligible value in any region where data are present. This is an evident

drawback of the RBF network as compared with the multilayer perceptron, even if it is also

better protected against certain risky extrapolations found with the multilayer perceptron. In

fact, the complexity of the RBF network increases exponentially with the number of input

variables, because the radial function space has to be filled. As the number of variables

increases, therefore, the calculation time of the RBF network increases, together with the

number of observations needed for learning. This is one of its major weaknesses. It is therefore

essential to select the input variables of a RBF network with great care.

When the number of units has been chosen, we must consider their centres. Some

networks position the centres in a randomway. However, the results can be improved by using

the moving centres method (see Section 9.9.1) or Kohonen networks (see below) to divide the

space into clusters (partitions) according to the distribution of the data. Thus, if the data

are distributed in packets, the centres of these packets will be chosen as the centres of the

RBF network. Also, more centres will be positioned in areas with a high observation density

(input adaptation), or in areas where the result to be predicted varies more rapidly (output

Table 8.1 Comparison of MLP and RBF networks.

Network ! MLP RBF

‘Weight’ Weight pi Centre oi

Hidden

layer(s)

Combination

function

Scalar product
P

ipixi Euclidean distanceP
i (xi�oi)

2

Transfer

function

Logistic

s(X)¼ 1/(1 þ exp(�X))

Gaussian

G(X)¼ exp(�X2/2s2)

Number of

hidden layers

� 1 ¼ 1

Output

layer

Combination

function

Scalar product
P

kpkxk Linear combination

of Gaussians
P

k lkGk

(see below)

Transfer

function

Logistic

s(X)¼ 1/(1 þ exp(�X))

Linear function f(X)¼X

Speed Faster in ‘model

application’ mode

Faster in ‘model

learning’ mode

Advantage Better generalization Less risk of non-optimal

convergence
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adaptation), in order to reduce the output error. Output adaptation is not very often used in

learning, but if it is used it gives rise to the problem of not always being compatible with the

input adaptation. This is because the response distribution (the dependent variable) may not

coincide with the data density distribution, and may lead to the determination of other centres

for the radial function.

With the exception of the possible application of output adaptation, the search for the

centres is unsupervised and can also be carried out on observations for which the response is

not always known, since it is then simply a matter of estimating the data probability density. It

may be useful to be able to train the RBF network on observations for which the dependent

variable is not always known: this enables us to use a larger number of observations. In this

case, we speak of semi-supervised learning. This is used whenever the collection of labelled

observations is more difficult or costly than the collection of unlabelled observations.

However, this semi-supervised learning has the drawback of beingmore sensitive to noise.

When areas of high density are sought in order to determine their centres without considering

the dependent variable, the input variables which are not related to the dependent variable are

not distinguished from the related variables, and may introduce noise.

The final aspect of parameter setting relates to the radii of the units of the hidden layer,

which are the standard deviations of the Gaussian distributions. A simple solution is to choose

radii equal to twice the mean distance between centres. If they are too large, the network will

lack structural detail and its precision will be reduced. If they are too small, the space will be

poorly covered by the Gaussian surfaces, and the network will have to interpolate between

these surfaces, which will decrease the capacity for generalizing the results of the learning

phase. As for the centres, the radii will be chosen so that they are smaller in areas with a high

density of observations, or in areas in which the result to be predicted varies more rapidly.

There are several ways of determining the radii as precisely as possible: a useful method finds

the k nearest neighbours (see Section 11.2), and examines each unit centre to see where its k

nearest neighbours are located (k is chosen appropriately by the user), and the mean distance

to these k nearest neighbours is taken to be the radius. This method has the merit of adapting to

the structure of the data. The radii are not necessarily equal to each other, but this is sometimes

assumed to decrease the number of network parameters.

Compared with the MLP network, the RBF network has the major advantage of needing

only a single hidden layer, and using linear combination and transfer functions in the output

layer in most cases – except in certain sophisticated variants (see Table 8.1). This makes for

faster learning and far fewer problems of complicated parameter adjustment for the user. It

also avoids the risk, inherent in the back-propagationmechanism of themultilayer perceptron,

of convergence towards a locally, but not globally, optimal solution. From this point of view,

the sequential search for the centres of the radial functions, their radii, and then the

coefficients of their linear combination is an advantage: it provides greater simplicity and

faster learning, and decreases the risk of overfitting by comparison with a search for global

optimization by gradient descent.

Theweakness of the radial basis function, compared with the multilayer perceptron, is that

it may need a large number of units in its hidden layer, which increases the execution time of

the network without always yielding perfect modelling of complex structures and irregular

data. This happens when the number of input variables is too large, and it is desirable to reduce

this number as far as possible. This problem is due to the fact that the RBF network, evenmore

than the multilayer perceptron, requires a learning set which covers all the configurations and

all the categories of variables which may be found when it is applied to the whole population
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to be studied. The advantages and disadvantages of the RBF network tend to be those that are

generally found in networks for probability density estimation. The MLP network offers the

best generalization capacity, especially for noisy data.

8.7.3 The Kohonen network

The Kohonen network is the most widely used unsupervised learning network. It can also be

called a self-adaptive or self-organizing network, because it ‘self-organizes’ around the data.

Other synonyms are ‘Kohonen map’ and ‘self-organizing map’.

Like any neural network, it is made up of layers of units and connections between these

units. Themajor difference from the networks described above is that there is no variable to be

predicted. The purpose of the network is to ‘learn’ the structure of the data so that it can

distinguish clusters in them.

The Kohonen network is composed of two levels (Figure 8.10):

. the input layer, with a unit for each of the n variables used in the clustering;

. an output layer, whose units are arranged as a generally square or rectangular

(sometimes hexagonal) grid of l�m units (in some cases l and m 6¼ n), each of these

l�m units being connected to each of the n units of the input layer, the connection

having a certain weight pijk (i2 [1,l], j2 [1,m], k2 [1,n]).

The units of the output layer are not interconnected, but a distance is defined between them,

such that we can speak of the ‘neighbourhood’ of a unit.

individual 1 

individual 2

individual N

input layer 

output layer 

     … 

pijk

Figure 8.10 Kohonen network.
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The units of the input layer correspond to the variables of the individuals to be clustered,

and this layer is used to present the individuals; the states of its units are the values of the

variables characterizing the individuals to be clustered. This is why this layer contains n units,

where n is the number of variables used in the clustering.

The grid on which the output units are placed is called the ‘topological map’. The shape

and size of this grid are generally chosen by the user, but they may also change in the course of

learning. Each output unit (i,j) is associated with a weight vector (pijk) k2[1,n], and therefore the
response of this unit to an individual (xk) k2[1,n] is, by definition, the Euclidean distance

dijðxÞ ¼
Xn
k¼1

ðxk�pijkÞ2:

So how does a Kohonen network learn? First of all, the weights pijk are initialized

randomly. Then the responses of the l�m units of the output layer are calculated for each

individual (xk) in the learning sample. The unit chosen to represent (xk) is the unit (i,j) for

which dij(x) has theminimum value.We say that this unit is ‘activated’ (Figure 8.11). This unit

and all the neighbouring units have their weights adjusted to bring them closer to the

(i+1,j+1)(i,j+1)(i-1,j+1)

(i+1,j)(i,j)(i-1,j)

(i+1,j-1)(i,j-1)(i-1,j-1)

incomeage
number of 
children

…

Figure 8.11 Activation of a unit of a Kohonen network.
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individual at the input. For example, the neighbouring units of (i,j) are the eight units (i� 1,j),

(i þ 1, j), (i, j� 1), (i, j þ 1), (i þ 1, j þ 1), (i þ 1, j� 1), (i� 1, j þ 1), (i� 1, j� 1). The

size of the neighbourhood generally decreases during learning: at the beginning, the

neighbourhood can be the whole grid; by the end, it may be reduced to the unit itself. These

adjustments form part of the network parameters.

The new weights of a neighbour (I,J) of the ‘winner’ (i,j) are

pIJk þY � f ði; j; I; JÞ � ðxk�pIJkÞ for every k 2 ½1; n�;
where f(i,j;I,J) is a decreasing function of the distance between the units (i,j) and (I,J), such

that f(i,j;i,j)¼ 1. It may also be a Gaussian function: exp(– distance(i,j;I,J)2/2s2).
The parameterY 2 [0,1] is a learning rate which, as in the case of a multilayer perceptron,

changes during learning by decreasing linearly or exponentially.

It is the extension of the weight adjustment to the whole neighbourhood of the ‘winning’

unit that brings the neighbouring units of (i,j) close to the individual (xk) at the input, and

enables the individuals that are close together in variable space to be represented by identical

or neighbouring units in the layer, just as neighbouring neurons respond to nearby stimuli in

the cerebral cortex. The whole process takes place as though the Kohonen network was made

of rubber and was deformed tomake the cloud of individuals pass over it while approaching as

closely as possible to the individuals. By contrast with the factor plane (see Section 7.1), the

projection concerned is non-linear.

When all the individuals in the learning sample have been presented to the network and all

the weights have been adjusted, the learning is complete.

To summarize, during the network’s learning:

. For each individual, only one output unit (the ‘winner’) is activated.

. The weights of the winner and its neighbours are adjusted.

. The adjustment is such that two closely placed output units correspond to two closely

placed individuals.

. Groups (clusters) of units are formed at the output.

In the application phase, the Kohonen network operates by representing each input

individual by the unit of the network which is closest to it in terms of the distance defined

above. This unit will be the cluster of the individual.

This algorithm has some similarities with the moving centres and k-means methods (see

Section 9.9.1). However, there is an important difference. In the k-means method, the

introduction of a new individual into a cluster only results in the recalculation of the centre

of gravity of the cluster, without any effect on the other centres of gravity. But the introduction

of a new individual into a Kohonen network results in the adjustment of not just the unit

nearest to the individual, but also the neighbouring units. The neighbourhood of the ‘winner’

unit is significant, while the neighbourhood of the ‘winner’ centre of gravity is not.

Another major difference between Kohonen networks and the moving centres of k-means

methods is that, unlike these methods, the Kohonen clustering takes place by reducing the

number of dimensions of the variable space, as in factor analysis, the new working space

generally being of dimension 2, as in my description, or, exceptionally, of dimension 3 or 1.
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9

Cluster analysis

Clustering, also known as ‘segmentation’, which I will describe more fully below, is the most

widespread descriptive method of data analysis and data mining. It is used when there is a

large volume of data and the aim is to find homogeneous subsets, which can be processed and

analysed in different ways. Such a requirement is present in a wide range of contexts,

especially in the social sciences, medicine and marketing, where human factors mean that the

data are numerous and difficult to understand. In clustering, unlike classification (which will

be dealt with in a later chapter), there is no particular dependent variable, and it is harder to

compare two forms of clustering objectively. There is no privileged criterion for comparing

two algorithms, such as we find in the rate of correct classification, and many competing

algorithms vie for our attention. Only the main ones will be described here, but it is worth

noting that the theory is constantly and rapidly evolving in this field, especially now that text

mining and web mining are beginning to give rise to problems of document clustering.

9.1 Definition of clustering

Clustering is the statistical operation of grouping objects (individuals or variables) into a

limited number of groups known as clusters (or segments), which have two properties. On the

one hand, they are not defined in advance by the analyst, but are discovered during the

operation, unlike the classes used in classification. On the other hand, the clusters are

combinations of objects having similar characteristics, which are separated from objects

having different characteristics (resulting in internal homogeneity and external heteroge-

neity). This can bemeasured by criteria such as the between-cluster sumof squares (see below).

As with classification, the essence of clustering is the distribution of objects into groups.

However, this distribution is not carried out on the basis of a predefined criterion, and is not

intended to combine the objects having the same value for such a criterion. In other words, the

cluster to which each object belongs is not known in advance, in contrast to the classification

process. Even the number of clusters is not always fixed in advance. This is because there is no

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.
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dependent variable: clustering is descriptive, not predictive. It is widely used in marketing,

medicine, the social sciences, and similar fields. In marketing, it is often referred to as

‘segmentation’ or ‘typological analysis’. In medicine, the term used is ‘nosology’. In biology

and zoology, we speak of numerical taxonomy. Finally, neural network experts use the term

unsupervised pattern recognition.

9.2 Applications of clustering

In marketing, clustering is particularly useful for finding the different customer profiles which

make up a customer base. After it has detected the clusters which ‘sum up’ its customer base,

the business can develop a specific offer and communications for each of them. It can also

follow the development of its customers over the months, and see which customers and how

many of them move from one cluster to another every month. If the business also wishes to

follow certain customers in detail, it can set up a customer panel, based on the clustering, to

ensure that all the clusters are well represented.

In the retail sector, clustering is used to divide up all the stores of a particular company into

groups of establishments which are homogeneous in terms of the type of customer, turnover,

turnover per department (according to the type of product), size of store, etc.

In the medical field, clustering can be used to discover groups of patients suitable for

particular treatment protocols, each group comprising all the patientswho react in the sameway.

In sociology, clustering is used to divide the population into groups of individuals who are

homogeneous in terms of social demographics, lifestyle, opinions, expectations, etc.

More generally, clustering is useful as a preliminary to other data mining operations.

In the first place,most predictive algorithms are not good at handling an excessively large

number of variables, because of the correlations between the variables which can affect their

predictive power. However, it is difficult to describe a heterogeneous population correctly

with a small number of variables. The groups formed by clustering are useful because they

are homogeneous and can be described by a small number of variables which are specific to

each group.

Secondly, it is sometimes helpful if an algorithm can process missing values in a clustering

process without replacing themwith a priori values such as the means (or minima or maxima)

for the whole population. We can then wait for an individual to be placed in its cluster in order

to replace its missing values, taking the mean values (or the minima or maxima) not for the

population as a whole, but for this cluster.

9.3 Complexity of clustering

To gain some idea of the complexity of the problem, let us recall that the number of (non-

overlapping) partitions of n objects is the Bell number,

Bn ¼ 1

e

X¥
k¼1

kn

k!

For example, for n¼ 4 objects, Bn¼ 15, with:

. 1 partition with 1 cluster (abcd);
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. 7 partitions with 2 clusters (ab,cd), (ac,bd), (ad,bc), (a,bcd), (b,acd), (c,bad), (d,abc);

. 6 partitions with 3 clusters (a,b,cd), (a,c,bd), (ad,bc), (a,d,bc), (b,c,ad), (b,d,ac), (c,d,ab);

. 1 partition with 4 clusters (a,b,c,d).

For n¼ 30 objects, B30¼ 8.47� 1023, an enormous number, greater than Avogadro’s number

(6.022� 1023), which is the number of molecules in one mole of any gas. As a general

rule, Bn> exp(n), which shows how necessary it is to define the correct criteria for clustering

and use efficient algorithms, because it would be out of the question to test all the

possible combinations.

9.4 Clustering structures

9.4.1 Structure of the data to be clustered

The data are set out in the form of a rectangular matrix where the rows are the individuals and

the columns are the variables, or else in the form of a square matrix of similarities, showing the

distances between individuals or between variables (for example, a matrix in which all the

coefficients are 1, minus the correlation matrix). These structures enable individuals or

variables to be clustered. The distance used is most commonly the Euclidean distance,

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
i¼1

ðxi�yiÞ2
s

;

but the Manhattan distance,

L1 ¼
Xp
i¼1

xi�yij j;

is sometimes used, especially to reduce the effect of extreme individuals whose coordinates

are not squared.

9.4.2 Structure of the resulting clusters

There are three possible cases. In the first, two clusters are always separated: we are concerned

here with partitioning methods. The number of clusters is generally defined a priori, but some

methods can dispense with this constraint (for example, clustering by similarity aggregation,

non-parametric methods using density estimation such as the SAS/STAT MODECLUS

procedure). The main partitioning methods are:

. moving centres, k-means and dynamic clouds;

. k-medoids, k-modes, k-prototypes;

. methods based on a concept of density;

. Kohonen networks;

. clustering by similarity aggregation.
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In the second case, two clusters are separate or one contains the other: the methods used here

are hierarchical ascendant methods (known as ‘agglomerative’) or descendant methods

(known as ‘divisive’). Agglomerative methods are based on a concept of distance or density.

This type of clustering can be combined with the type used in the first case, in what are known

as ‘mixed’ or ‘hybrid’ methods.

In the third case, two clusters can have a number of objects in common (‘overlapping’

clusters), and we speak of ‘fuzzy’ clustering, in which each object has a certain probability of

belonging to a given cluster. This formof clustering is very rarely used and is not described here.

9.5 Some methodological considerations

9.5.1 The optimum number of clusters

The definition of natural clusters is a tricky matter, because they are not always as obvious as

in some of the textbook cases presented in this section. The results do not always seem as

natural as these, and may also differ according to the algorithm used to compute them. In

practice, the determination of the ‘real’ number of clusters is empirical as much as theoretical.

Clustering is often required to be readable and interpretable in concrete terms, rather than

theoretically optimal. However, if the data are naturally structured into three clusters but four

clusters are requested, there is bound to be an arbitrary element in the division of the clusters.

The question of the number of clusters to be discovered is therefore particularly important.

In somemethods, such as the moving centres method and its variants (see below), this number

has to be determined a priori, which obviously has a highly detrimental effect on the quality of

clustering if this number does not correspond to the actual distribution of individuals.

Other methods, such as clustering by similarity aggregation, allow the algorithm itself to

determine the optimum number of clusters automatically. We can then advantageously begin

by carrying out an initial clustering without fixing the number of clusters and then examining

the results to see that we have n clusters of significant size while the others are very small

(perhaps less than 1% of the population in each case, for example). Finally, we recompute the

clustering with the number of clusters to be discovered fixed at n.

Agglomerative hierarchical clustering can also be used to choose an optimum number of

clusters in a simple way (see below).

In addition to these technical aspects, practical matters must often be borne in mind when

choosing the number of clusters. If the clustering is to be used for research or direct marketing,

it can be fairly complex. If it is to be used by sales personnel in the field, when dealing with

customers, it must be relatively simple, containing not more than seven or eight segments.

There have been cases in which typologies were never used because they were too complex,

with about 15 segments.

9.5.2 The use of certain types of variables

The variables must be standardized if they were not all measured in the same units and if they

have different means or variances. It is preferable to isolate the outliers, as in the example in

Figure 9.1, in which a single individual in the upper right-hand corner of the diagram,

measured at more than 30 on the vertical axis, is enough to invalidate the entire clustering

(a ‘single linkage’ agglomerative hierarchical clustering method), because the extreme

individual represents a cluster on its own, whereas the cloud of points is composed of two
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clearly visible clusters. And yet this individual is not so far away from the rest. The effects of

an individual placed completely outside the normal range can be imagined. Admittedly, in this

case the ‘single linkage’ method amplifies the influence of this outlier individual, because of

the chain effect used in this method (see Section 9.10.2).

When the extreme individual is removed, the agglomerative hierarchical clustering

detects the two natural clusters of the cloud in a satisfactory way (Figure 9.2).

When using qualitative variables, it is possible to use clustering on continuous variables by

multiple correspondence analysis (MCA), by acting on the factors associated with each

variable category.

9.5.3 The use of illustrative variables

In order to distinguish true clusters in the data, we often have to interpret the first results

before transforming, adding or excluding variables, and then restart the clustering. Exclud-

ing a variable does not necessarily mean deleting it from the analysis base. Instead, we cease

to take it into account in the clustering operation, while retaining it as an inactive variable to

observe the distribution of its categories in the various clusters. It is no longer an ‘active’

variable, but becomes an ‘illustrative’ variable (also called a ‘supplementary’ variable), as

seen in factor analysis.

9.5.4 Evaluating the quality of clustering

There are statistical quality measurements for each clustering methods, and these are detailed

below. They are very useful for choosing the correct number of clusters for agglomerative

hierarchical clustering.

Figure 9.1 Effect of an extreme individual on clustering.
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A more intuitive validation of a clustering can be achieved by using another statistical

method to visualize the clusters. For example, the individuals can be represented on the

factor plane of a principal component analysis (carried out on the clustering variables) and can

be ‘coloured’ according to their clusters, as in the example in Figure 7.8 which shows three

clear clusters.

9.5.5 Interpreting the resulting clusters

A major difference between classification and clustering methods is that, in the latter type,

there is no objective universal scale for comparison. Any predictive classification models can

be compared by measuring the rate of correctly classed individuals or the area under the ROC

curve. This is not true of clustering, since even an indicator like within-cluster sum of squares

depends on the number of clusters and cannot be used universally to prove the superiority of

one form of clustering over another which does not have the same number of clusters.

In any case, experience shows that most users prefer a clustering method to be intuitive

and easy to understand, rather than perfect in statistical terms. It will be necessary to explain to

them that, in statistical clustering, since the clusters are not predefined, a ‘rather young’ cluster

may include a number of elderly people. The extreme cases might need to be monitored and

reallocated in a few cases.

An interesting way of interpreting a clustering is to draw up a decision tree after

determining the clustering, taking as the dependent variable of the tree the number of the

cluster (and considering the variables used in the course of clustering as the independent

variables). If we obtain a tree with a sufficiently low error rate (less than 10–15%, for

Figure 9.2 Removal of the extreme individual in clustering.
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instance), we can even replace the initial clustering (which may not have been very explicit)

with a clustering defined by a limited set of rules, namely those deduced from the tree.

The result is not always as convincing as the example in Figure 9.3, where six leaves of the

tree enable us to find the six clusters in a reasonably exact way: the only clusters that are

poorly described by the tree are the third and fourth.
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Figure 9.3 Analysis of clustering using a decision tree.
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If the decision tree is not precise enough, we can also use multinomial logistic regression

(see Section 11.9.4), but this soon becomes complicated.

We can also define a qualitative variable for each cluster. This will be the indicator of the

cluster, and will be 1 for the individuals in this cluster and 0 for the other individuals. In this

way we can define as many indicators as there are clusters. Then, for each independent

variable, wemeasure the strength of its relationship with each cluster indicator, either by a test

of variance if the independent variable is continuous, or by a w2 test if the independent variable
is qualitative (in which case each qualitative variable can be replaced with the indicators

associated with the categories of this variable). These measurements are made as shown in

Section 3.8, and particularly in Section 3.8.4 as regards the computing aspects. The SPAD

DEMOD procedure operates in a similar way, using univariate tests to characterize the

resulting clusters, but replacing the w2 test with a test of proportion, and opposing each cluster
to the whole population instead of opposing each cluster to the set of the other clusters.

When the clustering variables are qualitative, or continuous but divided into clusters, we

can then cluster the variables (see Section 9.14) by operating on the indicators of the

categories of the clustering variables and the cluster indicators defined previously. If we find

that the ‘cluster 2’ indicator is in the same cluster of variables as ‘age between 18 and 30

years’, ‘lives in the country’, and ‘likes creative hobbies’, then the interpretation of cluster 2

becomes easier.

9.5.6 The criteria for correct clustering

A good clustering procedure will:

. detect the structures present in the data;

. enable the optimal number of clusters to be determined;

. yield clearly differentiated clusters;

. yield clusters which remain stable when there are small changes in the data;

. process large data volumes efficiently;

. handle all types of variables (quantitative and qualitative) if this is required.

The last objective is very rarely achieved directly; usually we have to perform a transforma-

tion of the variables, such as that mentioned above, using a multiple correspondence analysis.

9.6 Comparison of factor analysis and clustering

Factor analysis, in its various forms (PCA, CA, MCA) is the ideal method for providing an

overview of the data and continuous spatial visualization of the individuals, and even, in

some cases, detecting the natural number of clusters. By interpreting the factor axes, we can

use it to show up very clearly marked tendencies. However, it has certain limitations which

make it useful to apply clustering methods on a complementary basis. The first limitation is

the lack of readability of the principal planes when the volume of data is large, with several

hundreds, or even several thousands, of individuals or more appearing as points on the

plane. Another difficulty is that the projection on a subspace of lower dimension can make
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individuals appear closer than they would if all the dimensions were taken into account. A

third problem arises from the fact that the first components are the ones which are

predominantly taken into account in a factor analysis, the others being difficult to interpret.

This means that we lose some useful information: an important dimension may be missing

from the first main axes. For example, the ‘risk of debt default’ will not be fully shown

on the ‘income’ and ‘capital’ axes, because it is linked with other characteristics of

the customer.

Clustering offers solutions to these problems. First of all, we should note that it works in

a different way, by partitioning the individual space instead of representing it continuously.

It generally requires the use of an algorithm, i.e. a sequence of elementary operations

performed in a repetitive and recursive way, whereas factor methods find the solution of a

calculation. Clustering methods do not have one of the benefits of factor methods, namely

the parallel processing of individuals and variables. However, they have the major advantage

of taking into account all the dimensions (all the variables) of a problem, without projection

on to a subspace of lower dimension. Thus there is no loss of information. Moreover, we can

obtain a direct description of the clusters, which makes it simpler to interpret and use

the results, in comparison to factor methods. Finally, the substitution of the centres of

gravity of the clusters for the original individuals makes the graphic representation much

more readable.

9.7 Within-cluster and between-cluster sum of squares

Before looking at clustering bymoving centres and hierarchical clustering, wemust define the

between-cluster and within-cluster sum of squares of a population (Figure 9.4).

Asmentioned with reference to factor analysis, the total sum of squares (or inertia) I of the

population is theweightedmean (usually weighted by the inverse of the total frequency) of the

squares of the distances of the individuals from the centre of gravity of the population. This

can be written
P

i2Ipiðxi��xÞ2, where �x is the mean of the xi. The sum of squares of a cluster is

calculated in the same way with respect to its centre of gravity and can be written as

X
i2Ij

piðxi��xjÞ2:

total sum of squares
= 

between-cluster sum of squares +
within-cluster sum of squares

Figure 9.4 Within-cluster, between-cluster and total sum of squares.
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If the population is segmented into k clusters, with sums of squares I1, . . ., Ik, thewithin-cluster
sum of squares is, by definition,

IA ¼
Xk
j¼1

Ij:

A cluster becomes more homogeneous as its sum of squares decreases, and the clustering of

the population becomes better as IA diminishes.

Finally, the between-cluster sum of squares IR of the clustering is defined as the mean

(weighted by the sumof theweights of each cluster, pj ¼
P

i2Ijpi) of the squares of the distances
of the centres of gravity of each cluster from the global centre of gravity. This can bewritten as

X
j2clusters

X
i2Ij

pi

 !
ð�xj��xÞ2:

As IR increases, the separation between the clusters also increases, indicating satisfactory

clustering.

Thus there are two criteria for correct clustering: IR should be large and IA should be small.

Now, if these two criteria depend on the clustering, Huygens’ formula,

I ¼ IA þ IR;

shows that their sum depends on the global population only, and that the two preceding criteria

(minimization of the within-cluster sum of squares and maximization of the between-cluster

sum of squares) are therefore equivalent. Using the above notation, this formula can be

written as

X
i2I

piðxi��xÞ2 ¼
X

j2clusters

X
i2Ij

piðxi��xjÞ2
 !

þ
X

j2clusters

X
i2Ij

pi

 !
ð�xj��xÞ2

It is important to note that clustering into k þ 1 clusters will have a higher between-cluster

sum of squares than clustering into k clusters, and will therefore be ‘better’; so two clusterings

having different numbers of clusters cannot be compared according to the inertial criterion

alone. This is the intrinsic drawback of clustering methods using a purely inertial criterion: if

the number of clusters is not fixed in advance, then the optimization of this criterion results

in the isolation of all the individuals in the same number of separate clusters, each containing

one individual.

9.8 Measurements of clustering quality

The graphic indicators in this section are excellent tools for determining an optimal number

of clusters in clustering. A package such as SAS can produce these in a simple way (see

Section 9.11.2) and it is strongly recommended that they should be examined. Be aware,

however, that there is not always a specific number of clusters that is correct to the exclusion

of all others, and that the graphics shown below sometimes suggest several possible numbers

of clusters. Thus the choice between these numbers may have to be made according to other

considerations, for example by taking the opinions of users of the clustering into account. It

is also possible, in a specific situation, that one graphic is more readable and provides easier

separation than another: so it is useful to examine all the available graphics, to take
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advantage of the information provided in them, which may not always be identical even if it

is rarely conflicting.

9.8.1 All types of clustering

R2 (RSQ) is the proportion of the sum of squares explained by the clusters (between-cluster

sum of squares / total sum of squares). The nearer it is to 1, the better the clustering will be, but

we should not aim to maximize it at all costs, because this would result in the maximum

number of clusters: there would be one cluster per individual. Sowe need an R2 that is close to

1 but without too many clusters. A good rule is that, if the last significant rise in R2 occurs

when we move from k to k þ 1 clusters, the partition into kþ 1 clusters is correct. In the

example in Figure 9.5, the best number of clusters is obviously four.

The cubic clustering criterion (CCC), identified by Sarle (1983),1 indicates whether the

clustering is good (CCC> 2), requires examination (CCC between 0 and 2), or may be

affected by outliers (CCC< 0). If the CCC is slightly negative, the risk of outliers is low, and

this slightly negative value may indicate the presence of small clusters (see Figure 9.22). The

risk of outliers becomes high only if CCC is markedly negative, at less than �30 or

thereabouts. A good partition into k þ 1 clusters will show a dip for k clusters and a peak

for k þ 1 clusters, followed either by a gradual decrease in the CCC, or a smaller rise (more

generally, an inflection point) where isolated points or groups are present (as in the case of

Figure 9.6, which still has an optimum at four clusters). The CCC should not be used with the

‘single linkage’ hierarchical method, but should preferably be used with the Ward or moving

centres method (see below), and each cluster must have at least 10 observations.

The pseudo Fmeasures the separation between all the clusters. It must be high. If n is the

number of observations and c is the number of clusters, then
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Figure 9.5 R2 as a function of the number of clusters.

1 Sarle, W.S. (1983) Cubic Clustering Criterion, SAS Technical Report A-108. Cary, NC: SAS Institute Inc.
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pseudo F ¼ R2= c�1ð Þ
1�R2ð Þ= n�cð Þ :

We speak of ‘pseudo F’ because, despite the analogy with the F-ratio of the analysis of

variance, it does not follow a Fisher distribution. Like the CCC, the pseudo F should not be

used with the ‘single linkage’ hierarchical method.

9.8.2 Agglomerative hierarchical clustering

The semi-partial R2 (SPRSQ) measures the loss of between-cluster sum of squares caused by

grouping two clusters together, in other words the decrease in R2. The SPRSQ shown for k

clusters is the loss of between-cluster sum of squares due to the change from k þ 1 clusters to

k clusters. Since the aim is to have maximum between-cluster sum of squares, we look for a

low SPRSQ followed by a high SPRSQ on the following aggregation. In other words, a peak

for k clusters and a dip for k þ 1 clusters indicate a satisfactory clustering into k þ 1 clusters.

In the example shown in Figure 9.7, the optimum is four clusters (this is the same example as

for the R2 and the CCC, and I will describe this example more fully in Section 9.11.2; the

values of the indicators are given in Figure 9.19). The loss of between-cluster sum of squares is

only 0.07whenwemove from 5 to 4 clusters, as against a loss of 0.20whenmoving from 4 to 3

clusters. The curve is generally decreasing, but not always, because a merging of clusters may

cause a smaller loss of between-cluster sum of squares than the previous merge.

The pseudo t2 (PST2) measures the separation between the two clusters aggregated most

recently: a peak for k clusters and a dip for k þ 1 clusters indicate a satisfactory clustering into

k þ 1 clusters.

C
ub

ic
 C

lu
st

er
in

g 
C

rit
er

io
n

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Number of Clusters
987654321

4 clusters

Figure 9.6 CCC as a function of the number of clusters.
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9.9 Partitioning methods

9.9.1 The moving centres method

This method, proposed by Forgy (1965),2 with variants such as the k-means and dynamic

clouds methods (see below), proceeds in the following way:

1. k individuals are chosen as the initial centres of the clusters (either by picking them at

random, or taking the first k, or taking 1 out of n/k, although some packages such as the

SAS one provide refinements as described in Section 9.11.2).

2. The distances between each individual and each centre ci of the preceding step are

calculated, and each individual is assigned to the nearest centre, thus defining k clusters.

3. The k centres ci are replacedwith the centres of gravity of the k clusters defined in step 2

(these centres of gravity are not necessarily individuals in the population).

4. A check is made to see if the centres have remained sufficiently stable (by comparing

their movement to the distances between the initial centres) or if a fixed number of

iterations has been completed:

. if the answer is yes, the process stops (usually after at least 10 iterations);

. if no, return to step 2.
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Figure 9.7 SPRSQ as a function of the number of clusters.

2 Forgy, E.W. (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classification.

Biometrics, 21, 768–769.
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Figure 9.8 shows how Ludovic Lebart illustrates this method.3

9.9.2 k-means and dynamic clouds

In MacQueen’s k-means variant (1967),4 the centre of gravity of each group is recalculated

for each new individual introduced into the group, instead of waiting for the assignation of all

the individuals before recalculating the centres of gravity. The convergence is faster and may

even be completed in a single iteration, but the result depends on the order of the individuals in

the data set.

Diday’s dynamic clouds method (1971)5 differs from the moving centres method mainly

in the fact that each cluster is not represented by its centre of gravity (whichmay lie outside the

population) but by a subset of the cluster, called the kernel, which, if it is well structured

(for example, if it contains the most central individuals), will be more representative of its

cluster than the centre of gravity.

Figure 9.8 Moving centres.

3 Lebart, L., Morineau, A. and Piron, M. (2006) Statistique Exploratoire Multidimensionnelle: Visualisations et

Inf�erences en Fouille de Donn�ees. Paris: Dunod.
4 MacQueen, J.B. (1967) Some methods for classification and analysis of multivariate observations. Proceedings

of the Fifth Berkeley Symposium onMathematical Statistics and Probability, Vol. 1, pp. 281–297. Berkeley, University

of California Press.
5 Diday, E. (1971) La m�ethode des nu�ees dynamiques. Revue de Statistique Appliqu�ee, 19(2), 19–34.
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In all thesemethods, there is one individual that is more representative than the others in the

cluster, namely the one closest to the centre of gravity: this individual is called the paragon.

9.9.3 Processing qualitative data

The above methods are only applicable to continuous data, and therefore, if the data being

investigated are non-continuous, then either theymust be transformed into continuous data by

multiple correspondence analysis, or other partitioning methods must be used.

The advantage of MCA is that it enables quantitative variables (binned into categories)

and qualitative variables to be processed simultaneously, by applying the abovemethods to the

factors resulting from the MCA.

Another approach is to use variants of the k-means method, such as k-modes (Huang,

1998)6 which are applicable to qualitative data, and k-prototypes (Huang, 1997)7 which

combine k-means and k-modes and can be used on mixed data.

9.9.4 k-medoids and their variants

k-medoids, which are used in the PAM (Partitioning AroundMedoids) algorithm of Kaufman

and Rousseeuw (1990),8 have the advantage of beingmore robust in relation to outliers than k-

means. This robustness is due to the principle of the algorithm: a medoid is the representative

of a cluster, chosen as its most central object, which is tested by systematic permutation of one

representative and another object of the population chosen at random, to see if the quality of

the clustering increases, in other words if the sum of the distances of all the objects from their

representatives decreases. The algorithm stops when no further permutation improves

the quality. The main disadvantage of this algorithm is its complexity, of the order of

O(ik(n� k)2), where i is the number of iterations, k is the number of clusters and n is the

number of objects.

To reduce the computing time, which can quickly become prohibitive, we can use certain

devices such as that provided by the CLARA (Clustering LARge Applications) algorithm of

Kaufman and Rousseeuw (1990),9 which acts on a number of samples instead of on the total

population, applies the PAM algorithm to them on each occasion, and finally accepts the best

result. Both PAM and CLARA are implemented in R (in the cluster package) and S-PLUS.

Since the quality of the clusters produced by CLARA depends on the sampling, a variant,

known as CLARANS (Clustering LArge applications upon RANdomized Search), devised

by Ng and Han (1994),10 extends the area of the search for the objects and products clusters of

better quality than PAM and CLARA, but does not have the capacity of CLARA to handle

large databases.

6 Huang, Z. (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values.Data

Mining and Knowledge Discovery, 2, 283–304.
7 Huang, Z. (1997) Clustering large data sets with mixed numeric and categorical values. In Proceedings of the

First Pacific Asia Knowledge Discovery and Data Mining Conference, pp. 21–34. Singapore: World Scientific.
8 Kaufman, L. and Rousseeuw, P. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. NewYork:

John Wiley and Sons, Inc.
9 Ibid.
10 Ng, R.T. and Han, J. (1994) Efficient and effective clusteringmethods for spatial datamining. InProceedings of

20th International Conference on Very Large Data Bases, Santiago de Chile, pp. 144–155.
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9.9.5 Advantages of the partitioning methods

The main advantage of some of these methods (moving centres, k-means, k-modes,

k-prototypes) is that their complexity is linear; in other words, their execution time is

proportional to the number n of individuals (since the nk distances between the individuals are

calculated at each step), so that they can be used with large volumes of data. Furthermore, the

number of iterations needed to minimize the within-cluster sum of squares is generally small,

making these methods even more suitable for such applications.

The second advantage, in the SAS implementation at least, is that it is possible to detect

outliers, which appear in the form of clusters reduced to one element. These can be excluded

from the set of initial centres by the DELETE option in the SAS FASTCLUS procedure (see

Section 9.11.2). We can also use an option (‘strict¼s’ in FASTCLUS) which assigns the

cluster number �k to each observation that is closer to the kth cluster than the others, but is

separated from this cluster by a distance greater than the stated threshold s. This threshold is

specified by inspecting themaximum distance (_radius_) between an individual and the centre

of its cluster, and setting the value ‘_radius_’ of the clusters with high frequencies slightly

above this value (see Figure 9.9).

Figure 9.9 Cross-tabulation of the frequency and radius of each cluster.
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There is also a third advantage. Unlike hierarchical methods, in which the clusters are

not altered once they have been constructed, the reassignment algorithms constantly improve

the quality of the clusters, which can thus reach a high level when the form of the data

(spherical) is suitable.

9.9.6 Disadvantages of the partitioning methods

The first disadvantage of partitioning methods is that the final partition depends greatly on the

more or less arbitrary initial choice of the centres ci (see Section 9.9.7). Consequentlywe do not

have a global optimum, but simply the best possible partition based on the starting partition.

To mitigate this problem, some algorithms make several random selections of the ci,

compare the resulting clusterings, and cross-tabulate the clusters to establish strong forms. Note

that, if we perform p clusterings with k clusters each, we can have kp strong forms, each strong

form {f1, f2, . . ., fp} containing the individuals classed firstly in cluster f1 (there are k

possibilities), and secondly in cluster f2, and so on. In particular, the number of strong forms

is k2 when two clusterings are performed (this may be easier to understand): the individuals can

be distributed in a two-way table where the intersection of the ith row and the jth column

contains the individuals classed in cluster i on one occasion and in cluster j on another occasion.

Since this number of strong forms is much too large to be usable, we only keep those having a

significant frequency, by setting a threshold corresponding to a switch of the frequency, and

reassigning the individuals who do not belong to one of the selected strong forms.

Another solution is to carry out a number of clusterings on different randomly chosen

samples of the global population, and use the centres of the best clustering obtained as the

initial centres of the algorithm applied to the whole population. A simpler solution is to

perform two clusterings: the first of these is simply intended to provide the final centres which

are the initial centres of the second clustering. All software packages allow the user to choose

the initial centres instead of picking them at random. The following SAS syntax is an example

of this (see also Section 9.11.2):

PROC FASTCLUS DATA=test SUMMARY MAXC=10 MAXITER=50

OUTSEED=centres DELETE=2; VAR &var;

DATA=centres; SET centres; WHERE _FREQ_ _ > 2;

PROC FASTCLUS DATA=test SEED=centres SUMMARY MAXC=10

MAXITER=50

STRICT=0.6 OUT=partition; VAR &var;

RUN;

The first run of the FASTCLUS procedure excludes the centres with two or fewer individuals

attached (DELETE¼ 2) and places the final centres in the OUTSEED data set. This file is then

read as the SEED data set of the initial centres during the second execution of FASTCLUS.

Note the use of the STRICT¼ 0.6 option mentioned above for processing individuals at a

distance of more than 0.6 from any cluster. We can see the effect of this option on individuals

102 and 103 who are given a negative cluster number of �1 (�3) because they are separated

by a distance of 0.65 (0.64) from the centre of their cluster 1 (3).

102 �0.59774 �1.05012 4 �1 0.65400

103 �0.80046 �0.97533 4 �3 0.64009
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Note also that, between the two runs of FASTCLUS, we exclude the clusters with a frequency

(_FREQ_) of 2 or less from the CENTRES file. The DELETE option could have left some of

them there, namely those created in the last iteration, after which there is no further exclusion

of centres (to prevent the elimination of individuals in the corresponding cluster).

The second drawback of partitioning methods is that the number of clusters, k, is fixed in

these methods, and is not less than k unless certain clusters are empty or are excluded by the

DELETE option from the SAS FASTCLUS procedure (see Section 9.11.2). If this number

does not correspond to the actual configuration of the cloud of individuals, the quality of the

clustering may be adversely affected. We can try to mitigate this problem by testing different

values of k, but this increases the duration of the processing.We can also use PCA to visualize

the individuals and attempt to identify the clusters.

The third drawback of these methods is that they are only good at detecting spherical

forms. Even convex forms such as ellipses cannot be detected well if they are not

sufficiently separated.

9.9.7 Sensitivity to the choice of initial centres

An illustration of the effect of the choice of initial centres is provided in Figures 9.10 and 9.11.

If the initial centres are A, B and C, the first clusters are {A}, {B} and {C,D,E,F,G}. The

centres of gravity of these clusters are A, B, and a point I located near the centre of the graphic.

In the next iteration, all the points remain in their cluster, except forCwhich is closer to B than

to the centre of gravity I. The final clusters are therefore {A}, {B,C} and {D,E,F,G}.

If the initial centres are A, D and F, the first clusters are {A,B,C}, {D,E} and {F,G}. The

centres of gravity of these clusters are such that no point changes its cluster in the next iteration.
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Figure 9.10 Poor choice of initial centres.
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9.10 Agglomerative hierarchical clustering

9.10.1 Introduction

Unlike themethods considered above, which are non-hierarchical and produce a partition into

a certain number (which may or may not be fixed) of clusters, agglomerative hierarchical

clustering (AHC) produces sequences of nested partitions of increasing heterogeneity,

between partition into n clusters where each object is isolated and partition into one cluster

which includes all the objects. AHC can be used if there is a concept of distance, which can be

in either an individual space or a variable space. We must have defined the distance of two

objects, generally natural, and the distance of two clusters, which gives us more possibilities,

as we will see in the next section.

The general form of the algorithm is as follows:

Step 1. The initial clusters are the observations.

Step 2. The distances between clusters are calculated.

Step 3. The two clusters which are closest together are merged and replaced with a

single cluster.

Step 4. We start again at step 2 until there is only one cluster, which contains all

the observations.

The sequence of partitions is represented in what is known as a tree diagram (see Figure 9.12),

also known as a dendrogram. This tree can be cut at a greater or lesser height to obtain a
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Figure 9.11 Good choice of initial centres.
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smaller or larger number of clusters; this number can be chosen by the statistician to optimize

certain statistical quality criteria (Section 9.8). The main criterion is the loss of between-

cluster sum of squares (semi-partial R2), represented in Figure 9.12 by the height of the two

connected branches: since this loss must be as small as possible, the tree diagram is cut at a

level where the height of the branches is large.

9.10.2 The main distances used

Thus the AHC algorithm works by searching for the closest clusters at each step and merging

them, and the critical point of the algorithm is the definition of the distance between two clusters

A andB.When each of the two clusters is reduced to one element, the definition of their distance

is natural (it is usually theEuclidean distance between the twomembers), but as soon as a cluster

has more than one element the concept of the distance between two clusters is less obvious. It

can be defined in many ways, but the most usual definitions are the ones described below.

The maximum distance between two observations a2A and b2B tends to generate

clusters of equal diameter. By definition, it is highly sensitive to outliers, and is therefore little

used. The corresponding form of AHC is called ‘farthest-neighbor technique’, ‘diameter

criterion’ or ‘complete linkage’ AHC.

Theminimum distance between two observations a2A and b2B defines what is known as

‘nearest-neighbor technique’ or ‘single linkage’ AHC. Its weak point is that it is sensitive to

the ‘chain effect’ (or chaining): if two widely separated clusters are linked by a chain of

individuals who are close to each other, they may be grouped together.

Thus, in Figure 9.13, we can distinguish two natural sets, corresponding to clusters 1 and 2

on one hand, and 4 on the other hand, cluster 3 being the ‘umbilical cord’ between the two sets.

These two sets are detected well by most of the methods (see below), including the Ward,

average linkage and complete linkage methods. However, if the single linkage method is used

to find two clusters, it isolates cluster 2 and groups all the rest together (see Figure 9.14). This

Figure 9.12 Tree diagram of a agglomerative hierarchical clustering.
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is due to the fact that the closest points of clusters 1 and 2 are separated by a distance that is

greater than the shortest distance between two points of cluster 1, of clusters 1 and 3, of cluster

3, and of clusters 3 and 4. Since the distance between two clusters is the shortest distance

Figure 9.13 Illustration of the chain effect.

Figure 9.14 Sensitivity of single linkage to the chain effect.
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between two points in the two clusters in the single linkage method, cluster 2 is farthest from

the other clusters.

This is because, although the two large clusters 1 and 4 are distant from each other, they

are linked by cluster 3 in which each point follows the previous one at a distance which is

shorter than the shortest distance between two points of clusters 1 and 2: this is the chain

effect. It is the main drawback of the single linkage method, but only occurs in rather special

circumstances.

The single linkage is less suitable for detecting spherical clusters. However, it has good

theoretical properties, and is very effective at detecting elongated, irregular or sinuous

clusters, as in the example in Figure 9.15, taken from Ester et al. (1996).11 For this reason it is

widely used.
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Figure 9.15 Agglomerative hierarchical clustering by the single linkage method.

11 Ester, M. Kriegel, H.-P., Sander, J. and Xu, X. (1996) A density-based algorithm for discovering clusters in

large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD, Portland, OR, pp. 226–231.
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The mean distance between two observations a2A and b2B, which defines what is

known as ‘average linkage’ AHC, is intermediate between the maximum distance and

minimum distance methods, and is less sensitive to noise. It tends to produce clusters having

the same variance.

The distance between the centres of gravity of A and B, which defines what is known as the

‘centroid’ method of AHC (the centre of gravity is sometimes referred to as the centroid), is

more robust to outliers but less precise. This is the simplest in terms of calculation.

TheWard method (Figure 9.16) is one of those which match the purpose of the clustering

most closely. Since effective clustering is clustering in which the between-cluster sum of

squares is high, and since a change from clustering into kþ 1 clusters to clustering into k

clusters (grouping of two clusters) can only reduce the between-cluster sum of squares, the

aim is to merge the two clusters which cause the smallest decrease in the between-cluster sum

of squares. The concept of distance corresponding to this objective is the Ward distance

between two clusters, defined as the reduction in between-cluster sum of squares (or the

increase in the within-cluster sum of squares) due to their merging.

The Ward distance between two clusters A and B having centres of gravity a and b, and

frequencies nA and nB, is

dðA;BÞ ¼ dða; bÞ2
n�1
A þ n�1

B

:

We can see that it is a function of the distance between centres of gravity. Although the Ward

method tends to produce spherical clusters with the same frequencies (owing to the form of the

above formula), is relatively ineffective for elongated clusters (for which single linkage is

preferable) and very sensitive to outliers, it is by far the most popular method for agglom-

erative hierarchical clustering, because it is effective when applied to real problems.

The choice of distance is not of purely academic interest. Its effect on the shape of the

detected clusters is shown in Figure 9.17. When four clusters are selected, the single linkage
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Figure 9.16 The Ward method and the dynamic clouds method.
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and the complete linkage methods both result in the same clusters, A, B, C and D. However,

when two clusters are selected, the twomethods do not lead to the same result. This is because

dmin(A,B)¼ dmin(C,D)¼ 3, dmin(A,C)¼ dmin(B,D)¼ 4, and dmin(A,D)¼ dmin(B,C)¼ 5. Fur-

thermore, dmax(A,B)¼ dmax(C,D)¼ 7, dmax(A,C)¼ dmax(B,D)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 42

p
¼ 4:47, and

dmax(A,D)¼ dmax(B,C)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 72

p
¼ 8:06. Because of this, the single linkage method

groups clusters A and B together on the one hand, and C and D on the other hand, whereas

the complete linkagemethod groups clusters A andC on the one hand andB andD on the other.

9.10.3 Density estimation methods

In addition to the above methods, three others will be mentioned. These density estimation

methods are often among the most suitable for detecting the structure of rather complex

clusters. We can picture the data space as a landscape of peaks and valleys, where the

mountains are the clusters and bottoms of the valleys are their boundaries. In this picture, the

mountains are regions of high density. Density is generally defined as the number of objects in

a certain neighbourhood. It is estimated by one of three methods:

. the k-nearest-neighbours method (the density at a point x is the number k of observations

in a sphere centred on x, divided by the volume of the sphere);

. the uniform kernel method (in which the radius of the sphere is fixed, not the number

of neighbours);

. the Wong hybrid method (which uses the k-means algorithm in a preliminary analysis).

A distance dP between two clusters is then defined as inversely proportional to the density in

the middle of these two clusters (it is assumed that dP¼¥ if the two clusters are not adjacent).

The last step is to apply a single linkage AHC method to the dP.

Figure 9.17 Effect of the choice of distance in agglomerative hierarchical clustering.
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These methods are effective for detecting all types of cluster, especially clusters having

irregular shapes and unequal sizes and variances. This arises from the principle of these

methods, which does not specify any shape for the cluster in advance: a cluster grows in any

direction where the density is great enough. This principle is different from that of partitioning

methods such as moving centres, k-medoids and their derivatives, which are based on the

reassignment of objects to different clusters whose number is predetermined. Density

estimation methods operate by specifying not the number of clusters, but a smoothing

parameter, which, depending on circumstances, can be:

. the number k of neighbours of each point x;

. the radius r of the sphere surrounding x;

. the number of clusters of the preliminary k-means (Wong method).

The problem with these methods is the difficulty of finding a good value of the smoothing

parameter (see Figure 9.18). Their constraints are that, on the one hand, it is better to

standardize the continuous variables and exclude the outliers, and, on the other hand, that they

require sufficiently high frequencies. It should be noted that these methods are not only

associated with hierarchical algorithms, but are also found in partitioning algorithms such as

the popular DBSCAN12 and its extension OPTICS,13 which are very suitable for finding

different shapes of clusters.

Here is the SAS syntax for clustering by the 20 nearest neighbours:

PROC CLUSTER DATA=test OUTTREE=tree METHOD=density k=20 CCC PSEUDO

PRINT=10;

VAR &var; RUN;

If we replace the instruction ‘k¼ ’ by ‘r¼ ’ or ’hybrid’, we obtain the uniform kernel method

or the Wong hybrid method.

The following is the ‘two-stage’ variant which stops large clusters merging with each

other if not all the small clusters have merged with other clusters:

PROC CLUSTER DATA=test OUTTREE=tree METHOD=twostage k=20 CCC PSEUDO

PRINT=10;

VAR &var; RUN;

This two-stage variant is rather more effective than the standard ‘density’ method.

9.10.4 Advantages of agglomerative hierarchical clustering

This type of clustering does not suffer from the two major drawbacks of the moving centres

method, namely its dependence on the choice of initial centres and the fixed number of

clusters chosen in advance. Instead, it allows the optimal number of clusters to be chosen,

using indicators such as the pseudo t2 and semi-partial R2.

The second advantage of AHC is that it can detect clusters of different shapes, according to

the distance chosen (Ward, single linkage and similar methods). The best possible distance

12 Ibid.
13 Ankerst, M., Breunig, M., Kriegel, H.-P. and Sander, J. (1999) OPTICS: Ordering points to identify the

clustering structure. In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pp. 49–60.
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can be chosen according to previous knowledge of the shape of the clusters to be detected

(elongated, curved, with outliers, etc.), but the choice is mainly made by carrying out a

number of trials and observing the results. We may decide to use a given distance because the

resulting clusters are more easily described (see Section 9.5.5) or because the number of

clusters appears more natural with respect to the graphic indicators (see Section 9.8).

The third advantage of AHC is that it enables us to cluster individuals, variables or centres

of clusters obtained by using a moving centres algorithm (if centres are clustered, we improve
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Figure 9.18 Density estimation and effect of the smoothing parameter.
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the results if we know not only the centres of the clusters but also the within-cluster sum of

squares and the frequencies of the clusters).

9.10.5 Disadvantages of agglomerative hierarchical clustering

The main disadvantage of AHC is its algorithmic complexity, which is non-linear: in order to

move from k þ 1 clusters to k clusters, we must calculate (k þ 1)k/2 distances and combine

the two closest clusters. If n is the number of individuals to be clustered, the complexity of

the basic algorithm is of the order of n3, and it will soon exceed the capacity of even a powerful

computer. The difference from the moving centres method is that we are comparing

individuals with each other instead of comparing them with the centres of the clusters only.

The situation is improved to a certain extent by the nearest-neighbour algorithm, which

reduces a complexity of n3 to n2, by a judicious combination of more than two observations

(not only the two nearest) on each iteration. It can be used with the Ward, average linkage,

single linkage and complete linkage methods.

A second drawback is that, at each step, the partitioning criterion is not global, but

depends on the clusters obtained so far: two individuals placed in different clusters will no

longer be compared. In other words, this type of clustering into n clusters is not necessarily

the best possible outcome, but only the best of those obtained by combining the clusters of a

clustering procedure into n þ 1 clusters. Thus some natural clusters may be hidden by an

earlier branching.

9.11 Hybrid clustering methods

9.11.1 Introduction

Hybridmethods combine the strengths of both hierarchical methods and partitioning methods

(moving centres, k-means, etc.), namely the precision and the lack of a priori specification of

the former type, and the speed of the latter type.

In these methods, a first clustering is carried out on the n observations by a moving centres

or k-means method, specifying a number of clusters between 10 and 100 (or the Wong limit,

n0.3). This value is set at a high enough level to limit the risk of merging natural clusters and

greatly increase the between-cluster sum of squares. An agglomerative hierarchical clustering

is then performed on the centres of these clusters (or of their strong forms), not on the initial

observations (note: the centres do not have to form part of the initial observations), and the tree

diagram is cut at a height that is considered to be optimal. In this way we obtain the final

clusters, to which the initial observations are assigned by means of their pre-clusters which

resulted from the first step. In some software (SPAD), the AHC is followed by optimization

carried out by performing a clustering of the moving centres on the centres of the clusters

resulting from the AHC.

Here are some examples of hybrid methods:

. The Wong density estimation method must be preceded by a k-means procedure (the

other density estimation methods are not hybrid).

. Ward, average linkage and centroid agglomerative hierarchical clusterings may be

preceded by a k-means procedure (the first method is widely used).
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. The ‘two-step cluster component’ algorithm of IBM SPSS Statistics is based on the

BIRCH algorithm (Zhang et al., 1996),14 which has the advantage of handling both

quantitative and qualitative variables, and has linear complexity (effective with large

volumes), but which, in the case of quantitative variables, has the same disadvantage as

the k-means method, in that it can only detect spherical clusters satisfactorily.

. The BRIDGE algorithm (Dash et al., 2001)15 links a k-means procedure with a

DBSCAN procedure, thus providing both high speed and excellent quality of detection

of clusters of arbitrary shape.

9.11.2 Illustration using SAS Software

I have reproduced one of the data sets from the article by Ester et al. cited in Section 9.10.2.

We start by standardizing the continuous variables x and y, in other words centring them (so

that they have mean 0) and reducing them (so that they have standard deviation 1). This step is

strongly recommended if there are substantial differences between the variances or means of

the variables. We can use the conventional STANDARD procedure or the more recent

STDIZE procedure. The first line of the syntax associates the variables x, y, which are analysed

into the macro-variable VAR, which is then called&VAR in the rest of the syntax, and enables

the analysed variables to be changed by replacing their name only on the line for assignment to

the macro-variable.

%LET var = x y;

PROC STANDARD DATA=dbscan OUT=test MEAN=0 STD=1;

VAR &var;

RUN;

We then launch amoving centres procedure to obtain amaximum number of clusters specified

by the parameter MAXC (10 in this case), in a maximum number of iterations MAXITER

(50 in this case). MAXITER is a maximum which will not be reached if the algorithm

converges previously. The default value of this parameter is 1, but it should preferably be at

least 10, and if it is given the value 0 each individual is directly assigned to one of the initial

centres and the final clusters are immediately produced. The choice of the parameter

CONVERGE¼ 0.02 stops the iterations when no centre is displaced through a distance

greater than 0.02 times the minimum distance between the initial centres. This option is not

applicable if MAXITER� 1. Another option, DELETE¼ 2, excludes the centres with two or

fewer individuals attached (this is to prevent having an outlier as the centre). This exclusion

takes place after each iteration except the last, and the excluded centres are not replaced. The

parameter RADIUS¼ d specifies the minimum distance (default value 0) between two initial

centres at the time of their selection. If the initial centres are to be chosen at random, for

example in order to find the strong forms, we can set the parameter REPLACE¼RANDOM.

We can also choose the parameter REPLACE¼NONE, to accelerate the selection of the

initial centres by preventing the substitution of the nearest centres (set ‘radius’ to a large

14 Zhang, T., Ramakrishnan, R. and Linvy, M. (1996). BIRCH: An efficient data clustering method for large

databases. In Proc. of 1996 ACM-SIGMOD International Conference on Management of Data, Montreal, Quebec.
15 Dash, M., Liu, H. and Xu, X. (2001). ‘1 þ 1> 2’: Merging distance and density based clustering. Proceedings

of the 7th International Conference on Database Systems for Advanced Applications (DASFAA), pp. 32–39.

262 CLUSTER ANALYSIS



enough value), but it is best to leave the default option REPLACE¼ FULL. Note that the

DRIFT option can be used to replace the moving centres method with the k-means method.

PROC FASTCLUS DATA=test SUMMARY MAXC=10 MAXITER=50 CONVERGE=0.02

MEAN=centres OUT=partitio CLUSTER=presegm DELETE=2;

VAR &var;

RUN;

At the output of the algorithm, each individual is assigned in the OUT data set to a cluster

whose number is specified by the variable CLUSTER¼ presegm. These clusters are described

in the MEAN data set, which contains one observation per cluster, making 10 in this case. The

list of statistics displayed can be limited by the SHORTand SUMMARYoptions. If this is not

done, the statistics are displayed for each variable, revealing the variables which make the

greatest contribution to the clustering: these are the ones with the highest R2 (between-cluster

sum of squares/total sum of squares) and the highest R2/(1�R2) (the ratio of between-cluster

sum of squares to the within-cluster sum of squares). In this case, the two variables have very

high and similar values of R2:

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)

X 1.00000 0.24548 0.942225 16.308599

Y 1.00000 0.23181 0.948484 18.411491

OVER-ALL 1.00000 0.23874 0.945355 17.299831

The table also contains the global standard deviation, ‘Total STD’, and the intra-cluster

standard deviation ‘Within STD’ of each variable, and R2 ¼ 1� Within STD=Total STDð Þ2.
All these results are provided for each variable and also globally (the ‘OVER-ALL’ row).

The MEAN data set contains one row for each resulting cluster, with the following

information:

Obs presegm _FREQ_ _RMSSTD_ _RADIUS_ _NEAR_ _GAP_ X Y

1 1 21 0.26371 0.62286 7 0.90908 0.03354 0.78624

2 2 31 0.22412 0.45198 6 1.23883 1.25483 1.60977

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. CLUSTER¼ presegm: number of the cluster

. _FREQ_: number of individuals in the cluster

. _RMSSTD_: within-cluster sum of squares (‘root-mean-square standard deviation’);

the lower this value is, the more homogeneous the cluster, which is preferable

. _RADIUS_: maximum distance between an individual in the cluster and its centre

. _NEAR_: number of the nearest cluster

. _GAP_: the distance between the centre of the cluster and the nearest centre of another

. X, Y: values of the initial variables &VAR for the centre of the cluster.
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Remember that the centre of the cluster, i.e. its centre of gravity, is not necessarily an

individual in the cluster. The variables _FREQ_ and _RMSSTD_, and the initial variables

&VAR, will be used for the subsequent agglomerative hierarchical clustering.

The OUT data set contains the initial variables for each individual (N is the cluster

number, which is known a priori in our example), together with the following variables:

Obs X Y N presegm DISTANCE

1 �1.92073 �1.49419 1 9 0.38436

2 �1.88339 �1.36798 1 9 0.33055

. CLUSTER¼ presegm: number of the cluster

. DISTANCE: the distance between the individual and the centre of his cluster.

The statistics at the output of the procedure, namely the pseudo F, CCC, and the expected R2

from the clustering, are then inspected, to ascertain that the expected R2 approaches 1 and that

CCC> 2.

CCC> 2 is satisfied in this case, but its value is really only valid if the variables are not

correlated. Similarly, the expected R2 is calculated under the null hypothesis of the linear

independence of the variables. It is also less than the observed R2, which is 0.945355.

As a general rule, we aim to maximize these indicators by testing different values of the

number of clusters.

Pseudo F Statistic ¼ 401:74

Approximate Expected Over-All R-Squared ¼ 0:90858

Cubic Clustering Criterion ¼ 8:533

When this step of partitioning by the moving centres method is complete, we can move on

to the agglomerative hierarchical clustering. As mentioned above, the most widely used

method is the Ward method. This is applied to the 10 centres at the output of the FASTCLUS

procedure, contained in the ‘centres’ data set.

PROC CLUSTER DATA=centres OUTTREE=tree METHOD=ward CCC PSEUDO

PRINT=10; VAR &var; COPY presegm; RUN;

Because the input data set DATA contains variables named _FREQ_ and _RMSSTD_ created

by the previous procedure, SASknows that the input data are centres of clusters, not individuals,

and it uses the frequency _FREQ_ and the within-cluster sum of squares _RMSSTD_ of each

cluster to optimize theAHC.This is because the proximity of two centresmust be assessedwith

allowance for the size and dispersion (within-cluster sum of squares) of the corresponding

clusters. These two variables are used whenever the AHC is preceded by a moving centres

procedure. They can also be used if the AHC is used directly on centres of clusters, even if they

are not defined by a previous FASTCLUS procedure, in which case the two variables must be

entered under their names _FREQ_ and _RMSSTD_ by the user.
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The output data set, OUTTREE, is used to construct the tree diagram. It contains all

the information needed to plot the tree diagram, as well as information for the choice of the

best number of clusters to use, in other words the level at which the tree should be cut. This

data set contains an observation for each node of the tree of the cluster hierarchy, i.e. normally

2n� 1 observations (n¼ number of objects to be clustered), corresponding either to the

objects to be clustered (nodes at the first level of the tree, clusters reduced to one object), or

to the subsequent clusters resulting from the grouping of objects and clusters.

The clustering is based on the variables &VAR, and the instruction COPY presegm is

added, to copy into the output data set the variable presegm which is the pre-cluster number

calculated by the first step of the moving centres procedure.

The CLUSTER procedure can also be used to perform an AHC by the Wong hybrid

method. Select the instruction HYBRID and choose one of the two methods DENSITY

and TWOSTAGE:

PROC CLUSTER DATA=centres OUTTREE=tree METHOD=density HYBRID CCC

PSEUDO PRINT=10. . .

PROC CLUSTER DATA=centres OUTTREE=tree METHOD=twostage HYBRID CCC

PSEUDO PRINT=10. . .

The hierarchical structure is displayed at the output of the CLUSTER procedure (see

Figure 9.19). Thus we see that cluster 9 is formed by joining the objects (clusters reduced

to a single element, and therefore to a centre obtained from the moving centres procedure)

OB6 and OB8, that it contains 19 þ 18 individuals (attached to the 6th and 9th moving centre),

that it is then joined to the object OB7, and so on.

This description is summarized in the OUTTREE data set (Figure 9.20). The information

shown in this data set includes, for each object or cluster, the coordinates &VAR of its centre

(which are the weighted means of the objects forming the cluster), its ‘parent’ _PARENT_ in

the tree diagram, its height _HEIGHT_ in the tree diagram (the definition of this height

Cluster History

NCL Clusters Joined FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Tie

9 OB6 OB8 37 0.0160 .931 .906 5.04 350 51.2

8 CL9 OB7 56 0.0181 .913 .893 3.38 312 31.2

7 OB1 OB5 43 0.0198 .893 .877 2.41 292 69.4

6 OB3 OB10 38 0.0199 .873 .855 2.37 290 62.0

5 CL7 OB4 65 0.0315 .842 .824 1.95 281 56.3

4 CL6 CL8 94 0.0739 .768 .778 �.88 235 84.1

3 CL5 CL4 159 0.1980 .570 .700 �8.2 142 140

2 CL3 OB9 186 0.2255 .344 .530 �7.4 113 98.0

1 CL2 OB2 217 0.3442 .000 .000 0.00 . 113

Figure 9.19 History of a agglomerative hierarchical clustering.
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Obs _NAME_ _PARENT_ _NCL_ _FREQ_ _HEIGHT_ _RMSSTD_ _SPRSQ_ _RSQ_ _PSF_ _PST2_

1 OB6 CL9 10 19 0.00000 0.26769 0.00000 0.94681 . .

2 OB8 CL9 10 18 0.00000 0.25155 0.00000 0.94681 . .

3 CL9 CL8 9 37 0.01599 0.40234 0.01599 0.93081 349.798 51.224

. . .

15 CL3 CL2 3 159 0.19795 0.75796 0.19795 0.56970 141.663 140.372

. . .

Figure 9.20 Extract from the CLUSTER output data set.
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depends on the METHOD option; for the Ward method, the height is defined as the loss of

between-cluster sum of squares due to the merger which created the cluster), its frequency

_FREQ_ (for the clusters reduced to one of the centres produced by FASTCLUS, this

frequency is provided by the DATA data set), and the largest number of clusters _NCL_

which can be specified so that it appears in the tree diagram. To some extent, _NCL_ is the

level of the tree diagram where the cluster appears. Thus, _NCL_¼ 10 for the objects OBx

because they appear at the lowest level of the tree diagram, which is obtained when 10

clusters are requested. The clusters CLx appear at _NCL_ levels which become smaller

(higher in the tree diagram) as the clusters are merged. For example, cluster CL3 is selected

when we require clustering into three clusters. Thus we have _NCL_¼ 3 on the CL3 row,

because cluster 3 appears when we specify three clusters only, and ceases to appear if we

allow four clusters.

The OUTTREE data set also contains the clustering quality indicators for the number of

clusters _NCL_: these depend on the METHOD option, and in this case (with the Ward

method) we have the within-cluster sum of squares _RMSSTD_ of the cluster (supplied in the

DATA¼CENTRES data set for clusters reduced to one centre, OBnn), the semi-partial R2

_SPRSQ_, R2 _RSQ_, pseudo F _PSF_, pseudo t2 _PST2_, the cubic clustering criterion

_CCC_, and the expected R2 _ERSQ_.

In order to choose the level where the tree diagram will be cut, in other words the number

of clusters, we use the statistical indicators contained in the OUTTREE data set and in the

table describing the history of the mergers of the clusters. To represent these graphically, as in

Section 9.8, we can run the following SAS syntax (these indicators are not included in IBM

SPSS Statistics):

PROC SORT DATA=tree;BY ncl;RUN;

SYMBOL1 COLOR=black INTERPOL=join VALUE=dot HEIGHT=1; PROC

GPLOT DATA=tree;

PLOT (_sprsq_ _pst2_ _rsq_ _ccc_ _psf_) * _ncl_

RUN;

In this syntax, the TREE file is the output from the CLUSTER procedure (OUTTREE file),

in which _ncl_ is the number of clusters on which the data set must be sorted before displaying

the graphic. Note the INTERPOL¼ join instruction which connects the points with a

continuous line.

The SPRSQ and PST2 must show a dip for k clusters and a peak for k� 1 clusters for the

clustering into k clusters to be satisfactory: this suggests an optimum k¼ 4, since we go from

SPRSQ¼ 0.074 to 0.198, showing that a change from 4 to 3 clusters greatly reduces the

between-cluster sum of squares (Figure 9.21). According to the same criterion, the choice

k¼ 5 would also be acceptable, and it also meets the requirement for a large pseudo F and an

R2 close to 1. For k¼ 4, we find that CCC is slightly negative, but not to any harmful extent.

This CCC is due to the small isolated clusters which can be seen in Figure 9.22.

Having chosen the number of clusters, we can display the tree diagram and create a data

set OUT containing the number (CLUSTER) and the name (CLUSNAME) of the cluster of

each object (denoted OBx) for the clustering with the number of clusters specified by NCL

(four in this case). This is done by the TREE procedure which takes as its input the file

produced by the CLUSTER procedure and which produces at its output the data set printed

in Figure 9.23.
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Figure 9.22 Representation of the clusters.

Figure 9.21 Example of a tree diagram.
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PROC TREE DATA=tree NCL=4 OUT=segmhier; COPY presegm; RUN;

Finally, we simply have to match the following:

. the data set PARTITIO created in the moving centres step and containing the pre-cluster

PRESEGM (between 1 and 10) of each individual;

. and the data set SEGMHIER created by AHC and containing the final cluster

CLUSTER (between 1 and 4) of each pre-cluster PRESEGM, according to the

correspondence shown in Figure 9.23.

The match is carried out by a ‘merge’ on the two data sets:

PROC SORT DATA = partitio; BY presegm;

PROC SORT DATA = segmhier; BY presegm;

DATA segm; MERGE partitio segmhier; BY presegm; RUN;

Thus we know the final cluster of each individual in the study population, which can be shown

in Figure 9.24.We have not carried out a final consolidation of the clustering by reapplying the

moving centres algorithm, although this is automatically suggested by SPAD, and we have not

used strong forms. But, since the result is not perfect, we can try to improve it by a final

consolidation programmed in SAS.

This consolidation is therefore carried out by applying the moving centres method to

the centres of the clusters produced by the preceding AHC (see Figure 9.25). We can see

that these centres are well positioned, even if they are outside the population in almost all

cases. These are:

. either centres produced in the first step of the moving centres method, when the

centres have not been grouped with others by the AHC (as is the casewith OB2 andOB9

here) – these centres therefore have the same coordinates at the output of the AHC as at

the input;

Obs _NAME_ presegm CLUSTER CLUSNAME

1 OB6 6 1 CL4

2 OB8 8 1 CL4

3 OB7 7 1 CL4

4 OB3 3 1 CL4

5 OB10 10 1 CL4

6 OB1 1 2 CL5

7 OB5 5 2 CL5

8 OB4 4 2 CL5

9 OB9 9 3 OB9

10 OB2 2 4 OB2

Figure 9.23 Content of the output data set from the tree diagram cut at the chosen level.
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Figure 9.24 Clusters detected by the hybrid Ward method.
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Figure 9.25 Centres of final clusters produced by AHC.
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. or centres produced from groupings into clusters (CL4 and CL5 here) carried out by

the AHC – the coordinates of these centres are the means of the coordinates of the

objects in the cluster, for example the coordinates (0.63057; �0.70409) of CL5 are

the weighted means of the coordinates 21/65 (�0.03354; �0.78624), 22/65 (1.16729;

�1.07084) and 22/65 (0.72778; �0.25893) of the moving centres OB1, OB4 and

OB5; these coordinates are contained in the OUTTREE data set output by the

CLUSTER procedure.

We create a data set CENTRECAH containing the centres of the four clusters produced by the

AHC, selecting them by their name found in Figure 9.23. Then we launch the FASTCLUS

procedure, using the SEED command to indicate that it must not determine the initial centres

of the algorithm, but must read them in the specified data set. Clearly, the desired number of

clusters is set to four.

DATA centrescah (keep = x y _name_); SET tree;

WHERE _name_ in ("OB2" "OB9" "CL4" "CL5"); RUN;

PROC FASTCLUS DATA=test SEED=centrescah MAXC=4 MAXITER=10

CONVERGE=0 MEAN=centres2 OUT=presegm2 CLUSTER=presegm;

VAR &var;

RUN;

The ‘consolidated’ clusters are shown in Figure 9.26. We can see that this consolidation is not

really an improvement over the clustering shown in Figure 9.24.
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Figure 9.26 Final clusters after consolidation.
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This shows that the moving centres method fails to discover clusters of dissimilar size,

even though they are all convex. They are rather limited as to the type of clusters that they can

detect, and their main advantage is their speed, enabling them to be used as preliminary

operations, as in the hybrid clustering described here. The methods operating by density

estimation are much more effective in pattern recognition, and in this case the four

clusters could be detected perfectly by the 5-nearest-neighbours method (or by direct AHC

with the single linkage method). Some other highly effective methods are described in

Section 9.15 below.

9.12 Neural clustering

As we have seen, unsupervised learning neural networks, such as Kohonen maps (see

Section 8.7.3), are intended to be used for clustering. These networks will not be described

further at this point.

9.12.1 Advantages

The strength of Kohonen maps lies in their ability to model non-linear relationships between

data. These networks are also helpful for determining the optimum number of clusters

automatically, instead of fixing it in advance. This is because if the numbers r and c of rows

and columns in the grid of the Kohonenmap are fixed, the network allows for the configuration

of the data in the determination of the clusters, which can finally be present in a number which

is strictly less than r� c.

Kohonen maps can be used to process qualitative variables as well as quantitative ones.

9.12.2 Disadvantages

Kohonen networks are not very good at detecting few clusters directly, and the k-means

method (and of course the Ward and Wong methods) to which they are related is often

effective enough for this purpose. These networks are more useful when operating as a kind

of non-linear PCA, to represent the groups of individuals on a map and compare the groups

which are opposed to each other on the map. They are especially useful for placing the

prototypes of an RBF neural network or for pre-clustering before a agglomerative

hierarchical clustering (see Section 9.11.1). In practice, we often carry out a hybrid

clustering procedure, starting by constructing a network of at least 10� 10 nodes

(neurons), and then grouping the 100 nodes into a smaller number of clusters which must

be connected in the map. To do this, AHC can be applied to the 100 nodes resulting from the

Kohonen algorithm.

We must also consider the usual problems encountered with neural networks. First of all,

they appear as ‘black boxes’, and it is preferable to analyse a neural clustering to discover the

make-up of the clusters that are obtained. Some software will carry out this analysis

automatically. Also, correct learning requires a large sample to enable all the weights of

the nodes to be calculated properly, and the sample must include the greatest possible number
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of categories of the variables. Finally, Kohonen networks, like other clustering algorithms, are

sensitive to outliers.

9.13 Clustering by similarity aggregation

The algorithm which I will examine here is based on the work of Pierre Michaud16 and Jean-

François Marcotorchino.17 It is also called relational clustering because of the relational

analysis used by the authors; sometimes it is known as the voting method or Condorcet

method. The principles of this clustering method have also been implemented in the

POP freeware by Michel Petitjean of the University of Paris 7 (see http://petitjeanmichel.

free.fr), and this program has now been incorporated in the amap package of R by

Antoine Lucas.

9.13.1 Principle of relational analysis

Relational analysis is based on the representation of data in the form of equivalence relations –

hence the name. A clustering is actually an equivalence relationR, where iRj if i and j are in

the same cluster. As for any binary relation defined for a set of n objects, we can associate R
with an n� n matrix, which is defined by mij¼ 1 if iRj, and mij¼ 0 otherwise. The three

properties of an equivalence relation, namely reflexivity, symmetry and transitivity, are shown

by the following relations:

. mii¼ 1,

. mij¼mji,

. mij þ mjk�mik� 1.

The clustering procedure is therefore a matter of finding a matrix M¼ (mij) which meets the

above conditions.

In relational analysis, all the variables of the individuals of the population to be clustered

must be qualitative; if they are not, then they must be discretized, into deciles for example.

Each of p variables has its own natural clustering: each cluster consists of the individuals

having the same category for the variable in question. The aim of relational analysis is to find

a clustering which is a good compromise between the initial p natural clusterings. To do this,

we assume that mij is the number of times that the individuals i and j have been placed in the

same cluster (i.e. the number of variables for which i and j have the same category), and that

16 Marcotorchino, J.-F. and Michaud, P. (1979) Optimisation en Analyse Ordinale des Donn�ees. Paris: Masson,

Chapter X.
17 Marcotorchino, J.-F. (1981) Agr�egation des similarit�es en classification automatique. Doctoral Thesis in

Mathematics, University of Paris VI. See also M. Petitjean, M. (2002) Agr�egation des similarit�es: une solution

oubli�ee. RAIRO Oper. Res., 36(1), 101–108.
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M0 ¼ m0
ij

� � ¼ 2 mij

� ��p. Then m0
ij > 0 if i and j are in the same cluster (they ‘coincide’) for

amajority of variables,m0
ij < 0 if i and j are in different clusters for amajority of variables, and

m0
ij ¼ 0 if the number of variables for which i and j are grouped together is the same as the

number of variables for which i and j are separated. It is natural to place i and j in the same final

cluster if m0
ij is positive, and to separate them if m0

ij is negative. But this criterion is not

sufficient, because of the non-transitivity of the majority rule (Condorcet’s paradox): there

may be a majority for joining i and j, j and k, but not for joining i and k. We must therefore add

equivalence relation constraints of the kind stated above (reflexivity, symmetry and transiti-

vity) to find a clustering that is closest to the majority of the p initial clusterings. This brings us

to a linear programming problem which can be resolved correctly, as shown in the work of

Marcotorchino and Michaud.

9.13.2 Implementing clustering by similarity aggregation

To give a better picture of the working of clustering based on relational analysis, I shall

describe the stages of clustering by similarity aggregation, using an approach which is

intuitive rather than absolutely rigorous.

For each pair of individuals (A,B), let m(A,B) be the number of variables having the same

value for A and B, and d(A,B) be the number of variables having different values for A and B,

given that, for continuous variables,

. either we consider that they have the ‘same value’ if they are in the same decile,

. or we define their contribution to c(A,B) below as being equal to

1�2
vðAÞ�vðBÞj j
vmax�vmin

� �
;

where vmin and vmax are the outlying values of the variable V.

The Condorcet criterion for two individuals A and B is defined as

cðA;BÞ ¼ mðA;BÞ�dðA;BÞ:

We then define the Condorcet criterion of an individual A and a cluster S as

cðA; SÞ ¼
X

i
cðA;BiÞ;

the summation being over all the Bi2 S.

Given the above, we start to construct the clusters by placing each individual A in the

cluster S for which c(A,S) is maximum and at least 0. Sometimes we can replace this value 0

with a larger value, to strengthen the homogeneity of the clusters. We can also have an effect

on this homogeneity by introducing a factor s> 0 into the definition of the Condorcet

criterion, which becomes c(A,B)¼m(A,B)� s.d(A,B). A large value of swill be a high cluster
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homogeneity factor. If c(A,S)< 0 for every existing S, then A forms the first element of a

new cluster.

We therefore take a first individualA, which is comparedwith all the other individuals, and

group it with another individual BA if necessary. We then take the second individual B, which

is compared with the other individuals, as well as with the cluster {A, BA}, if it exists. And so

on. This step is the first iteration of the clustering.

We can perform a second iteration by taking each individual again and reassigning it, if

necessary, to another cluster taken from those defined in the first iteration. In this way we

perform a number of iterations, until:

. the specified maximum number of iterations is reached, or

. the global Condorcet criterion ceases to improve sufficiently (by more than 1% for

example, a value which can be set in advance) from one iteration to the next, this global

Condorcet criterion being X
A
cðA; SAÞ;

where the summation is performed on all the individuals A and the clusters SA to which

they have been assigned.

In practice, two iterations (or three if absolutely necessary) will be enough to provide

good results.

9.13.3 Example of use of the R amap package

We begin by loading the package:

> library(amap)

If the variables of the data frame (data table) to be processed are not factors (qualitative

variables), they must be transformed in advance as follows:

> for (i in 1:17) credit[,i] <- factor(credit[,i])

In this example, 17 variables are assumed. The variables can be numeric at the outset, but the

number of categories must be small.

We then calculate the dissimilarity matrix, using the diss function in the package.

However, this function only processes whole numbers, and we must therefore transform

the variables in advance, thus:

> creditn <-

matrix(c(lapply(credits,as.integer),recursive=T),ncol=17)

We obtain the following matrix:

> matrix <- diss(creditn)

> matrix
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

[1,] 17 �3 �3 �5 �3 �3 1 �5 �1 �3 �9 �5 �1 5 �3 �3 11 �1 �5 1

[2,] �3 17 �1 �3 �3 �5 �1 3 3 1 5 3 7 �3 5 7 �3 �5 3 �1

[3,] �3 �1 17 1 �5 3 �1 �3 5 �5 �7 �7 �5 �1 �3 �5 �1 �3 �9 �1

[4,] �5 �3 1 17 1 1 3 �3 �1 �11 �5 1 �5 �5 3 �7 �3 �5 �7 �3

[5,] �3 �3 �5 1 17 �1 �3 �7 �9 �3 �1 1 �7 3 1 �5 �3 �7 �5 �5

[6,] �3 �5 3 1 �1 17 �1 1 1 �13 �9 �7 �3 �7 �1 �5 �3 �7 �3 1

[7,] 1 �1 �1 3 �3 �1 17 �3 3 �7 �1 3 �1 �1 1 �3 7 �3 �5 7

[8,] �5 3 �3 �3 �7 1 �3 17 �3 �1 1 �3 5 �5 5 �1 �7 �5 5 1

[9,] �1 3 5 �1 �9 1 3 �3 17 �7 �5 �3 �1 �3 1 1 1 �5 �7 �1

[10,] �3 1 �5 �11 �3 �13 �7 �1 �7 17 1 �5 �3 7 �3 1 �1 �7 1 �7

[11,] �9 5 �7 �5 �1 �9 �1 1 �5 1 17 9 5 �1 7 1 �7 �5 1 �3

[12,] �5 3 �7 1 1 �7 3 �3 �3 �5 9 17 �1 �1 7 1 �3 �3 �1 �5

[13,] �1 7 �5 �5 �7 �3 �1 5 �1 �3 5 �1 17 �5 5 3 �3 �5 1 3

[14,] 5 �3 �1 �5 3 �7 �1 �5 �3 7 �1 �1 �5 17 1 3 5 �3 �3 �5

[15,] �3 5 �3 3 1 �1 1 5 1 �3 7 7 5 1 17 3 �3 �1 �3 �3

[16,] �3 7 �5 �7 �5 �5 �3 �1 1 1 1 1 3 3 3 17 �3 �5 1 �1

[17,] 11 �3 �1 �3 �3 �3 7 �7 1 �1 �7 �3 �3 5 �3 �3 17 �1 �7 1

[18,] �1 �5 �3 �5 �7 �7 �3 �5 �5 �7 �5 �3 �5 �3 �1 �5 �1 17 �13 �5

[19,] �5 3 �9 �7 �5 �3 �5 5 �7 1 1 �1 1 �3 �3 1 �7 �13 17 �3

[20,] 1 �1 �1 �3 �5 1 7 1 �1 �7 �3 �5 3 �5 �3 �1 1 �5 �3 17

2
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Finally, we can use the function for clustering by similarity aggregation:

> pop(matrix)

Upper bound (half cost) : 189

Final partition (half cost) : 129

Number of classes : 6

Forward move count : 879424708

Backward move count : 879424708

Constraints evaluations count : 1758849416

Number of local optima : 4

Individual class

1 1 1

2 2 2

3 3 3

4 4 3

5 5 4

6 6 3

7 7 1

8 8 2

9 9 3

10 10 5

11 11 2

12 12 2

13 13 2

14 14 5

15 15 2

16 16 2

17 17 1

18 18 6

19 19 2

20 20 1

In this example, the function has detected six clusters among the 20 individuals.

Note that we have only processed a very small number of individuals, because the pop

function unfortunately only has processing capacity for a few tens of individuals. However,

this drawback is inherent in this implementation, rather than in the clustering method itself,

which was implemented in a very high-performance version by IBM in its Intelligent Miner

software in the 1990s, capable of processing millions of individuals.

9.13.4 Advantages of clustering by similarity aggregation

The method is useful because it enables us:

(i) to determine the optimum number of clusters automatically, instead of fixing them

in advance;

(ii) to process missing values without transforming them;
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(iii) to compare all the individuals in pairs at each step, thus building up a global

clustering, instead of local clustering as in hierarchical clustering methods.

9.13.5 Disadvantages of clustering by similarity aggregation

Clustering by similarity aggregation has a number of drawbacks. Essentially, they show that

this method has to be confined to nominal variables.

1. Clustering by similarity aggregation is inherently restricted to nominal variables, and

therefore it is necessary to discretize continuous variables, a task that software

packages do not always perform in an optimal way, especially as the resulting discrete

variables are ordinal, and clustering by similarity aggregation cannot handle their

ordinal properties.

2. These methods are sensitive to the number of categories of the variables. Variables

with only a few categories have a higher weight than the others (this is the inverse of

factorial methods, in which the number of categories increases the contribution to the

sum of squares), because it is easier for two individuals to be similar on a variable

having few categories. These variables therefore tend bring the individuals together

and have a strong cluster shaping effect. The binary variables tend to ‘overwhelm’

the others.

3. In contrast to factorial methods, the method of similarity aggregation is affected by the

presence of redundant variables, which bias the results of the clustering in favour of

those variables which will become most discriminating in the description of the

clusters, while a principal component analysis, for example, supplies linearly inde-

pendent principal components.

4. The principle of the method means that individuals which are close on a majority of

variables are brought together. In the case of two variables, for example, we can see

that if

a. two individuals x and y are in the same decile of the first variable, and are very

different on the second variable, and

b. x and another individual z are ‘fairly close’, because they are in the same quintile but

not the same decile for the two variables, then x will be aggregated with y, and not

with z! The result is a division into clusters which may be surprising.

9.14 Clustering of numeric variables

So far, we have only considered the clustering of individuals. However, methods have been

developed for clustering variables as this is more important than the clustering of

individuals in some fields: for example, sensory analysis (creation of groups of descriptors)

and medicine (identifying syndromes on the basis of a set of symptoms). The

methods described here are only applicable to numeric variables, but if we have qualitative

variables we can always transform them into numeric variables by using multiple

correspondence analysis.
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One method involves applying agglomerative hierarchical clustering to the variables, as

we would to individuals, the difference being that the Euclidean distance is replaced

by Pearson’s correlation coefficient r (or rather, 1� r). The ‘complete linkage’ method is

preferably used, and two groups of variables V and W will be close if every variable v 2 V

is sufficiently correlated with every variable w 2 W.

The most successful method consists of a divisive hierarchical clustering (DHC) by

iterative applications of an oblique PCA (see Section 7.2.1) and this is provided by the SAS/

STAT VARCLUS procedure. We start with the set of variables. A PCA is then performed and

the first two factor axes, with eigenvalues l1 and l2, are inspected. By default, VARCLUS

operates with the correlation matrix to give the same weight to all the variables, and it will be

assumed henceforth that this parameter setting is used (specify the COVARIANCE option to

use the covariance matrix). If l2> 1, this means that the second axis – not just the first – is

important (the Kaiser criterion is chosen by default, but the value 1 can be replaced with

another value l, by entering MAXEIGEN¼ l). We then perform an oblique quartimax

rotation and redistribute the variables into the group V1 of variables most highly correlated

with the first axis and the group V2 of variables most highly correlated with the second axis. If

l2� 1, the second axis contains too little information and the set of variables is not divided.

This step is repeated for each of the clusters V1 and V2.

We stop when there are no more clusters with l2> 1 (or l2> l) or when a specified

number of clusters (set by the option MAXCLUSTERS¼ k, which neutralizes MAXEI-

GEN¼ l) has been reached. It is not essential to specify a number of clusters, because the

first criterion for stopping is always effective in the absence of any other setting. Clearly, as

the threshold l increases, it will be harder to surmount, and there will be a smaller number

of clusters.

Sometimes, after a cluster has been divided, we may find that the frequency of the cluster

is not equal to the sum of the frequencies of the two sub-clusters. This is due to the fact that,

following each division, VARCLUS is able to reassign each variable to another cluster formed

previously, in an attempt to maximize the variance accounted for. This reassignment of

variables can be prevented, if we wish to reduce the computation time or avoid destroying the

structure of the clustering tree. To do this, we have to specify the option HIERARCHY, or

specify a data set OUTTREE¼ARBRE which will cause the information required to display

the divisive hierarchical clustering tree diagram to be stored in the data set ARBRE. The

diagram will then be displayed by the TREE procedure, as in the case of a tree diagram

produced by AHC (see Section 9.10.1). Figure 9.27 shows on the horizontal axis the

proportion of variance explained as a function of the number of clusters, and we can see

that three clusters of variables explain 61% of the variance, as describedmore fully below. The

horizontal orientation of the tree diagram is provided by the option HORIZONTAL, and the

option HEIGHT _PROPOR_means that the horizontal axis of the tree diagram represents the

proportion of the variance explained at each step of the DHC.

The result of the VARCLUS procedure is a partitioning of the variables such that two

variables of the same cluster are intercorrelated as much as possible, and that two variables of

different clusters are correlated as little as possible.

The VARCLUS procedure differs from a standard PCA. In a PCA, all the principal

components are calculated from the same variables (the initial variables), whereas

in VARCLUS the initial variables are separated iteratively into subgroups (by quartimax)

and the principal components are calculated on these subgroups, not on the set of

initial variables.
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If the number of clusters of variables is limited to k, so that we keep only k components for

each VARCLUS procedure, these k components may explain less variance than the k first

principal components of the PCA, but they are easier to interpret.

VARCLUS is an effective method for clustering variables, but requires more computation

time than PCA; care must be taken if there are more than 30 variables.

To illustrate this procedure, let us reconsider the example of Figure 7.5.

PROC VARCLUS DATA=file_customer OUTTREE=tree;

VAR age seniority nbpoints nbproducts nbpurchases income

subscription changeconsum usecredit;

RUN;

PROC TREE DATA=tree HORIZONTAL;

HEIGHT _PROPOR_;

RUN;

Looking at the SAS/STAT outputs, we find that the first component, with its eigenvalue

l1¼ 2.86, explains 31.82% of the total variance. This variance is 9, the number of variables,

since these are reduced (with variance¼ 1) when the correlation matrix is used:

Cluster summary for 1 cluster

Cluster Members Cluster

Variation

Variation

Explained

Proportion

Explained

Second

Eigenvalue

1 9 9 2.863822 0.3182 1.4884

Figure 9.27 Tree diagram of variable clustering.

Total variation explained¼ 2.863822 Proportion¼ 0.3182
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For the second eigenvalue, we find l2¼ 1.49> 1, meaning that we must divide the set of

variables into two clusters, namely one cluster of six variables and another of three variables:

Cluster summary for 2 clusters

Cluster Members Cluster

Variation

Variation

Explained

Proportion

Explained

Second

Eigenvalue

1 6 6 2.808456 0.4681 1.2806

2 3 3 1.464485 0.4882 0.9239

Total variation explained¼ 4.272942 Proportion¼ 0.4748

The resulting two clusters explain 47.48% of the total variance, with a first eigenvalue of

2.81 for cluster 1 (i.e. 46.81% of the variance of this cluster and 31.2% of the total variance),

and a first eigenvalue of 1.46 for cluster 2 (i.e. 48.82% of the variance of this cluster and

16.27% of the total variance). This second cluster will not be divided, because its second

eigenvalue is less than 1, but the first cluster will be. However, when we look at the table

showing the two clusters we can see that the ‘change in consumption’ variable is located in the

second cluster, and this variable is the one least correlated with its cluster (coefficient

¼ 0.2151), a sign that the clustering of the variable is not satisfactory.

The ‘R2 with next closest’ column in the table below shows the correlation coefficient

between the variable and the cluster (other than its own) which is closest to it. The next column

is the ratio between 1�R2 (own cluster) and 1�R2 (next closest), and this ratio is smaller

when the variable is well clustered (it is even possible to have a ratio of more than 1 if the

variable is particularly poorly clustered).

Cluster Variable R-squared with 1-R��2 Ratio Variable Label

Own

Cluster

Next

Closest

Cluster 1 nbpoints 0.6546 0.0011 0.3458 nb of points

nbproducts 0.6189 0.0183 0.3882 nb of products

nbpurchases 0.5950 0.0007 0.4053 nb of purchases

income 0.4551 0.0234 0.5580 client income

subscription 0.2537 0.0042 0.7495 subscription

other service

usecredit 0.2312 0.0002 0.7689 use credit

Cluster 2 age 0.6033 0.0000 0.3967 age

seniority 0.6461 0.0336 0.3662 client seniority

changeconsum 0.2151 0.0027 0.7870 change in

consumption

After cluster 1 has been divided, we obtain the following result, in which we find that the

three resulting clusters explain 61.05% of the total variance, and that the second
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eigenvalues l2 of the three clusters are all less than 1, meaning that the process of cluster

division stops.

Cluster summary for 3 clusters

Cluster Members Cluster

Variation

Variation

Explained

Proportion

Explained

Second

Eigenvalue

1 4 4 2.537365 0.6343 0.6969

2 3 3 1.464485 0.4882 0.9239

3 2 2 1.492515 0.7463 0.5075

Total variation explained¼ 5.494365 Proportion¼ 0.6105

The distribution of the variables in the three clusters, with the two slightly separate

variables ‘subscription to other service’ and ‘payments using credit’, shows a result which is

consistent with that shown in Figure 7.5. We can see that there is now only one poorly

clustered variable, ‘change in consumption’, which perhaps ought to be separated from the

rest of its cluster. To force SAS/STAT to do this, there are two options:

. set a parameter MAXEIGEN¼ 0.9 (less than the value l2 of cluster 2);

. or directly specify a number of clusters, MAXCLUSTERS¼ 4.

In this way, we could explain a total of 71.27% of the variance.

Cluster Variable R-squared with 1-R��2
Ratio

Variable Label

Own

Cluster

Next

Closest

Cluster 1 nbpoints 0.6290 0.1399 0.4314 nb of points

nbproducts 0.6643 0.0679 0.3601 nb of products

nbpurchases 0.6952 0.0344 0.3156 nb of purchases

income 0.5489 0.0234 0.4619 client income

Cluster 2 age 0.6033 0.0012 0.3972 age

seniority 0.6461 0.0379 0.3679 client seniority

changeconsum 0.2151 0.0030 0.7872 change in

consumption

Cluster 3 subscription 0.7463 0.0743 0.2741 subscription other

service

usecredit 0.7463 0.0643 0.2712 use of credit

With the division into three clusters, SAS/STAT provides the correlation coefficients between

each variable and each cluster, in other words between the variable and the component

representing the cluster.
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Cluster Structure

Cluster 1 2 3

age age �.005609 0.776713 0.034486

seniority client seniority 0.194737 0.803797 0.053219

nbpoints nb of points 0.793065 �.033371 0.373993

nbproducts nb of products 0.815057 0.135163 0.260543

nbpurchases nb of purchases 0.833807 0.027315 0.185432

income client income 0.740852 0.152848 0.147148

subscription subscription other service 0.272504 0.064823 0.863862

changeconsum change in consumption 0.054681 �.463802 0.008141

usecredit use of credit 0.253561 0.012789 0.863862

We can see the negative correlation of the variable ‘change in consumption’ with its cluster,

according to Figure 7.5. Furthermore, looking at the correlations between the clusters as

shown below, we see that the correlations between cluster 2 and the other two are very weak.

Inter-Cluster Correlations

Cluster 1 2 3

1 1.00000 0.08659 0.30448

2 0.08659 1.00000 0.04492

3 0.30448 0.04492 1.00000

Finally, SAS/STAT summarizes its clustering process in the form of a table showing the

progressive refinement of the clustering, with a regularly increasing proportion of the variance

explained.

Number

of

Clusters

Total

Variation

Explained

by Clusters

Proportion

of Variation

Explained

by Clusters

Minimum

Proportion

Explained

by a Cluster

Maximum

Second

Eigenvalue

in a Cluster

Minimum

R-squared

for a

Variable

Maximum

1-R��2
Ratio for

a Variable

1 2.863822 0.3182 0.3182 1.488449 0.0025

2 4.272942 0.4748 0.4681 1.280620 0.2151 0.7870

3 5.494365 0.6105 0.4882 0.923863 0.2151 0.7872

The procedure also supplies the score functions of each cluster, enabling us to calculate the

component of the cluster as a linear combination of the centred and reduced variables in

the cluster.
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Table 9.1 A survey of clustering methods.

Algorithm (date) Parameters Most suitable for: Shape of
clusters

Partitioning methods (with reassignment of objects)

Moving centres, k-means
(1965, 1967)

Number of clusters Separate clusters, large frequencies Spherical

k-modes (1998) Number of clusters Qualitative variables, large frequencies

k-prototypes (1998) Number of clusters Quantitative and qualitative variables, large
frequencies

PAM (1990) Number of clusters Separate clusters, more robust to outliers than those
of k-means, small frequencies

Spherical

CLARA (1990) Number of clusters Fairly large frequencies Spherical

CLARANS (1994) Number of clusters, maximum number
of neighbours

Better-quality clusters than in PAM and CLARA,
small frequencies

Spherical

Kohonen maps (1982) Number of clusters Separate clusters, fairly large frequencies Spherical

Hierarchical methods

AHC, single linkage
(1951)

Cut-off level in the tree diagram Small frequencies, clusters of irregular shape Elongated

AHC, Ward and others
(1963, and 1948–1967)

Cut-off level in the tree diagram Small frequencies, better quality clusters than in
k-means

Spherical

CURE (1998) Number of clusters, number of representatives
per cluster

Clusters of any shape Arbitrary

ROCK (1999) Number of clusters Qualitative variables, small frequencies

BIRCH (1996) Maximum number of sub-clusters of an
intermediate node, maximum diameter of
sub-clusters of terminal nodes

Large frequencies, algorithm generalized to hybrid
variables (quantitative and qualitative)

Spherical
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CHAMELEON (1999) k nearest neighbours, size of sub-clusters
created, parameter a

Clusters of any shape Arbitrary

Density estimation methods

Wong’s hybrid method
(1982)

Initial number of clusters, cut-off level in the
tree diagram

Large frequencies Spherical

DBSCAN (1996) Radius of clusters, minimum number of objects
per cluster

Any shape of cluster (more effective than
CLARANS), fairly large frequencies

Arbitrary

OPTICS (1999) Radius of clusters, minimum number of objects
per cluster

Any shape of cluster, fairly large frequencies Arbitrary

BRIDGE (2001) Radius of clusters, minimum number of objects
per cluster

Any shape of cluster, large frequencies Arbitrary

DENCLUE (1998) Radius of clusters, minimum number of objects
per cluster

Any shape of cluster, fairly large frequencies Arbitrary

Grid-based methods

STING (1997) Number of cells at the lowest level, number of
objects per cell

Large frequencies Rectangular

WaveCluster (1998) Number of cells for each dimension, wavelet,
number of transformation applications

Large frequencies, high-quality clusters, effective
allowance for outliers

Arbitrary

CLIQUE (1998) Grid size, minimum number of objects per cell Large frequencies, numerous variables Arbitrary

MAFIA (1999) Cluster dominance factor, minimum number of
objects per cell

Large frequencies, numerous variables, better-
quality clusters than in CLIQUE

Arbitrary

Other methods

Similarity aggregation
(1979)

Similarity threshold Qualitative variables, large frequencies

CACTUS (1999) Support threshold, validation threshold Qualitative variables, large frequencies, not too
many variables

VARCLUS (1976) Number of clusters or threshold of second
eigenvalue

Clustering of variables
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Standardized Scoring Coefficients

Cluster 1 2 3

age age 0.000000 0.530366 0.000000

seniority client seniority 0.000000 0.548860 0.000000

nbpoints nb of points 0.312555 0.000000 0.000000

nbproducts nb of products 0.321222 0.000000 0.000000

nbpurchases nb of purchases 0.328611 0.000000 0.000000

income client income 0.291977 0.000000 0.000000

subscription subscription other service 0.000000 0.000000 0.578796

changeconsum change in consumption 0.000000 �.316700 0.000000

usecredit use of credit 0.000000 0.000000 0.578796

9.15 Overview of clustering methods

Table 9.1 sums up the main characteristics of the best-known and most widely used clustering

algorithms. Further details can be found in the standard work by Leonard Kaufman and Peter

J. Rousseeuw describing their PAM, CLARA, AGNES, DIANA and other algorithms (see

Section 9.9.4 above), the more recent work of A.D. Gordon,18 Brian S. Everitt, Sabine Landau

and Morven Leese,19 Jean-Pierre Nakache and Josiane Confais,20 and Periklis Andritsos.21

There was a proliferation of algorithms in the late 1990s, but unfortunately these are not yet

available in most commercial software, or even in R. WaveCluster, a highly effective

algorithm, is just one that ought to be more widespread.

In addition to the previously mentioned partitioning, hierarchical and density estimation

methods, I have alluded to grid-based algorithms, in which the data space is divided into

small cubes. The density of each cube is estimated, and adjacent dense cubes are then

grouped into clusters. In this case there is no reassignment of objects, as in the moving

centres method, and these methods are more closely related to the hierarchical methods,

except for the fact that the aggregation of the clusters depends, not on distance, but on

another criterion. These methods were developed for the clustering of highly dimensional

spatial data (describing objects in space). Some algorithms such as CLIQUE are also density

estimation methods.

18 Gordon, A.D. (1999) Classification, 2nd edn. Boca Raton, FL: Chapman & Hall/CRC.
19 Everitt B.S., Landau S., Leese M. (2001) Cluster Analysis, 4th edition. London: Arnold.
20 Nakache, J.-P. and Confais, J. (2004) Approche pragmatique de la classification. Paris: Technip.
21 Andritsos, P. (2002) Data clustering techniques. Tech. Report CSRG-443, University of Toronto.
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10

Association analysis

The detection of association rules is another descriptive method which is very popular in data

mining, especially in such areas as webmining, where it is used to analyse the pages visited by

aweb user, and the retail industry, where it can analyse the products bought by a customer on a

single visit. This explains the alternative name for this method: market basket analysis. Of

course, thismethod can be usefully applied to other activities as well. It does not have the same

theoretical difficulties as clustering and classification methods; instead, the difficulties arise

from the need to process enormous volumes of data (up to several million till receipts, for

example) and to pick out new and interesting associations from the overwhelming majority of

irrelevant or previously known associations.

10.1 Principles

Finding association rules is a matter of finding rules of the following type: ‘If, for any one

individual, variable A¼ xA, variable B¼ xB, and so on, then, in 80% of cases, variable Z¼ xZ,

and this configuration is found for 20% of the individuals.’ In other words, the aim is to find

themost frequent combined values of a set of variables of a data set. In market basket analysis,

the variables are the indicators of the products, and the rules are applied to indicators equal

to 1, in other words the products bought. Note that some recent research has been carried out

on ‘negative’ rules, where we are interested in the products that are not bought.

The value of 80% is called the index of confidence and the value of 20% is called the

support index of the rule {A¼ xA, B¼ xB, . . .}) {Z¼ xZ}. The first part of the rule is called

the ‘antecedent’ or ‘condition’; the second part is called the ‘consequent’ or ‘result’; and

expressions of the form {A¼ xA} are called ‘items’. In an association rule, an item can never

be in both the condition and the result simultaneously.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



A rule is therefore an expression of the form:

If Condition; then Result:

Here is an example taken from marketing (mythical, if not veracious):

If Nappies and Saturday; then Beer:

The support index is the probability

ProbðCondition and ResultÞ:

The confidence index is the probability

ProbðCondition and ResultÞ=ProbðConditionÞ:

Naturally, the aim is to find association rules for which the support and confidence are

above specified minimum thresholds.

For example, in the transactions shown in Table 10.1, where each row corresponds to a

market basket TX, and each column corresponds to a product A, B, . . . , the confidence index of
the association B)E is 3

4
and its support index is 3

5
. Similarly, the confidence index of the

associationC)B is 2
3
and its support index is 2

5
. One thing is evident: B is present in almost all

the transactions, or more precisely the a priori probability of having B there is 0.8. This

probability is greater than the confidence index for C)B, and therefore the rule C)B is not

helpful for predicting B. If we say that a transaction taken at random contains B, there is

only one chance in five that we will be wrong, as against one chance in three if we follow the

rule C)B.

The improvement brought by a rule, by comparison with a random response, is called the

lift (or simply the ‘improvement’), and is as follows:

liftðruleÞ ¼ confidence indexðruleÞ
ProbðResultÞ ¼ ProbðCondition and ResultÞ

ProbðConditionÞ � ProbðResultÞ :

When the ‘result’ is independent of the ‘condition’, the lift is clearly equal to 1. If the lift is less

than 1, the rule does not help. Thus we find that lift(C)B)¼ 5
6
(useless rule) and lift

(B)E)¼ 5
4
(useful rule). But note that, if the lift of the rule

Condition ) Result

Table 10.1 Set of transactions.

T26 A B C D E

T163 B C E F

T1728 B E

T2718 A B D

T3141 C D
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is less than 1, then the lift of the inverse rule, i.e. the rule

Condition ) NOT Result:

is greater than 1, since

confidence indexðinverse ruleÞ ¼ 1�confidence indexðruleÞ

and

ProbðNOT ResultÞ ¼ 1�ProbðResultÞ:
If a rule is not useful, we can try using the inverse rule, in the hope that it will be helpful for

business or marketing purposes.

The main algorithm for detecting association rules is the Apriori algorithm proposed by

Agrawal and other researchers.1

Apriori operates in two steps, which have become standard for this type of algorithm:

. It starts by searching for the subsets of items having a probability of appearance

(support) above a certain threshold.

. Then it attempts to break down each subset in a form {Condition[Result} such that the

quotient Prob(Condition and Result)/Prob (Condition), i.e. the confidence index, is

above a certain threshold.

In the first step, Apriori starts by making a first pass through the data, to eliminate all the

items which are less frequent than the specified minimum support. It then performs a second

pass, in order to construct all the sets of itemswith two elements, formed from the items retained

previously. Of these sets, it only retains thosewhose frequency exceeds the specified minimum

support. On each pass, Apriori retains only the sets of items which are more frequent than the

support threshold, out of all those constructed on the basis of the sets from the previous pass and

the items selected in the first pass. The frequent items with a size of n which are useful for our

purposes are those constructed from setswith a size of n� 1which are themselves frequent. The

first optimization of Apriori is that only a single pass is required for each value of n.

The difficulty of implementing the search for rules is due to the exponential growth of the

number of rules with the number of items. For each subset of itemsEwith n elements, there are

2n�1–1 rules of the formA) {E�A}, and therefore the same number of possible breakdowns

in the second step. Another improvement provided by the designers of Apriori is a way of

quickly identifying the rules which may exceed the fixed threshold of the confidence index.

Because of these advantages, the Apriori algorithm is the most widespread and most

commonly implemented algorithm for detecting association rules.

In practice, however, there are still a very large number of rules remaining, and most

packages offer an option for storing these rules in a file, in which the Condition)Result rules

can be filtered up to a certain value of the support index, and can be sorted according to their

1 Agrawal, R., Imielienski, T. and Swami, A.N. (1993). Mining association rules between sets of items in large

databases. InProceedings of the 1993ACMSIGMODInternational Conference onManagement ofData, pp. 207–216.

New York: ACM Press.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. I. (1995). Fast discovery of association rules.

In Advances in Knowledge Discovery and Data Mining, pp. 307–328. Cambridge, MA: AAAI Press/MIT Press.
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support, confidence or lift. This file is often a text file, but SAS Enterprise Miner can store the

rules in an SAS table.

The requirement in respect of the confidence threshold is generally stricter than for the

support threshold; a common example of a filter is 75% for confidence and 5% for support

(and 1 for lift, of course).

However, even with these filters, the number of rules soon becomes dizzyingly high, up to

several million for just a few hundred items and a few thousand observations. Indeed, this

number increases exponentially with the decrease in the minimum support and an increase in

the number of items in each rule. In fact, not only are almost all of these rules uninteresting or

well known already (cheese goes with bread and wine, white wine goes with oysters, nails go

with a hammer, and so on), but, purely in terms of computing power, it may be impossible to

process and store so many rules. So some packages offer a useful option for adding a filter on

the content of the rules, making it possible to retain only the rules which contain a certain item

in their consequent or antecedent. This functionality is even more useful because we often

seek rules that ‘predict’ a certain behaviour, where the consequent contains certain items

specified in advance. Among the commercial software programs, IBM SPSSModeler has this

functionality (Figure 10.1).

The packages also enable us to set a limit to the size of the rules, in other words to the

number of items they contain. We would rarely need to go beyond 10 items. Note that some

packages, but not all, permit consequents with more than one item. This is the case with

SAS Enterprise Miner and IBM SPSS Modeler, but not the freeware developed by Christian

Borgelt.2 However, this package is often mentioned and used, or implemented in other

Figure 10.1 Parameter setting in IBM SPSS Modeler.

2 Downloadable from http://fuzzy.cs.uni-magdeburg.de/%7Eborgelt/software.html, or more directly from http://

www.borgelt.net//apriori.html.
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software (such as R and its arules package,3 and also Tanagra4), because of its high speed,

making it suitable for detecting a large number of rules.

Interesting rules are those which are non-trivial, usable in practice, and preferably explicable.

10.2 Using taxonomy

Products can be defined at a more or less fine level of detail. For example, we may consider:

. savings products in banking, finance, etc.;

. among the bank savings products, there are current accounts, passbooks, etc.;

. among passbooks, there are instant savings, building society savings, post office savings

accounts, and so on.

The taxonomy of products is the set of these levels, with its hierarchy. The finest level

enables us to undertake more accurate marketing operations. However, working at the finest

level multiplies the rules, many of which will only have low support and must therefore be

eliminated. Working at the most general level enables us to have stronger rules. Both

viewpoints have their advantages and disadvantages. A good compromise is to adapt the

level of generality to each product, based on its scarcity, for example.

Products which are scarcest and most expensive (e.g. microcomputers or hi-fi in a

department store) will be coded at a finer level, whereas more common products (e.g. food

products) will be coded at a more general level. By way of example, we can group all

yogurts, cheeses, creams, etc., into ‘dairy products’, while making a distinction between

DVD players and camcorders. Even in this example, we can see that the finest level that is

of any use is most often the level of the product type (e.g. television), in other words

the level of the department or sub-department, rather than the identification number of

the product (such as the Efficient Article Numbering, or Stock Keeping Unit (SKU), which

is the reference number of the product in the stores or in the catalogue). A level as fine as

the SKU, which identifies everything down to the format and colour of the product, is

rarely useful.

The value of this procedure is that it can provide more relevant rules, in which the

commonest products do not hide the less common ones purely because of their frequency.

The best market basket analyses are therefore generally carried out on the basis of

different levels of the product taxonomy. In all cases, even if just one level is used, the products

in the transactions analysed must be carefully coded, to clearly distinguish a separate product

from an option which is not to be taken into account. For each product, we must also ask what

the most important property in the associations is to be: is it the type of product, its brand, or

maybe its size (for clothes)?

3 See: http://cran.univ-lyon1.fr/web/packages/arules/index.html and http://rss.acs.unt.edu/Rdoc/library/arules/

html/apriori.html.
4 See: http://eric.univ-lyon2.fr/�ricco/tanagra/fichiers/fr_Tanagra_Assoc_Rules_Comparison.pdf.
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10.3 Using supplementary variables

In addition to the products in a market basket, events relating to customers, etc., the

transaction lines analysed may include supplementary variables such as the date and time

of the transaction, or the method of payment. These enable us to detect rules such as:

If Nappies and Saturday; then Beer:

By adding temporal variables, we can look for the sequence of events which ends with the

purchase of a new product, the departure of the customer, or the like. In this case, we speak of

temporal associations.

Other information may be found here, such as the name of a manufacturer which

is included with some product types. Thus a market basket analysis can detect brand

loyalty phenomena.

For this purpose, the data to be analysed are presented as follows:

Product 1 Product 2 . . .

Customer A Type Brand Purchase date Type Brand Purchase date . . .

Customer B Type Brand Purchase date Type Brand Purchase date . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . .

In mail order, insurance and banking, we can also add some information about the distribution

channel: shop/agency, telephone, Internet, etc.

10.4 Applications

The method of finding association rules has been used widely since the 1960s in the retail

industry for analysing market baskets, stocking departments, organizing promotions, man-

aging stocks to prevent shortages and overstocks, etc. It is also useful for detecting

associations of options chosen in packaged products (in banking, telephony, insurance, etc.)

or associations of terms in a corpus of documents. It can be applied to any kind of items; for

example, it can be used to detect rules in sports, for example: if player X is on the field and the

match takes place in given circumstances, then the player Y scores more goals in 70% of cases.

As mentioned above, the main problem in implementing this method is the large number

of irrelevant association rules which may submerge the relevant ones. This problem can be

mitigated by using filters and taxonomies. However, some rules with high lifts and confidence

indices may pass unnoticed because their support indices are below the threshold which had

to be specified in order to prevent the numbers of rules becoming impossible to process.

Hastie et al. (2009)5 offer the light-hearted example of ‘vodka) caviar’ which is penalized

by the scarcity of the consequent.

5 Hastie, T., Tibshirani, R. and Friedman, J.H. (2009) The Elements of Statistical Learning: Data Mining,

Inference and Prediction, 2nd edn. New York: Springer.
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Naturally, a huge amount of computation power is needed to analyse the market baskets of

a hypermarket with several tens of millions of products on its lists and several million

transactions per year.6 Association detection algorithms are provided in data mining programs

available for a client–server system, such as SAS Enterprise Miner� and IBM SPSSModeler

(Figure 10.2), as well as in freeware such as R, Tanagra, RapidMiner and Weka.

Figure 10.2 Association rules detection in IBM SPSS� Modeler.

6 The total number of transactions in all the Wal-Mart stores is more than 20 million per day!
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10.5 Example of use

If we start with an ordinary data set in the form of ‘individuals� variables’, most software

packages require one or two preliminary procedures of data preparation.We can illustrate this

using the Titanic data set which we examined in Section 3.12, dealing with interactions, and

which we will use again in Section 11.8.13 for the development of a logistic model.

To start with, we must convert the data from observations in form 1 (tabular):

Individual Age Sex Class Survived

1 A F 1 Y

2 A M 3 N

3 C M 1 Y

. . . . . . . . . . . . . . .

to form 2:

1 Age¼A Sex¼F Class¼1 Survived¼Y

2 Age¼A Sex¼M Class¼3 Survived¼N

3 Age¼C sex¼M Class¼1 Survived¼Y

. . . . . . . . . . . . . . .

and sometimes to form 3 (transactional):

1 Age¼A

1 Sex¼F

1 Class¼1

1 Survived¼Y

2 Age¼A

2 Sex¼M

2 Class¼3

. . . . . .

To consider only three examples, the freeware by C. Borgelt processes form 2, but SAS

Enterprise Miner requires form 3, while IBM SPSS Modeler can handle forms 1 and 3.

The following SAS code can be used to create form 3, used by SAS, directly. First, we

must add a key, in other words a unique identifier of each individual, if the file does not already

have one. The input file will then be transposed with respect to this key by an association rules

detection program. Note that the variables are numeric in this example.

DATA titanic ;

SET sasuser.titanic ;

id = _n_ _ ;

RUN;
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CLASS AGE SEX SURVIVED ID

1 1 1 1 1 1

2 1 1 1 1 2

3 1 1 1 1 3

4 1 1 1 1 4

5 1 1 1 1 5

6 1 1 1 1 6

7 1 1 1 1 7

8 1 1 1 1 8

9 1 1 1 1 9

10 1 1 1 1 10

The following transposition transforms the ‘individuals� variables’ data set into a data set

with one line per (individual, variable) pair with the name of the variable in _name_ (‘name of

the former variable’) and its content in var1, where ‘var’ is the prefix specified in the

TRANSPOSE procedure. Since the variable ‘ID’ has also been transposed (all the variables

have been transposed, by the VAR _all_ instruction), the corresponding lines are deleted from

the TRANSPO file.

PROC TRANSPOSE DATA=test OUT=transpo (WHERE = (_name_ NE "id"))

PREFIX= var ;

BY id ;

VAR _all_ ;

RUN;

ID NAME OF THE

FORMER VARIABLE

var1

1 1 CLASS 1

2 1 AGE 1

3 1 SEX 1

4 1 SURVIVED 1

5 2 CLASS 1

6 2 AGE 1

7 2 SEX 1

8 2 SURVIVED 1

9 3 CLASS 1

10 3 AGE 1

11 3 SEX 1

12 3 SURVIVED 1

A step called DATA transforms the preceding data set into form 3 as mentioned above, by

concatenating the name of each variable with its content:
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DATA titanic_assoc (KEEP = id item)

SET transpo ;

LENGTH item $20. ;

item = CATX (’=’,_name_, var1) ;

RUN;

key item

1 1 CLASS¼1

2 1 AGE¼1

3 1 SEX¼1

4 1 SURVIVED¼1

5 2 CLASS¼1

6 2 AGE¼1

7 2 SEX¼1

8 2 SURVIVED¼1

9 3 CLASS¼1

10 3 AGE¼1

11 3 SEX¼1

12 3 SURVIVED¼1

A data set in the above form (form 3) can be analysed in Enterprise Miner. Other packages

require form 2, and the file can be transposed again from form 3 to form 2 by using the ID as

a pivot.

PROC TRANSPOSE DATA=titanic_assoc OUT=titanic_assoc2 (DROP =_name_)

PREFIX=var ;

BY id ;

VAR item ;

RUN ;

ID var1 var2 var3 var4

1 1 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

2 2 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

3 3 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

4 4 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

5 5 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

6 6 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

7 7 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

8 8 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

9 9 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1

10 10 CLASS¼1 AGE¼1 SEX¼1 SURVIVED¼1
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Figure 10.3 shows the parameter setting screen of the Association node of SAS Enterprise

Miner, which is applied to the data set in form 3 (transactional). This results in the 17 rules

shown in Figure 10.4. As mentioned above, the package provides an option for storing these

rules in an SAS data set or exporting them in another format.

The first rule is: male) adult (SEX¼1)AGE¼1). It relates to 1667 individuals out of

2201 passengers on the Titanic, i.e. the support index is 75.74%. As there are 1731 males, of

whom 1667 are adults, the confidence index is 96.30%. The lift of this rule is its confidence

index divided by the probability of being an adult, which is 95.05% (2092 out of 2201

passengers). This is only 1.01, and the 96.30% is only very slightly greater than the 95.05% of

confidence achieved by trivial prediction. This rule is therefore of low interest.

The rule with the strongest lift is ‘SURVIVED¼0 & CLASS¼0) SEX¼1 & AGE¼1’:

drowned þ member of crew)male þ adult. The lift is 99.55% (confidence) divided by

75.74% (this percentage of passengers are male adults), i.e. 1.31. But is this prediction really

useful?Whatweneed is rules inwhich survival or drowning appears in the consequents (results)

and not in the antecedents (conditions). None of the above 17 rules meets this condition.

Figure 10.4 Result of association detection in SAS Enterprise Miner.

Figure 10.3 Parameter setting for association detection in SAS Enterprise Miner.
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If we choose a support threshold of 5% and a confidence threshold of 75%,we go from17 to

62 rules. The first three rules concern the prediction of survival, and they also have interesting

lifts, all three being greater than 3. The second rule of the three has the strongest confidence and

support indices. It is stated thus: female þ first class) survived. As the survivors are only

32.30%of the total, thus rule, which is true in 141 out of 145 cases of first class and females, i.e.

97.24% confidence, provides real information with a lift of 97.24/32.30 ¼ 3.01. This very

reliable criterion of survival will also appear in the decision tree in Section 11.4.2.

SET_

SIZE

EXP_

CONF

CONF SUPPORT LIFT COUNT RULE

4 29.71 96.55 6.36 3.25 140.00 SEX¼0 & CLASS¼1)
SURVIVED¼1 & AGE¼1

3 32.30 97.24 6.41 3.01 141.00 SEX¼0 & CLASS¼1)
SURVIVED¼1

4 32.30 97.22 6.36 3.01 140.00 SEX¼0 & CLASS¼1 &

AGE¼1) SURVIVED¼1

4 60.38 75.71 30.44 1.25 670.00 CLASS¼0) SURVIVED¼0

& SEX¼1 & AGE¼1

3 61.97 75.71 30.44 1.22 670.00 CLASS¼0) SURVIVED¼0

& SEX¼1

4 61.97 75.71 30.44 1.22 670.00 CLASS¼0 & AGE¼1)
SURVIVED¼0 & SEX¼1

. . . . . . . . . . . . . . . . . . . . .

2 95.05 96.51 65.33 1.02 1438.0 SURVIVED¼0)AGE¼1

2 95.05 96.30 75.74 1.01 1667.0 SEX¼1)AGE¼1

As shown in Figure 10.5, SAS Enterprise Miner also displays the most frequent items,

namely those whose frequency exceeds 5% (the support threshold that was set previously) of

the number of individuals, which is 2201 in this case.

Figure 10.5 The most frequent items in SAS Enterprise Miner.
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A note on redundant rules. In the example above, rule 13,

SURVIVED ¼ 0 & CLASS ¼ 0 ) SEX ¼ 1;

and rule 15,

SURVIVED ¼ 0 & CLASS ¼ 0 ) SEX ¼ 1 &AGE ¼ 1;

have exactly the same support (670 observations), because rule 14,

SURVIVED ¼ 0 & CLASS ¼ 0 ) AGE ¼ 1;

is always true. Rule 13 is therefore redundant with respect to rule 15, because 15) 13.
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11

Classification and prediction

methods

This is the longest chapter in the book, covering the predictive methods used in statistics and

data mining. These are the longest established, the most widely applied, and the most

profitable techniques, and are used in various fields, such as hospitals, for calculating the

probability of occurrence of a disease, the recovery of a patient or the effectiveness of a

treatment; in research and industry, for calculating the probability of occurrence of a

phenomenon; in meteorology, for forecasting the weather or peak pollution incidences; in

agriculture, for predicting the yield of a crop; in banks and insurance, for calculating the

probability of customer defaults or claims; in humanities and social sciences, for predicting

types of behaviour; in archaeology, for dating excavated objects, etc. There are many

predictive techniques. They are undergoing constant development and being extended to a

wide range of problems. However, all these techniques operate within a precise theoretical

framework, which we must be familiar with if we are to avoid using them inappropriately.

Between the overview section outlining the qualities to be expected in a predictive technique

(Section 11.3) and the guide to the application of these techniques at the end of the chapter

(Section 11.16), we shall examine them one by one, pointing out their strong points and the

restrictions on their use, and starting with the type of data to which they are applied.

11.1 Introduction

The predictive techniques used in data mining can be divided into two major operations:

classification (or discrimination) and prediction (or regression). The aim of these two

operations is to estimate the value of a variable (called the ‘dependent’, ‘target’, ‘response’,

‘explained’ or ‘endogenous’ variable) relating to an individual or object as a function of the

value of a certain number of other variables relating to the same individual, identified as the

‘independent’ variables (also called the ‘explanatory’, ‘control’ or ‘exogenous’ variables).

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



What distinguishes them is the nature of the dependent variable: this is qualitative in the case

of classification, but continuous in the case of prediction.1

Classification is therefore an operation that places each individual from the population

under study in one of a number of specified classes, according to the characteristics of the

individual which are identified as independent variables. An individual is generally assigned

to a class on the basis of the explanatory characteristics by using a formula, an algorithm, or

a set of rules, which forms a model, and which must be discovered.

In practice, there are often two classes to be predicted, such as

. purchasing or non-purchasing customer (a score called the propensity to consume),

. a patient with a good or a bad prognosis (risk score),

. a customer who is loyal or non-loyal to the business (attrition score),

and the model will enable us to determine

. the probability that a customer will buy a given product,

. the probability of a patient’s recovery,

. the probability of losing a customer.

Prediction is a well-known operation in data analysis at least as regards its elementary aspects:

for example, it may be used to estimate the price of an apartment as a function of its area, the

storey it is situated on, and the district it is located in, or the consumption of electricity as a

function of the outside temperature and the thickness of insulation, or the size of thewings of a

species of bird as a function of age, and so on.

11.2 Inductive and transductive methods

Classification and prediction techniques fall into two types (Figure 11.1). In inductive

techniques, a training phase (the inductive phase) is used to develop a model which in some

way summarizes the relations between the variables, and which can then be applied to new

data to deduce a classification or prediction from them (the deductive phase).

Transductive techniques have only one step (repeated if necessary) in which each

individual is classified directly (or is predicted) with reference to the other individuals that

have already been classified – no model is created. Consequently, there is no determination of

parameters, because transductive methods are non-parametric.

The best-known of the transductive techniques, apart from the kernel method, is probably

the k-nearest-neighbour method,2 also called ‘memory-based reasoning’, in which each

individual is classified by searching among previously classified individuals for the class of

the k individuals which are its nearest neighbours, in terms of Euclidean distance or some

1 ‘Prediction’ should not be confused with ‘forecasting’, which is a matter of evaluating the value of a variable at

time t, given its values at previous points in time.
2 Previously encountered in automatic clustering, in the context of estimating the probability density (see

Section 9.10.3).
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other distance metric. Thus, in the example of Figure 11.2, the individual ‘?’ is assigned to ‘0’,

because it is mainly surrounded by 0s.

This principle can also be used for prediction, with a continuous predicted variable whose

value is known for a certain number of individuals, and in this case we calculate the mean of

the predicted variable in the neighbourhood of any new individual.

The value of kwill be chosen so as to obtain the best possible classification (or prediction).

The choice of the distance function and the optimal value of k is the main difficulty in using

this technique. If k is too small, the small number of neighbours makes the prediction

unreliable; if k is too large, the prediction becomes less accurate. Some software packages

offer an automatic choice of k which optimizes the accuracy.

This algorithm is useful when the number of variables is not too large and when the

distribution of the classes in Euclidean space is irregular. It works well with heterogeneous

data or even text data.

However, it has the drawback of requiring the manipulation of a number of previously

classified individuals whenever a new classification (or prediction) is carried out, even for

only one individual. It therefore needs a lot of storage and computing capacity.

Since it is generally preferably to summarize in a model the information contained in the

data, in order to be able to control this model and rapidly apply it to new data, transductive

techniques are much less widely used than inductive techniques, which will now be discussed.

Model

Data Data

Induction Deduction 

Transduction

Figure 11.1 Inductive and transductive methods.

   1                  0          0

0          0       1          0    1

      0                      1

       0         0

   1            1     ?      0

 1          1           0         1

Figure 11.2 Classification by the k-nearest-neighbour method.
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In inductive techniques, classification and prediction are carried out in three or

four steps:

1. A training step, carried out with a sample of individuals whose classification is known,

and which are drawn at random from the population to be modelled.

2. A test step, to check the model resulting from the training on another sample of

individuals whose classification is known and which are drawn at random from the

same population as the training sample. This step enables us to select the best of the

models created in the training step, while avoiding the optimistic bias that would be

caused by a test on the same sample as that used for training.

3. An optional step of validation on a third sample whose classification is known, to

measure the performance of the best model selected in the previous two steps. The

purpose of this step is to predict the quality of the results obtained when the model

is applied.

4. An application step, in which the resulting model is applied to the whole of the

population to be modelled.

In practice, the three samples – training, test and validation – may all be in the same physical

data set, or may be in separate data sets.

11.3 Overview of classification and prediction methods

11.3.1 The qualities expected from a classification or prediction
method

Precision

In a classification technique, the error rate, i.e. the proportion of incorrectly classified

individuals, must be as low as possible. Quality indicators, such as the area under the ROC

curve and the Gini index (which will be described below), must be as close as possible to 1.

In a prediction technique, there are other quality indicators, such as the R2 of a linear

regression, which must be as close as possible to 1.

Robustness

The model must also have as little dependence as possible on the training sample that is used,

and must be capable of being generalized satisfactorily to other samples. It must have the least

possible sensitivity to the random fluctuations of certain variables and to missing values. Even

if the data change over time, the model must continue to be applicable to new samples for a

reasonable period, which is inevitably shortened if there is a significant change in the law or

legal conditions, but which in any case depends on the rate of development of product ranges

and consumers: a score will be probably less durable in the mobile telephony industry than in

banking, for example. If possible, the stability over time should be tested at the time of

construction of the model, if an out-of-time sample is available for the tests. Such a sample

covers a different period from that of the training sample.
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The model should not be applied to variables which are doubtful, difficult to obtain, or

unstable from one sample to another or from one period to another.

Concision (parsimony)

The rules of themodelmust be as simple as possible and the number of rulesmust be as small

as possible. This will ensure that they are easier to understand and control, and more capable

of generalization to populations other than that of the training sample. Concision is a factor

in robustness.

Explicit results

The rules of the model should preferably be accessible and understandable. When expressed

in the form of explicit conditions on the original variables, they have two advantages: they are

immediately understandable to any user, and can easily be programmed by an ITworker, in the

form of SQL requests for example, for integration into the information system of a business.

Laws or regulations may require the results to be readable. This is also a requirement in the

medical field.

The diversity of data types processed

Not all algorithms can handle data that are qualitative, discrete, continuous, or simplymissing.

Model development speed

Even if the application of a given model is always relatively fast (as it has to be, for some

real-time applications), its training, in other words its construction, may take too long

when large volumes are data are involved (more than several hundred thousand observa-

tions). If many tests and adaptations are required to refine the model, its training needs to be

reasonably speedy.

The possibilities of parameter setting

In a classification, it may be useful to weight the classification errors, for example in order to

show that it is more serious to classify an patient who is ill as ‘not ill’ than vice versa. It may

also be useful to specify the a priori distribution of the individuals into the classes to be

predicted. Other parameter settings are possible, depending on the techniques used.

11.3.2 Generalizability

A small training sample can easily yield a low error rate in the training phase, while resulting

in a relatively high error rate in the test phase, because the model is poorly generalizable

owing to incomplete training. Conversely, a large training sample may make the model

appear to be less effective during training, because it will not be able to learn all the specific

cases of this more complex sample, but this model will perform better in the test phase

because it is more generalizable. However, the error rate in the test phase does not decrease
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indefinitely with an increase in the size of the training sample, and the error rate in training

does not rise indefinitely, but the training and test error rates generally converge towards the

same limit twhen the size of the training sample increases. This property, called consistency

in learning theory, is not true of all learning processes, but it is found in those which concern

us, namely the families ofmodels inwhich theVapnik–Chervonenkis dimension is finite (see

the next section). The convergence is a mean convergence, and in practice the observed

convergence is rarely perfect, because the error rates fluctuate from one sample to the next

(sampling sensitivity) and the test error rate may even be lower than the learning error rate in

a specific sample.

Figure 11.3 is an illustration of the above, and gives an idea of the minimum size of the

training sample:

. below this size, the model resulting from the training is poorly generalizable to testing

and application;

. above this size, there is no longer any significant decrease in the error rate in testing

and application.

This critical size is generally greater than 1000 individuals, but depends on the complexity of

the problem and the data, and, above all, on the dependent variable: in order to construct a

sufficiently robust model (see above), it is advisable to have at least 300–500 individuals in

each of the classes to be predicted.

Below this threshold, the population is too small for the selection of a test sample which is

different from the training sample. The test has to be conducted in another way, using what is

known as cross-validation. The population is split into, say, 10 random samples of equal size.

The set of the first nine samples is used as the training sample, and the remaining tenth sample

is used as the test sample. Thus a test error rate is found. The same operation is then repeated

on every possible 9/10, using each remaining 1/10 as the test sample. Finally, the mean of the

resulting 10 error rates is calculated, to estimate the error rate of the constructed model over

the whole set of data.

poor
generalizationerror

rate

good

test and application datat

training data
good
generalization

size of sample

size sufficient

Figure 11.3 Error rates in training and testing, according to the size of the learning

sample.
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This choice of 10 samples is most frequently used, in software packages and elsewhere,

but it is also possible to have n samples, where the number is equal to the number of

individuals in the population: at each step, a single individual is omitted (this is known as the

‘leave-one-out’ method). For reasons of computation time, this approach is only possible if n

is not too large.

11.3.3 Vapnik’s learning theory

This section is a more detailed examination of the matters discussed in the previous section,

but it is not essential for understanding the rest of the book.

To evaluate the predictive quality of a model, we can measure the prediction error by

means of various loss functions. The most widely used of these include:

. the quadratic function L(y,f(x))¼ (y � f(x))2 when y is continuous;

. the function L(y,f(x))¼ 1/2 |y � f(x)| when y is qualitative with two possible values, � 1

and þ 1.

The risk (or real risk) is defined as the expectation (mean value) of the loss function, but

since the joint probability distribution of x and y is not known, the risk can only be estimated.

The commonest estimate is the empirical risk formula

1

n

Xn
i¼1

yi � f ðxiÞð Þ2

or

1

n

Xn
i¼1

1

2
yi � f ðxiÞj j;

where n is the sample size. The latter formula includes the error rate mentioned in the

previous section.

We know that the empirical risk measured on the training sample has an optimistic bias: it

is generally lower than the real risk. The real risk is best estimated by measuring the empirical

risk on another sample, called the test sample, and this generally results in curves similar to

those of Figure 11.3 for the error rates.

The question arises of the convergence of the two curves towards a common value. This is

because, if the two curves are close above a certainvalue of n, then the discriminating power of

the model made to fit the n observations of the training sample will probably be generalized

successfully to other samples.

On the theoretical level, Vladimir Vapnik3 considered the convergence of the empirical

risk for the training sample Remp towards the risk R (to which the empirical risk for the test

sample is assumed to be an approximation), and demonstrated two fundamental results

concerning this convergence, one of which relates to the existence of a convergence while the

other relates to the speed of convergence.

3 Vapnik, V. (1995) The Nature of Statistical Learning Theory. New York: Springer.
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Before stating these two theorems, we must define a quantity related to the model and

called the Vapnik–Chervonenkis (VC) dimension. The VC dimension is measurement of the

complexity of a model, which is actually defined for every family of functions Rp! R (and

consequently for the {f(x)� 0, yes or no} classification models associated with functions) for

which it measures the separating power of the points of Rp. For example, linear discriminant

analysis is associated with a linear function, namely the Fisher function, and the set of possible

coefficients defines a family of functions. A frequently cited example is the family of functions

{sin(ax), x2R} for which the VC dimension is infinite. For further information, the reader

should consult Section 19.5 of the book by Gilbert Saporta4 or Section 7.9 of the book by

Hastie, Tibshirani and Friedman.5

The importance of this concept is due to two findings by Vapnik:

. The empirical risk for the training sample Remp of a model converges towards its risk R

(the model is said to be consistent) if and only if its VC dimension is finite.

. If the VC dimension h of a model is finite, then, with a probability of error a, we obtain

R < Remp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlogð2n=hÞþ 1Þ� logða=4Þ

n

r
: ð11:1Þ

The condition of finiteness set for the VC dimension, to ensure the convergence of Remp

towards R, is not trivial, as is shown by the preceding example.

The theoretical value of the bound (11.1) discovered by Vapnik is that it is universal: it

can be applied to all models, without any particular assumption on the joint distribution of x

and y. This upper bound is universal, as is the Berry–Esseen bound in the central limit

theorem, for example. Like this bound, however, the Vapnik upper bound is far from optimal

in specific cases where a better upper bound can be found. Indeed, the VC dimension of a

model is equal to the number of parameters in some simple cases (linear models), but it is

usually difficult to calculate and even to bound effectively, which limits the practical value of

the bound (11.1). Support vector machines (SVMs) are among the first types of models for

which the VC dimension could be calculated (Section 11.12.1). As with regularized

regression, the models in this case are calculated by applying a constraint (such as the ‘C’

of ridge regression: see Section 11.7.2), and their VC dimensions decrease as the constraint

increases, which explains their performance. In the case of SVMs, the VC dimension is a

function of the inverse of the margin.

However, we must be aware that inequality (11.1) is only true with a given probability a,
and that the upper limit tends towards infinity as a tends towards 0.

Inequality (11.1) has led to the structural risk minimization approach, in which nested

models with increasing VC dimension h1< h2< . . . are considered, as is traditionally done

with logistic or linear models nested by the addition of successive variables, or neural

networks in which units are added to the hidden layer. When the VC dimension increases, the

empirical risk generally decreases (on average), while the second term on the right-hand side

of (11.1) increases. We then retain the model that minimizes the right-hand side of (11.1), in

4 Saporta, G. (2006) Probabilit�es, Analyse des Donn�ees et Statistique, 2nd edn. Paris: Technip.
5 Hastie, T., Tibshirani, R. and Friedman, J.H. (2009) The Elements of Statistical Learning: Data Mining,

Inference and Prediction, 2nd edn. New York: Springer.
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other words the one offering the best compromise between fit and robustness, and between

bias and variance. The Vapnik theory provides a theoretical framework for this problem of

seeking a fit while avoiding overfitting. When it can be used, the structural risk minimization

approach is an alternative to other methods, such as those based on the Bayesian information

criterion (Section 11.8.6).

One last point. It should be noted that, if the models we are interested in always have a

finite VC dimension, this dimension can increase with the size of the training sample without

causing an increase in the bound, as is shown by formula (11.1), because of the square root

term, without even considering the reduction of the empirical risk. This square root term tends

towards 0, and therefore the empirical risk converges towards the real risk as h/n tends towards

0. This corresponds to the well-known fact that the complexity of a model can increase as its

training sample becomes larger.

11.3.4 Overfitting

When a link between the dependent variable and an independent variable appears in the

training sample, and is therefore memorized in the model, even though it does not exist in the

whole population to be modelled, we speak of the overtraining6 or overfitting of the model.

Overfitting is most likely to occur when the sample is too small with respect to the number of

parameters of the model, and is particularly prevalent with some less robust modelling

techniques such as decision trees and neural networks. This phenomenon is due to the fact

that, when the model is excessively precise in the training phase, it starts to follow all the

fluctuations in the training sample, as shown in Figures 11.6 and 11.7. Overfitting can be

detected by testing the model on another sample, and can be limited by increasing the sample

size or by simplifying the model (using fewer independent variables, fewer leaves on a

decision tree, fewer units in the hidden layer of a perceptron, etc.).

The choice of the complexity of the model requires a judgement to be made between the

quality of the fit to the training data and the capacity for subsequent generalization. This is

what statisticians call the ‘bias–variance dilemma’: the bias measures the quality of the fit, and

the variance measures the variability of the prediction for new cases. By seeking a bias which

is too small, we increase the variance and compromise the durability of the model.

It is always helpful to try to understand the model by using specialist knowledge of

the subject.

Not infrequently, overfitting occurs when the modelling base has a bias with respect to the

dependent variable. An example of this is a model intended to predict the purchasing of a

product. If the modelling base is too limited in time (i.e. the purchases are observed over a

period which is too short) and in space (i.e. the purchases are observed in a geographical area

which is too restricted), it may contain an abnormal proportion of customers who have

benefited from promotions and whose tendency to buy the product is over-evaluated by

comparison with the normal tendency of this population. The model will be distorted as a

result of this, and may even be completely misleading if a strong promotion has targeted a

population which does not usually buy very much. Furthermore, the resulting overfitting may

not be noticed in the construction of the model, if the test sample has suffered from the same

bias as the training sample. This is why it is essential to work on sufficiently large and

6 Also called ‘overadaptation’ or ‘overlearning’.
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representative samples, covering a sufficiently long period of observation (of sales made, in

this case). It is also preferable to find out about all the events which may have affected the

population and may have an impact on the future models.

Overfitting also occurs when one of the independent variables is correlated by construc-

tion with the dependent variable. To take an extreme example, we might try to predict an

unknown age by leaving among the independent variables a date of birth which would

obviously be known only during the construction of the model, not during its application. It is

essential not to rely on these independent variables whose presence is revealed by a model

which is perfect in the training phase but useless in application. Clearly, this case of overfitting

is less frequent, because it is more evident and easier to avoid.

Figures 11.4–11.6 show the fit to the data in the case of regression, for a model (A) which

is too simple, a model (B) which is sufficiently complex, and a model (C) which is too

complex. Similarly, Figure 11.7 shows the fit to the data for classification, for models A–C.

These models correspond to the three abscissae (A), (B) and (C) in Figure 11.8, which shows

(A) Model too simple

Figure 11.4 Underfitting of a regression model.

(B) Good model

Figure 11.5 Good fitting of a regression model.
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(C) Model too complex

Figure 11.6 Overfitting of a regression model.

Figure 11.7 Under- and overfitting of a regression model.

error
rate test and application data

training data

model complexity
(C)(B) stop here(A)

Figure 11.8 Error rates as a function of the complexity of the model.
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the error rate as a function of the complexity of the model, in training and in testing.

Comparing the error rates in training and in testing, we find that both rates decrease as the

model begins to grow. The test error rate then rises again as themodel not only learns the ‘true’

rules, which can be generalized, but also starts to be distorted in its adaptation to all the

peculiarities of the training sample. At this point, corresponding to the abscissa (B) in

Figure 11.8, the training should be halted.

The topic of overfitting will be considered again in the section on decision trees.

11.4 Classification by decision tree

The decision tree technique is one of the most intuitive and popular data mining methods,

especially as it provides explicit rules for classification and copes well with heterogeneous

data, missing data and non-linear effects. For applications concerned with database market-

ing, the only major competitor of the decision tree at present is logistic regression, which is

preferred for risk prediction, owing to its greater robustness. It should be noted that decision

trees are on the boundary between predictive and descriptive methods, since they create their

classification by segmenting the population to which they are applied: thus they belong to the

category of supervised divisive hierarchical methods.

11.4.1 Principle of the decision trees

The decision tree technique is used in classification to detect criteria for dividing the

individuals of a population into n predetermined classes (in many cases, n¼ 2). We start

by choosing the variable which, by its categories, provides the best separation of the

individuals in each class, thus providing sub-populations, called nodes, each containing the

largest possible proportion of individuals in a single class; the same operation is then repeated

on each new node obtained, until no further separation of the individuals is possible or

desirable (according to criteria which depend on the type of tree). The construction is such that

each of the terminal nodes (the leaves) mainly consists of the individuals of a single class. An

individual is assigned to a leaf, and therefore to a certain class, with a reasonably high

probability, when it conforms to all the rules for reaching this leaf. The set of rules for all the

leaves forms the classification model (Figure 11.9).

11.4.2 Definitions – the first step in creating the tree

To construct a decision tree with the aim of dividing the individuals of a population into n

classes, we must know how to choose the variable which best separates the individuals of each

class: the precise criterion (C1) for the choice of the variable and the separation condition on

this variable depends on the type of tree.

The number of possible separation conditions allowed by an independent variable depends

on its type. A binary variable allows a single separation condition. For a continuous variable X

having n separate values, there are n � 1 possible separation conditions on this variable. This

is because, when the values x1, . . ., xn of X have been sorted in the order

x1 � . . . � xn;
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the separation conditions are expressed in the form

X � mean ðxk; xkþ 1Þ:
A technique such as CART (see below) tests all the possibilities. If the independent

variable X is qualitative, with a set E of n possible values x1, . . ., xn, each separation condition
on this variable will be in the form

X 2 E0; where E0 � E�˘;

and we can see that there are 2n� 1 � 1 possible separation conditions on this variable (not

2n � 1, because the conditionsX2E0 andX2E � E0 are equivalent). Here again, CART tests

all the possibilities.

Here we can see that, when using data mining software, it is important to specify clearly

that a variable which appears to be numeric (e.g. socioeconomic status) is actually

qualitative. This is because the separation conditions on this variable will not take the

same form.

When the best separation has been found, it is applied, and then the operation is repeated

on each node to increase the discrimination, which gives rise to two or more child nodes for

each node. Each child node in turn creates two or more nodes, and so on, until:

. the separation of the individuals cannot be repeated any further, either because there is

only one individual left in each node, or because the individuals of a single node still all

belong to the same class, or because they are all identical (in terms of the independent

variables);

. or a certain criterion (C2) for stopping the deepening of the tree is met.

Condition A 
(that best separates the 

individuals
of each class) 

Condition B Condition C 

if A and B if A and not B                 if not A and C if not A
and not C 

Figure 11.9 Decision tree.
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If each node of the tree has no more than two child nodes, the tree is said to be binary; but

not all trees are binary. The first node of the tree is the root; the terminal nodes are the leaves.

The path between the root and each leaf is the expression of a rule. For example: customers

with an age less than x, a weight less than y and a height of at least z belong to classC in n%of

cases. The percentage n is a membership score for the classC. The density of a node is the ratio

of its number of individuals to the total number of the population; a common value for the

minimum density of the leaves of a tree is 1–2%.

To see how to read a decision tree, let us return to the example of the prediction of survival

following the sinking of the Titanic, as shown in the graphic produced by the IBM SPSS

Decision Trees module (Figure 11.10). The root contains 2201 individuals, who are all the

passengers on the liner. Of these, 711 (32.3%) will survive the shipwreck and 1490 (67.7%)

will be drowned. The variable separating the survivors from the others most clearly is ‘sex’.

Among the 470 females (21.4% of the passengers), the survival rate is 73.2% (344 survivors),

while for the 1731 males (78.6% of the passengers), the survival rate is only 21.2%

Figure 11.10 Decision tree for the Titanic.
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(367 survivors). The best separation of the male population is provided by the binary variable

‘age’, the 64 boys having a survival rate of 45.3%, considerably lower than the 73.2% of the

female population, but much greater than the adult male rate of 20.3%. As for those who

were in second or third class, their survival rate is very low, at 14.1%. As for the females, if we

leave aside the 196 unfortunates in third class, whose survival rate of 45.9% is very close to

that of the boys, the others reach a survival rate of no less than 92.7%, and this rate rises to the

exceptional level of 97.2% in first class. So there you have it. The fate of Leonardo DiCaprio

and Kate Winslet was written in the statistics!

The stop criterion (C2), like the separation criterion (C1), depends on the type and

parameter setting of the tree. (C2) often combines several rules, as follows:

1. the depth of the tree has reached a fixed limit

2. or the number of leaves (i.e. rules) has reached a fixed maximum

3. or the numbers contained in each node are less than a fixed value (often between 10 and

30, but it is preferable to choose between 75 and 100), belowwhich it is considered that

the nodes should not be divided further

4. or the further division of any node would result in the creation of a child with a number

of individuals below a fixed value (often half of the preceding value for a binary tree)

5. or the quality of the tree is adequate

6. or the quality of the tree is no longer increasing significantly.

It is in relation to the last two rules that trees differ most. For example, in CART trees (see

below), the quality of the tree is measured by the purity of the nodes, this purity being by

definition a positive functionwhich is symmetrical (it depends only on the proportion in which

each class is present in the node, and does not vary if the classes are permutated with respect to

the proportions), andwhich is maximumwhen all the individuals contained in the node belong

to the same class, and minimum when all the classes are present in the same proportion in the

node. The next section introduces the main two purity functions: these are the Gini index and

the entropy, if we disregard the elementary purity function (which cannot be derived), the

largest proportion of a class in a node. Thus the growth of the tree can be halted as soon as a

sufficiently large proportion of individuals in each node of the tree belong to the same class.

Similarly, if the purity has stopped increasing to a significant extent, the tree may be

considered to have grown sufficiently.

This first step of construction is enough for the simplest trees (such as CHAID). More

sophisticated trees include a second stage of ‘pruning’ (see below).

11.4.3 Splitting criterion

Anumber of criteria (C1) can be used to choose the best separation of a node. Themost widely

used ones are as follows:

. the w2criterion, where the independent variables are qualitative or discrete (used in the
CHAID tree);

. the Gini criterion, for all types of independent variables (used in the CART tree);
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. the Twoing criterion, for any type of independent variable (used in the CART tree), if the

dependent variable has k� 3 categories and wewish to convert the search for an optimal

split on k categories to an optimal split on two super-categories composed of initial

categories;

. the ordered Twoing criterion, if the dependent variable has k� 3 ordered categories, a

criterion in which the two super-categories contain only adjacent categories from the

initial categories;

. the entropy, or information, for all types of independent variables (used in the C4.5 and

C5.0 trees).

The first criterion is well known and is detailed in the Appendix (see Section A.2.10). The

choice of the independent variable and of the categories of this variablewhich are to separate a

node into a number of child nodes is made so as to maximize the w2 of this variable cross-

tabulated with the dependent variable (the class to be predicted).

The Gini index of a node is a purity function, calculated as follows:

Gini ðnodeÞ ¼ 1�
X
i

f 2i ¼
X
i 6¼j

fi fj

where fi, i¼ 1, . . ., p, are the relative frequencies in the node of the p classes to be predicted

(the dependent variable). The more evenly distributed the classes are in a node, the higher

the Gini index will be. As the purity of the node increases, the Gini index decreases. In the

case of two classes, the Gini index ranges from 0 (pure node) to 0.5 (maximum mixing).

With three classes, the index ranges from 0 to 2/3. The Gini index measures the probability

that two individuals, picked at random with replacement from a node, belong to two

different classes.

Remark. To simplify this description and the notation, I have adopted a simplification

throughout this section which does not alter the essence of the explanations: it is assumed

that the a priori probability of membership of a class is equal to the relative frequency of

this class in the population. Decision tree software packages generally allow two other

settings:

(i) the a priori probabilities are all equal;

(ii) the a priori probabilities are known by the user, who can enter them in a

dialogue box.

It is this assumption of the equality of the a priori probability and the relative frequency

that results in the same equality in each node, and enables us to write the above formula

for the Gini index, which in a fully generalized form should be expressed as a function of

the a priori probabilities, not the frequencies fi. The same assumption also means that the

probability that an individual belongs to a node is equal to the density of this node, in

other words its number of individuals divided by the total number of the population.
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Each separation into k child nodes (containing n1, n2, . . ., nk) should result in the greatest

increase in purity and consequently the greatest decrease in the Gini index. In other words, we

must minimize:

Gini ðseparationÞ ¼
Xk
i¼1

ni

n
Gini ðith nodeÞ:

An important property of the CART tree based on the Gini index is that the impurity

reduction is always positive:

Gini ðparent nodeÞ�Gini ðseparationÞ � 0:

The importance of a variable in a CART tree can be measured by calculating, for each

node of the tree, the impurity reduction of the split created by the variable (when this variable

has been selected for the split), and then adding up these impurity reductions for all the nodes

of the tree. The IBM SPSS Decision Trees module provides this measurement.

This criterion enables us to take into account the costs Cij of incorrect assignment of an

individual of class j to class i. The Gini index of a node is then defined s

Gini ðnodeÞ ¼
X
i; j

Cij fi fj:

The simplest case, which is accepted by all software if no other setting is made, is the one

in which Cij¼ 1 if i 6¼ j and Cii¼ 0.

Note that, in contrast to discriminant analysis in which the costs of incorrect assignment

do not alter the discriminating function, but only the decision threshold, these costs modify the

decision tree itself.

Using the same principle of calculation, we can replace the Gini index with another purity

function, the entropy, given by

entropy ðnodeÞ ¼
X
i

filogð fiÞ;

and we can then aim to minimize the entropy in the child nodes.

11.4.4 Distribution among nodes – the second step in creating the tree

When the tree has been constructed and the division criteria for each node have been

established, each individual can be assigned to exactly one leaf, which is determined by the

values of the independent variables for the individual. When this has been done, each leaf

contains a certain proportion fj of individuals of each class j. We can then deduce the class to

which the leaf is assigned; this will define the class of all the individuals in the leaf.

The rule is that a leaf is assigned to a class j if the cost of assigning an individual of the leaf

to class j is lower than the cost of assigning it to any other class. This cost Cj (still assuming

that the a priori probabilities are identical to the proportions) is

Cj ¼
Xp
i¼1

Cji fi:
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In the simplest case, where Cij¼ 1 if i 6¼ j and Cii¼ 0, we find that

Cj ¼
X
i6¼j

fi ¼ 1� fj:

In this case, saying that class j of the leaf is the one that minimizes the costCj is equivalent

to saying that it is the class that maximizes the proportion fj of individuals in the leaf belonging

to class j. Thus the class of the leaf is the one that is best represented in the leaf. More

generally, if the a priori probabilities are different from the proportions, the class of the leaf is

the most probable class in the leaf. Since all the individuals of the leaf are assigned to class j,

the classification error rate of this leaf is 1 � fj.

Starting with the error rate of each leaf, the error rate of the tree, also called the total cost

of the tree, or the risk of the tree, is calculated. This is theweighted sum of the error rates of the

leaves, where the weighting is the probability of an individual’s being assigned to the leaf. On

the simplifying assumptions mentioned above concerning the a priori probabilities and the

costs of incorrect assignment, the total cost of the tree is the proportion of individuals

incorrectly classified by the tree.

In Figure 11.11, produced by IBM SPSS Decision Trees, the cost of the tree is 0.217,

meaning that just over one individual in every five is incorrectly classified by the CART tree.

11.4.5 Pruning – the third step in creating the tree

Let us start with an example to show how useful pruning is. In a decision tree whose depth is

very great, some nodes close to the leaves may contain very few individuals. The dependent

variable may therefore appear to be correlated with all kinds of things. Thus, at the end of the

training phase, income may appear to be correlated with the characteristics of Mr Smith,

because Mr Smith is the only person with a high income in his small group in the training

sample. When dealing with the whole population, the apparent correlation between these two

variables will disappear, but it will already have been incorporated in the decision tree.

This example shows how necessary it is to shorten the branches of very deep trees, in order

to avoid having very small nodes with no real statistical significance. There should be at least

20–30 individuals per node. Those branches that are too low should therefore be pruned before

the error rate of the classification starts to rise. Pruning enables us to avoid the overfitting

(overtraining) phenomenon discussed above and illustrated in Figure 11.12.

Risk

Estimate Std. Error 

.217 .009

Growing Method : CRT 

Dependent Variable: 

Survived

Figure 11.11 Cost of a tree.
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A good algorithm should start by constructing a tree of maximum size (according to the

above criterion (C2)), which it will then prune, after automatically detecting the optimal

pruning threshold. This detection can be carried out in two ways.

If the size of the population is sufficient, a test sample, separate from the training sample,

will have been created. It can be used to test each sub-tree of the maximum tree, and the sub-

tree giving the lowest error rate in testing is then considered to be the best pruned tree.

If the population is not large enough for this, it will be necessary to use cross-validation

(see Section 11.3.2) and combine the error rates found for all the possible sub-trees, again with

the aim of choosing the best possible sub-tree.

11.4.6 A pitfall to avoid

There is a second cause of overfitting, where the dependent variable is present in a disguised

form among the independent variables. During the training phase of a decision tree, the

variables analysed must not include one that is directly correlated (by its nature or by

construction) with the dependent variable. By way of example, if we wish to analyse the

probability of taking out an insurance policy, the premiums for this contract should not be

included among the variables analysed. Otherwise the first node will be as shown in

Figure 11.13, and the tree will stop immediately. Now, the variable ‘premiums’ is not a cause

but a consequence of taking out a policy. The tree has been overtrained with respect to the

variable ‘premiums’. It was partly in order to avoid this phenomenon that the advice was

given in Section 2.3 to observe the dependent variable for a period of time not overlapping

with the period of observation of the independent variables.

error
rate test and application data

training data

tree depth
prune here

Figure 11.12 Error rate of a tree as a function of its depth.

population

premiums ≤ n premiums > n 

100% have no contract 100% have at least one contract  

Figure 11.13 Decision tree with overfitting.
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11.4.7 The CART, C5.0 and CHAID trees

The main decision tree algorithms are:

. CART (Classification And Regression Tree), for investigating all kinds of variables;

. C5.0 (developed by J.R. Quinlan), suitable for the investigation of all kinds of variables;

. CHAID (Chi-Square Automation Interaction Detection), initially reserved for the

investigation of discrete and qualitative independent and dependent variables.

CART

The CART tree, invented in 1984 by the statisticians L. Breiman, J.H. Friedman, R.A. Olshen

and C.J. Stone (Berkeley and Stanford Universities),7 is one of the most effective and widely

used decision trees. It is found, for example, in R (the rpart and tree functions), SAS

Enterprise Miner, IBM SPSS Modeler and IBM SPSS Decision Trees, S-PLUS (TIBCO

Software), Statistica (StatSoft), SPAD (Coheris-SPAD), and, of course, CART (Salford

Systems). The name CART is registered, and only Salford Systems is allowed to use it, but

this type of tree can be found under very similar names such as CRT or C&RT.

CART uses the Gini index to find the best separation of each node. In addition to this

choice, the designers of CART have provided a number of technical solutions which yield two

major benefits, namely generality and performance.

The generality is based primarily on the fact that the number of categories of the

dependent variable can be finite or unlimited, and CART can be used for both classification

and prediction: there is an appropriate node splitting criterion for each type of problem.

Its generality is also due to the fact that it can allow for the costsCij of incorrect assignment

by incorporating them into the calculation of the Gini index (see Section 11.4.3 above).

Finally, the generality is enhanced by the capacity to process missing values by replacing

each variable concerned with an equally splitting variable or an equally reducing variable.

Equally splitting variables are those which provide approximately the same purity of the

nodes as the original variable. Equally reducing variables are those which distribute the

individuals in approximately the same way as the original variable. These variables can

be used as ‘surrogate’ variables, but it is best to use equally reducing variables to maintain

the consistency of the tree.

The performance of CART is primarily due to its pruning mechanism, which is more

sophisticated than that of CHAID. A maximum tree is constructed to begin with, by

continuing the node splitting process as far as possible. The algorithm then deduces a

number of nested sub-trees by successive pruning operations, comparing the latter and

then selecting the one with the lowest possible error rate, as measured by testing or

cross-validation.

Another aspect of its performance is the absence of more or less arbitrarily fixed

thresholds such as the w2 significance threshold of CHAID (see below). The determination

of these thresholds, when necessary, is always difficult, because the best choice has to bemade

between a threshold providing a deep tree which lacks robustness because it depends too

closely on the sample (overfitting) and a small tree with less predictive power.

7 Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984) Classification and Regression Trees.

Monterey, CA: Wadsworth & Brooks/Cole.
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Afinal element of the performance of CART lies in its exhaustive search for all the possible

splits, already mentioned in Section 11.4.2, which ensures that the optimal split is chosen.

Clearly, this search can take a long time, especially when we are dealing with qualitative

variables with a large number k of categories, since there will be 2k� 1 � 1 splits to be tested.

In its basic version, CARTis binary. The drawback of this binary structure is that it produces

trees which are ‘narrow’ but may be very deep, making the trees rather complex and difficult to

read in some cases. Another possible problemwith CART is that it is biased, with a tendency to

favour thosevariableshaving the largest numberof categories; becauseof this, it does not always

have thegreatest reliability.When there are qualitativevariableswithmany categories, itmaybe

preferable to use a tree that is both faster and unbiased, such as QUEST (Quick Unbiased

Efficient Statistical Tree), invented in 1997 by Loh and Shih.8 This tree operates with only one

nominal qualitative dependent variable, but it is binary like CART, and has some features in

common with the latter (treatment of missing values, etc.). It can be found in the LohTools

package in R, available from the developers (see the website of their publisher, Springer).

Here is an illustration of the node splitting mechanism using the Gini criterion. A

catalogue contains prices of articles and states whether or not they have been purchased. The

aim is to find the decisive price for purchasing.

Article Price Purchase

1 125 N

2 100 N

3 70 N

4 120 N

5 95 Y

6 60 N

7 220 N

8 85 Y

9 75 N

10 90 Y

Asmentioned above, the articles are initially classified by increasing value of the independent

variable, i.e. the price. All the possible separation conditions are then tested, according to the

value of the price.

Purchase N N N Y Y Y N N N N

Price 60 70 75 85 90 95 100 120 125 220

Threshold 55 65 72 80 87 92 97 110 122 172 230

> > > > > > > > > > >

Y 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

N 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

8 Loh, W.-Y. and Shih, Y.-S. (1997) Split selection methods for classification trees. Statistica Sinica, 7, 815–840.
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The optimal threshold is at the value of 97, because the Gini index of the separation

is then

6

10
ð1� 0:52 � 0:52Þþ 4

10
ð1� 02 � 12Þ ¼ 6

10
� 0:5 ¼ 0:3:

At the threshold of 92, the Gini index would be equal to:

5

10
ð1� 0:42 � 0:62Þþ 5

10
ð1� 0:22 � 0:82Þ ¼ 5

10
� 0:48þ 5

10
� 0:32 ¼ 0:4:

It is worth re-examining the example of the operation of CHAID in Section 3.10.

Compared with CHAID, we find (Figure 11.14) that the CART split is less balanced, with

81% of individuals in node 1 and 19% in node 2. This is due to the ability of CART to detect

very clear profiles rapidly, but it is possible, although not often implemented in the software,

to adjust the CART splitting criterion so as to penalize unbalanced splits. To do this, we

multiply the reduction in impurity by a coefficient depending on the proportion pL of

individuals sent to the left and the proportion pR of individuals sent to the right. The new

criterion to be maximized is:

ðpLpRÞa � ½Gini ðparent nodeÞ�Gini ðseparationÞ�;

where a is a non-negative integer. The left-hand term is maximized when pL¼ pR¼ 0.5. The

value a¼ 0 brings us back to the usual splitting criterion, while a¼ 1 is the value most

commonly used for penalizing unbalanced splits.

Figure 11.14 Split produced by CART.
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C5.0

The C5.0 tree, the most recent (1998)9 of those described here, was developed by the

Australian researcher J. Ross Quinlan, as an improvement of his earlier trees ID3 (1986)10 and

C4.5 (1993).11 Although less widely used than CART, it is implemented in SAS Enterprise

Miner, IBM SPSS Modeler and R (RWeka package for C4.5). It is also marketed onWindows

platforms under the name of See5, since the name C5.0 is reserved for Unix platforms.12

C5.0 works by aiming to maximize the information gain achieved by assigning each

individual to a branch of the tree. It shares with CART its suitability for the investigation of all

kinds of variables, its exhaustive search for all the possible splits and its device for optimizing

the tree by the construction of a maximum tree followed by its pruning.

However, its pruning procedure is different from that of CART. Since the tree is

constructed from a training sample, each node of the tree, corresponding to a set {Ci} of

conditions, is a sample of the set of all the individuals meeting these conditions. Having

calculated the error rate of the node, we can determine the confidence interval D of this error

rate te by applying the conventional statistical formulae of Section A.2.6. At the fixed risk

threshold, the maximum error rate that can be observed in this node when the tree is applied is

therefore te þ D. If the maximum error rate of the child node is greater than that of the parent

node, the child node is deleted by pruning the tree at the level of the parent. The decision to

prune or not to prune thus depends on both the error rate of the node and its confidence

interval, in other words on the number of individuals in the node. Small nodes will tend to be

pruned, even if they have a low error rate, as can be illustrated in a simple example.

Assume thatwehave a node of 1000 individualswith an error rate of 35%.This node has two

child nodes, one of which has an error rate of 25% which is significantly lower than that of its

parent. However, this node contains only 100 individuals out of the initial 1000. The formula for

calculating the confidence interval (see the Appendix) shows that this interval has a width of

about 6% for the parent nodewith 1000 individuals, as against 20% for the child nodewith 100

individuals. The ‘pessimistic’ error rate will therefore be 35 þ 6¼ 41% for the parent, as

against 25 þ 20¼ 45% for the child. In spite of first impressions, the child node is less reliable

than the parent node, and the tree will therefore be pruned at the level of the parent.

An original feature of C5.0, shared with C4.5, is that it includes a procedure for converting

trees into sets of rules. Redundant rules are eliminated, thus reducing the complexity of the set

of rules, after which C5.0 aims to generalize each rule by eliminating the conditions which do

not decrease the error rate. At the end of the operation, the set of rules may be decreased

significantly, which may be useful for interleaved trees, but runs the risk of reducing the

accuracy of the prediction compared with the pruned tree, and requiring a prohibitive amount

of processing time if there is a large volume of data.

C5.0 has the special feature of being able to separate the population into more than two

sub-populations at each step: it is not binary. This is because of its treatment of the qualitative

variables which, at the level of a parent node, give rise to a child node for each category.

However, the treatment of continuous data is the same as in CART. The drawback of this tree

9 Quinlan, J.R. (1998) C5.0: An Informal Tutorial. http://www.rulequest.com/see5-unix.html.
10 Quinlan, J.R. (1986) Induction of decision trees. Machine Learning, 1, 81–106.
11 Quinlan, J.R. (1993) C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
12 Quinlan, J.R. (1998) Data mining tools See5 and C5.0. Technical report, RuleQuest Research.
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is that the frequencies of the nodes decrease more rapidly, together with their statistical

reliability and their generalizing capacity.

CHAID

This tree is older (the principle was stated in 1975 by J.A. Hartigan,13 and the algorithm was

devised in 1980 by G.V. Kass).14 It is even described as being a product of the first decision

tree, the AID tree (1963) ofMorgan and Sonquist,15 but the latter was based on the principle of

analysis of variance for handling continuous dependent variables, while producing binary

trees. CHAID is different.

It uses the w2 test to define the most significant variable of each node, so it can only be used

with discrete or qualitative independent variables. Most software using CHAID has been

designed to deal with continuous independent variables by discretizing them automatically,

often into 10 classes, but sometimes into a number of classes that can be determined by the

user. Unlike CART, it does not replace missing values with equally splitting or equally

reducing values: it handles all the missing values as a single class, which it may merge with

another class if appropriate (see step 3 below).

The w2 test is used in the successive steps of division of each node, steps 1–4 being the

steps of merging the categories of the independent variables and step 5 being a node splitting

step. These steps are carried out iteratively, on each child node after the parent node, until a

stop condition is reached (Section 11.4.2). Of course, the frequency of the node to be split

must be at least equal to the value specified when the tree parameters were set. Otherwise this

node cannot be split, and the next steps will not be executed.

1. For each independent variable X having at least three categories, w2 is used to group the
categories of X by cross-tabulating them with the k categories of the response variable

(the dependent variable). We start by selecting the admissible pair of categories of X

whose sub-table (2� k) is associated with the smallest w2 (the greatest associated

probability). These are the two categories that differ the least on the response. If this w2

is not significant at the chosen threshold (having a probability greater than the stated

threshold – see the Merging Categories field in Figure 11.15), the two categories are

merged, and the result of this merger is considered to be a new composite category.

Note that an admissible pair is an adjacent pair ifX is ordinal or quantitative, or any pair

if X is nominal.

2. Step 1 is repeated until all the pairs of categories (simple or composite) have a

significant w2 (are significantly different on the response), or until there are no more

than two categories. If one of these categories has a frequency below the minimum

specified when the tree parameters were set, this category is merged with the category

that is closest in terms of w2, even if this w2 was already significant. On each occasion, if
a new merged category is made up of at least three initial categories with a sufficient

frequency, it is possible to determine the binary split (among the initial categories)

13 Hartigan, J.A. (1975) Clustering Algorithms. New York: John Wiley & Sons, Inc.
14 Kass, G.V. (1980) An exploratory technique for investigating large quantities of categorical data. Applied

Statistics, 29, 119–127.
15 Morgan, J.N. and Sonquist, J.A. (1963). Problems in the analysis of survey data, and a proposal. Journal of the

American Statistical Association, 58, 415–434.
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having the greatest w2, and, if this value is significant, carry out the split. To do this, we
must tick the box to ‘Allow resplitting of merged categories’ in the setting box shown

in Figure 11.15. In practice, the effect of this setting is limited.

3. At the end of step 2, if the variable had six categories {a,b,c,d,e,f}, these would be, for

example, grouped into three classes {a,d}, {b,c} and {e,f}, or two classes {a,b,c,d} and

{e,f}. If the independent variable is nominal and has missing values, the set of missing

values is considered to be a category that is treated in the same way as the others.

However, if the variable is ordinal or quantitative, the missing values category is not

included in the preceding merger processes. It is only after the end of these processes

that CHAID attempts to merge it with another category, namely the one that is closest

in terms of w2. It compares the probability of the w2 of the table produced by merging

the category of the missing values with the one produced without the merger, and

accepts the table for which the probability is lowest.

4. At the end of step 3, we have the probability associated with the w2 of the best table
obtained. If necessary, this probability is multiplied bywhat is known as the Bonferroni

correction (see Figure 11.15, where the ‘Adjust significance values using Bonferroni

method’ box should be ticked). This coefficient is the number of possibilities for

grouping them categories of an independent variable into g groups (1� g�m), and its

multiplication by the probability associated with w2 prevents the over-evaluation of the
significance of the multiple-category variables.

Figure 11.15 CHAID setting in AnswerTree.
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5. When the categories have been grouped optimally for each independent variable and the

probability of the correspondingw2 has beencalculated (and correctedby theBonferroni
adjustment if necessary),CHAIDselects thevariable forwhich thew2 ismost significant,

in other words the one for which the probability is lowest. If this probability is below the

chosen threshold (in the Splitting Nodes field of Figure 11.15), we can divide the node

into a number of child nodes equal to the number of categories of the variable after

grouping. If this w2 does not reach the specified threshold, the node is not divided.

We can therefore see that:

. a reduction in the splitting threshold decreases the number of nodes in the tree, because

it is difficult to have variables below the threshold (conversely, if the threshold equals 1,

all the nodes are split);

. a reduction in the merging threshold decreases the number of categories found for each

independent variable, since the pairs of categories are merged for longer before they

fall below the threshold (conversely, if the threshold is 1, no pair of categories is

merged).

Note also that, if a splitting threshold lower than the merging threshold is chosen, the

categories of variables can be grouped without splitting the node: the probability of the w2

associated with each variable will have decreased following the groupings of categories, but

not enough to be below the splitting threshold. It is therefore more logical to have a splitting

threshold that is greater than or equal to the merging threshold.

Unlike AID and CART, CHAID is not binary, and therefore produces trees that tend to be

wider rather than deeper. It does not have a pruning function: when the maximum tree has

been constructed and the stop criteria are reached, the construction ceases. CHAID is still

fairly widely used, and is found, for example, in SAS Enterprise Miner, IBM SPSS Modeler

and IBM SPSS AnswerTree, Angoss KnowledgeSEEKER and Statistica (StatSoft).

Because of the way it is constructed, CHAID is useful for the discretization of continuous

variables, as shown in Section 3.10 on the division of continuous variables into ranges. In this

case, only steps 1–3 above are used.

11.4.8 Advantages of decision trees

First, the results are expressed as explicit conditions on the original variables (by contrast with

neural networks). Because of this, the results are very easy for users to understand, the

resulting model can easily be programmed by IT staff, and when the model is applied to new

individuals the execution speed is greater, since the calculations consist of numeric compar-

isons (X� n) or inclusion tests (X2 {a,b,c,. . .}), depending on whether X is a quantitative or

qualitative variable.

Second, the decision tree method is non-parametric, meaning that the independent

variables are not assumed to follow any particular probability distributions. These variables

can be collinear. If they are not discriminating, the tree is not affected, because it does not need

to select them. Moreover, the response of the dependent variable can be non-linear, or even

non-monotonic, in terms of the independent variables. Interactions which may be present

between a number of independent variables and the dependent variable will be detected by the

tree. The tree is not modified by a monotonic transformation of the continuous independent
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variables. The data preparation and selection phase is greatly simplified by comparison with

other techniques.

Third, trees are relatively unaffected by the presence of extreme individuals, which can be

isolated in small nodes and do not affect the classification as a whole, in contrast to what

happens in parametric and neural methods.

Fourth, trees can deal withmissing data. For example, CHAID treats all themissing values

of a variable as a category, which can either remain isolated or can be merged with another

category. As for CART, I have already discussed its use of a surrogate variable which can

replace a splitting variable which is not supplied for certain individuals.

Fifth, some trees such as CARTand C5.0 allow variables of all types (continuous, discrete

and qualitative) to be handled directly.

Finally, decision trees are therefore simple to use. Their computing times are quite

reasonable, even during training.

11.4.9 Disadvantages of decision trees

First, the definition of the nodes at level n þ 1 is very highly dependent on the definition at

level n. Consider the following diagram:

condition A (50% of « Y » 50% of « N ») 

condition C (40% of« Y ») condition B (60% of « Y ») 

Condition B is valid for defining a group with a higher proportion of Y only if A is true.

Otherwise, B may be false. In the definition of a class with a high proportion of Y,

ðA1Þ and ðA2Þ and ðA3Þ . . .
condition (Ai) has no significance if taken alone, independently of the others. In an ideal

classification, conditions (Ai) should all have the same weight, regardless of their order of

appearance. Conversely, in classification by decision tree, the variables appearing in the first

conditions have much more weight (they separate many more individuals) and affect the

appearance of the other variables in the tree.

To sum up: the tree detects local, not global, optima. It evaluates all the independent

variables sequentially, not simultaneously. The choice of a division for a node at a certain

level of the tree is never revised subsequently. Thismay be troublesome, particularly as some

trees (CART) make biased choices, giving preference to the variables having more

categories.

Consequently, the modification of a single variable, if it is located near the top of the tree,

may modify the whole tree. For example, imagine that an individual has all the character-

istics of an individual of the group A, except for the value of a variablewhose threshold it has

slightly exceeded: it may be wrongly classified in group B, solely because the tree has tested

this particular variable.
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This lack of robustness of decision trees, which may sometimes be unacceptable, can

often be overcome by resampling, in other words by constructing trees on a number of

successive samples and aggregating them by a vote or a mean (see Section 11.15 on bagging

and boosting), but this means losing the simplicity and readability of themodel which are the

advantages of decision trees.

Second, the training of a decision tree requires a sufficiently large number of individuals to

provide at least 30–50 individuals per node, even in the lowest part of the tree (the leaves);

otherwise the tree will soon ‘overfit’ on the sample. It is true that decision trees have at least

one advantage over neural networks, in that the overfitting is easily seen and located by

applying the rules of the tree to another sample.

Third, the form of the resulting models, (X� n) and (X2 {a,b,c. . .}), leads to a definition
of the rectangular areas of the variable space (see Section 11.16.1) which do not necessarily

correspond to the distribution of the individuals. Thus individuals not having a rectangular

distribution are difficult to classify with decision trees.

Some trees overcome this problem by replacing simple rules for dividing the nodes, of the

form (X� n), with rules on a number of variables of the type (aX þ bY þ . . .� n), which

determine the divisions of the space as shown in Figure 11.16 and enable the classification to

be at least as precise as if the tree had many more nodes.

A solution which can be used with any tree to detect rules of the X� Y type is, if the

possibility of such a rule is suspected, to create the variable X/Y, for which the tree will detect

the rule X/Y� 1. This solution requires the creation of a number of additional variables.

Fourth, when a classification tree is used to explain a binary variable, a score function

defined for any individual can be deduced from it. Decision trees are often used in this way in

marketing to construct propensity scores used in business targeting. The ‘score’ of an individual

then depends on the leaf to which the values of its predictors lead it, and it is equal to either

1 minus the classification error rate of the leaf when the leaf is assigned to the class to be

predicted, or the classification error rate of the leafwhen the leaf is assigned to the class not to be

predicted. Returning to the example of the Titanic (Figure 11.10), the ‘score’ of awoman in first

class is 0.972. The disadvantage of a score function constructed in this way, in comparison to a

function constructed by logistic regression or discriminant analysis, is that the values of this

score function are not uniformly distributed; this is because the number of different values of the

score function cannot be greater than the number of leaves on the tree. A treewith 10 leaves can

   1                          0           0

0           0           1          0    1

      0                               1

       0         0

   1            1        ?        0

 1           1                0         1

Figure 11.16 Regions of a tree with multi-variable nodes.
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only provide 10 different scoremarks (and if we deepen the tree to obtain a sufficient number of

nodes to smooth the distribution of the score values, we may cause overfitting of the tree).

But this disadvantage is not always too troublesome, especially for scores returned to their

users in the form of several ranges, rather than a continuously varying quantity. In this case,

the discontinuity of the score values can even be an advantage, because it provides natural cut-

off points. Moreover, the distribution of the score values is often bimodal, since the tree

favours the emergence of pure nodes. This leads to an overrepresentation of the extreme

values (e.g. low- or high-risk customers) and an underrepresentation of the mean values (e.g.

medium-risk customers), which is useful for a decision support tool which is required to

provide clear-cut information.

Finally, there is a discontinuity of the response of the dependent variable as a function of

the independent variables. A small change in the value of X may validate or invalidate a rule

(X� n), and completely alter the prediction of the tree, especially if the rule (X� n) is close to

the root of the tree.

The MARS (Multivariate Adaptive Regression Splines) algorithm devised by Friedman16

overcomes this problem by abandoning the decision tree structure and using spline functions

(which may be linear) instead. The MARS response surface is therefore continuous, not

discontinuous as in decision trees. This behaviour is sometimes considered advantageous,

especially in regression problems where a continuous response is expected.

On the other hand, like CART, of which it is a kind of generalization, MARS provides

highly readable results in its own fashion; it selects the variables automatically, and can handle

non-linearity, interactions and missing values. The readability of MARS is due to the fact that

the model is written as a linear combination of functions of the form max(0, x – threshold),

max(0, threshold – x) or of products of these functions.

MARS is a little slower (depending on its settings) than CART, but less subject to

overfitting, and is more robust overall.

MARS also segments the population, although not in the same way as a tree, which

provides a degree of immunity to outliers (but less than that of a tree). The parameter setting is

simple. We have seen that it has many advantages and would be worth implementing more

commonly in software. It can be found in three R packages, namely earth, mda and polspline,

as well as in the MARS software (a registered trademark, like CART) of Salford Systems and

StatSoft’s Statistica Data Miner.

11.5 Prediction by decision tree

Decision trees designed for classification can generally be used for prediction, by changing

the node splitting criterion (C1) (see above). This is true of all the trees discussed above,

except for QUEST, but including CHAID, in which the w2 test is replaced by Fisher’s test.

The idea behind this new criterion is that:

. the dependent variable must have a smaller variance in the child nodes than in the parent

node;

. the dependent variable must be a mean which is as different as possible from one child

node to another.

16 Friedman, J.H. (1991) Multivariate adaptive regression splines (with discussion). Annals of Statistics,

19(1), 1–141.
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In other words, we must choose child nodes which minimize the intra-class variance and

maximize the inter-class variance. The Fisher–Snedecor test (see the Appendix) can be

applied to the ratio

intra-class variance=inter-class variance

and we can decide that a node should not be split unless the threshold of 20% is reached for

Fisher’s statistic, in other words when the Fisher distribution table indicates that the ratio of

the variances has less than a 20% chance of being as high if the dependent variable is

independent of the variable chosen to split the parent node.

The CHAID tree of Figure 11.17 divides 163 countries into five groups which are as

different as possible in terms of GNP per citizen, the most discriminating criterion being

energy consumption, and the group with the medium GNP being split again by life

expectancy. This tree is a very simple way of focusing on one fifth of the countries which

have a mean GNP 36 times greater than another fifth of the countries.

Figure 11.17 Regression tree.
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11.6 Classification by discriminant analysis

Before the widespread use of logistic regression, Fisher’s discriminant analysis was used for

many years as the major classification method, in many fields ranging from biology, where

Fisher’s basic work was undertaken in 1936,17 to credit scoring. This method is still preferred

today by some central banks for scoring businesses. Initially limited to a framework which is

discussed more fully below, this method is excellent within this framework, providing

explicit, accurate and robust predictions, provided that the data have been prepared properly.

This framework has been generalized to many different fields in recent decades. Thus one

supplementary technique devised by Gilbert Saporta, known as the DISQUAL method, has

extended the framework of discriminant analysis beyond quantitative independent variables

so that it can also handle qualitative variables. More recently, the work of Hastie, Tibshirani

and Friedman, described in their well-known book (cited above), has resulted in regularized

discriminant analysis (inspired by ridge regression), flexible discriminant analysis (moving

into a larger space as for SVMs) and discriminant analysis with a mixture of Gaussians for the

distribution P(x/G¼i). For a final demonstration of the importance of discriminant analysis, I

would simply say that it is at the intersection between parametric methods, semi-parametric

methods (logistic regression) and non-parametric methods (probability density estimation),

and also has features in common with principal component analysis.

11.6.1 The problem

This is the standard situation handled by discriminant analysis: there is a set of individuals,

each belonging to a group, the number of groups being finite and greater than one. We are

faced with two problems: how to find a representation of the individuals which provides the

best separation between groups (descriptive discriminant analysis) and how to find the rules

for assigning the individuals to their groups (predictive discriminant analysis).

This can also be formulated as follows: we have a set of individuals characterized by a

qualitative dependent variable Yand quantitative independent variables Xi. We may wish to find a

representationof the relations betweenYand theXi (descriptive discriminant analysis) or tofind the

rules for predicting the categories of Y starting from the values of the Xi (predictive discriminant

analysis). Discriminant analysis offers a number of approaches to this double problem.

Descriptive method

(to represent the groups)

Predictive method

(to predict inclusion in a group)

Geometrical

approach

YES

Discriminant

factor analysis

YES

Linear discriminant analysis

multivariate

normality

Probabilistic

approach

NO YES

homoscedasticity

Linear discriminant analysis

equiprobability

Quadratic discriminant analysis

Nonparametric discriminant

analysis

Logistic regression

17 Fisher, R.A. (1936) The use ofmultiplemeasurements in taxonomic problems.Annals of Eugenics, 7, 179–188.
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11.6.2 Geometric descriptive discriminant analysis (discriminant factor
analysis)

There is a qualitative response (dependent) variable Y with k categories, corresponding to k

groupsGiwhose frequencies are denoted ni. The total frequency is n. On the other hand, there

are p continuous independent variables Xj. Discriminant factor analysis is a matter of

replacing the Xj with discriminant axes, in other words linear combinations of the Xj taking

the most different possible values for individuals differing on the response variable. It will be

seen that this mechanism entails an analysis into principal components of the cloud of the k

centres of gravity of the classes (weighted by ni/n). The number of axes is the minimum of

k � 1 and p. The historic example of discriminant analysis is that of Fisher’s irises (three

species and four variables: length and width of the petals and sepals).

The geometric descriptive approach can be illustrated in a simple way, as shown in

Figure 11.18. In this example, we see that:

. the x axis clearly separates groups B and C, but not groups A and B;

. the y axis clearly separates groups A and B, but not groups B and C;

. while the z axis, the linear combination of x and y, clearly separates all three groups.

The straight line with equation z¼ 1 separates the Bs and Cs, while the straight line with

equation z¼ � 1 separates the As and Bs: z is therefore a score function.

In mathematical terms, the n individuals form a cloud of n points in Rp, formed by the k

sub-clouds Gi to be differentiated. The inter-class (‘between’) variance is, by definition, the

variance of the centres of gravity gi (centroids) of the classesGi, and the ‘between’ covariance

matrix is B¼ n� 1 Sni(gi � g)(gi � g)0. The intra-class (‘within’) variance is, by definition,

the weighted mean of the variances of the classes Gi, and the ‘within’ covariance matrix is

W¼ n� 1 SniVi, calculated from the covariance matrix Vi of each class Gi. According to the

Huygens theorem, B þ W¼V, the total covariance matrix.

BBBB

BBBB

BBBB

AAAA

AAAA

AAAA

CCCC
CCCC

CCCC

x

y
z

Figure 11.18 Discriminant factor analysis.
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It is generally impossible to find an axis u which, in order to meet the objective of

discriminant analysis, simultaneously

. maximizes the between-class variance on u: max u0Bu;

. and minimizes the within-class variance on u: min u0Wu.

This is clearly shown in Figure 11.19. If we are looking for the maximum between-class

dispersion, we will choose an axis u parallel to the segment linking the centroids, while

if we are looking for the minimum within-class dispersion we will choose an axis u per-

pendicular to the principal axis of the ellipses. We assume homoscedasticity, in other words

the equality of all the covariance matrices Vi: this is the basic assumption of discriminant

factor analysis.

We must therefore reformulate our objective: instead of maximizing u0Bu or minimizing

u0Wu, we maximize u0Bu/u0Wu, which according to the Huygens theorem is equivalent to

maximizing u0Bu/u0Vu. We prove that the solution u is the eigenvector of V� 1B associated

with l, the largest eigenvalue ofV� 1B, and that u is an eigenvector ofV–1B if and only if u is an

eigenvector of W� 1B (with an eigenvalue of l/(1 � l)). The metrics V� 1 and W� 1 are

therefore called equivalent, but the metricW� 1 (theMahalanobis metric) is used more widely

in English-speaking countries and by software developers. With this metric, the square of the

distance d(x,y) of two points x and y is d(x,y)2¼ (x–y)0 W� 1(x � y).

What do the u axis and the W� 1 metric correspond to in geometric terms? The u axis is

that of the PCAwhich was mentioned above, namely the PCA on the cloud of centroids gi, but

it is an axis on which the points are projected obliquely, not orthogonally (Figure 11.20).

Without this obliqueness, corresponding to the equivalent metrics V� 1 andW� 1, this would

be a simple PCA, in which the groups would be less well separated. In this metric, the

separation of two points depends not only on a Euclidean measurement, but also on the

variance and correlation of the variables.

An illustration is provided by irises (Figure 11.21), three varieties of which (I. virginica, I.

versicolor and I. setosa) are (slightly) better separated by discriminating factor analysis than

Figure 11.19 The double objective of discriminant analysis.
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by simple PCA (although the latter method is still worth considering, as mentioned by

Jean-Paul Benz�ecri in Section 2.3.5 of his book Histoire et Pr�ehistoire de l0Analyse des

Donn�ees).18

The u axis is called the ‘first canonical axis’. When the first canonical axis has been

determined, we search for a second axis which is both themost discriminant and not correlated

with the first. This procedure is repeated until the number of axes reaches the minimum of the

two numbers k � 1 and p. As in PCA, the corresponding eigenvalues are related to their sum

in order to evaluate their relative contributions. If the first eigenvalue represents a large

percentage of the sum, this means that the k centroids lie roughly on a straight line; in this case,

the first axis contains the essential information and is sufficient for a correct classification. In

fact, it is not the canonical axes that are manipulated directly, but the canonical variables,

which are the coordinates of the individual points on the canonical axes.

badly classified without

the obliqueness

Figure 11.20 Effect of the metric W� 1.

Figure 11.21 DFA on Fisher’s irises.

18 Benz�ecri, J.-P. (1982) Histoire et Pr�ehistoire de l’Analyse des Donn�ees, new edn. Paris: Dunod.
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In the case of two groups (k¼ 2), the canonical axis is unique and is proportional to

W� 1(g1 � g2). In his article La notation statistique des emprunteurs ou 	 scoring 
19,

Gilbert Saporta gives the example of two variables A and B having means of 40 and 90

respectively on group 1, and 90 and 100 on group 2. These variables are assumed to have the

same standard deviations sA¼ 40 and sB¼ 20 on the two groups, and have the same

correlation r¼ 0.8 on the two groups. The covariance between A and B is rsAsB¼ 640, the

difference between centroids is the vector

g1 � g2 ¼ � 50

� 10

� �
;

and the within-class covariance matrix is

W ¼ 1600 640

640 400

� �
:

We use the R software (see Section 5.3.4) to enterW (first instruction), display it (second

instruction), then calculate its inverse using the ‘solve’ instruction which places the inverse of

W in a matrix denoted B:

> W <- matrix(c(1600,640,640,400),nrow=2)

> W

[,1] [,2]

[1,] 1600 640

[2,] 640 400

> B <- solve(W)

> B

[,1] [,2]

[1,] 0.001736111 -0.002777778

[2,] -0.002777778 0.006944444

We then enter (g1 � g2) in a column matrix denoted C, which we display, and then multiply

(%�% operator) B¼W� 1 by C¼ (g1 � g2), which gives:

> C <- matrix(c(-50,-10),nrow=2)

> C

[,1]

[1,] -50

[2,] -10

> B %*% C

[,1]

[1,] -0.05902778

[2,] 0.06944444

>

19 Saporta, G, (2002) La notation statistique des emprunteurs ou ‘scoring’.

www.eduscol.education.fr/D0015/ann_stat_6.pdf. This is an excellent eight-page summary of scoring, written

for the Committee on Education in Mathematics (Report to the French Minister of National Education, under the

direction of Jean-Pierre Kahane).
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It follows from this that the canonical axis, which is proportional to W� 1(g1 � g2), is also

proportional to the vector (� 1 1.17647047) and that the canonical variable can be written

(x1,x2) ! � x1 þ 1.17647047x2. Clearly, in the case of two groups, this is unique.

This is how the SAS software outputs the coefficients of the canonical variable in the case

of two groups of customers to be discriminated (see the syntax below). A first table

(Figure 11.22) supplies the coefficients to be applied, not to the raw initial variables, but

to the initial variables standardized (reduced centred) as a function of their means and

standard deviations in the population. The second table (Figure 11.23) is applicable to non-

reduced centred initial variables.

Thus the formula for the canonical variable starts with 0.4266757532(nbproducts –

8.93579)/4.354, or, in an equivalent way, with 0.0979952574(nbproducts – 8.93579).

An SAS output (see Figure 11.24) displays the covariance matrix which contains the

square of the standard deviation, and we can find in it the value 18.958 which is the square

of 4.354.

Pooled Within-Class Standardized Canonical Coefficients

Variable Label Can1

nbproducts number of products 0.4266757532

subscription1 subscription to other service 1 0.3416040633

nbchildren number of children -.3431234870

subscription2 subscription to other service 2 0.3885016925

changeconsum change in consumption 0.2887758069

nbexits number of exits with purchase 0.2736500676

Figure 11.22 Standardized coefficients of the canonical variable.

nbchildren number of children -.3019421367

subscription2 subscription to other service 2 0.0109642140

changeconsum change in consumption 0.7603735609

nbexits number of exits with purchase 0.0398690704

Raw Canonical Coefficients

Variable Label Can1

nbproducts number of products 0.0979952574

subscription1 subscription to other service 1 0.0003287387

Figure 11.23 Raw coefficients of the canonical variable.
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The first table is useful because it immediately emphasizes the most discriminating

variables. In fact, a variable can be assigned a very low coefficient because it takes very high

values itself. However, the coefficients implemented in the programs for calculating the

canonical variable and applying it to prediction are the coefficients of the non-standardized

variables (unless the variables are standardized before each application of the model).

Finally, SAS also supplies (Figure 11.25) the correlation coefficients of the initial

variables with the canonical variable or variables.

11.6.3 Geometric predictive discriminant analysis

Each individual x is classed in the group Gi for which the distance to the centre gi is minimal,

this distance being calculated as shown above according to the W� 1 metric:

dðx; giÞ2 ¼ ðx--giÞ0W--1ðx--giÞ ¼ x0W--1x--2g0iW
--1xþ g0iW

--1gi:

Variable

Pooled Within-Class Covariance Matrix, DF = 6383

Label nbproducts subscription1 nbchildren subscription2 changeconsum nbexits

nbproducts number of
products

18.958 989.799 1.125 70.927 -0.010 7.590

subscription1 subscription to
other service 1

989.799 1079802.363 58.693 4484.044 -10.186 2134.441

nbchildren number of
children

1.125 58.693 1.291 2.375 -0.063 1.052

subscription2 subscription to
other service 2

70.927 4484.044 2.375 1255.541 -0.816 25.050

changeconsum change in
consumption

-0.010 -10.186 -0.063 -0.816 0.144 -0.017

nbexits no. of exits
with purchase

7.590 2134.441 1.052 25.050 -0.017 47.111

Figure 11.24 Intra-class covariance matrix.

Pooled Within Canonical Structure

Variable Label Can1

nbproducts number of products 0.669783

subscription1 subscription 0.539645

nbchildren number of children -0.211773

subscription2 subscription to other service 2 0.616690

changeconsum change in consumption 0.302505

nbexits number of exits with purchase 0.476046

Figure 11.25 Correlation of the canonical variable with the initial variables.

338 CLASSIFICATION AND PREDICTION METHODS



As you can see, minimizing d(x,gi)
2 is equivalent to maximizing 2g0iW--1x� g0iW--1gi,

and g0iW--1gi ¼ ai is a constant that does not depend on x. Thus for each of the k groupsGiwe

have a discriminant linear function found after inversion of the matrix W:

ai þ ai;1X1 þ ai;2X2 þ . . . þ ai;pXp;

and x is classed in the group for which the function is maximal.

In the example of Fisher’s irises, the three discriminant functions are read from the output

table of the program (IBM SPSS Statistics in this case), as shown in Figure 11.26. Thus the

function associated with I. setosa is:

� 86:308þð2:354� SepalLengthÞþ ð2:359� SepalWidthÞ

� ð1:643� PetalLengthÞ� ð1:740� PetalWidthÞ:

This shows how simply expressed a model calculated by discriminant analysis can be. As

we will see subsequently, the credit scoring models used at the Banque de France are very

similar in form.

In the specific case of two groups, which is commonly encountered, the descriptive aspect

is simple (the discriminant axis links the two centroids) and what interests us is the predictive

aspect. As a special case of what is shown above, x is classed in the group G1 if

2g01W
--1x� g01W

--1g1 > 2g02W
--1x� g02W

--1g2;

a condition equivalent to

ðg1 � g2Þ0W--1x� 1

2
ðg01W--1g1 � g02W

--1g2Þ > 0:

Classification function coefficients

Species

SETOSA VERSICOLOR VIRGINICA

SepalLength 2.354 1.570 1.245

SepalWidth 2.359 .707 .369

PetalLength -1.643 .521 1.277

PetalWidth -1.740 .643 2.108

(Constant) -86.308 -72.853 -104.368

Fisher’s linear discriminant functions

Figure 11.26 Linear discriminant functions for Fisher’s irises.
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The expression to the left of the inequality is, by definition, Fisher’s score function f(x) and

x is classed inG1 if f(x)> 0. This score function is obtained by finding the differences between

the discriminant functions associated with each group, but it should be noted that we do not

return exactly to the canonical variable shown above.

If, for example, we calculate the difference 0.47720 – 0.38455 for the variable nbproducts

variable (Figure 11.27), we obtain a value of 0.09265 which is not equal to the coefficient

0.0979952574 of the canonical variable, but is equal to this coefficient multiplied by a

quantity called the Mahalanobis distance, denoted by D below. The same is true of all the

coefficients. Because of the normalization of the canonical variable, this must bemultiplied by

D to find the score function.

Since classification is based on the concept of distance from a point to a centroid, there is a

naturally important quantity called the Mahalanobis D2, which is the square of the distance

between the two centroids:

D2 ¼ dðg1; g2Þ2 ¼ ðg1 � g2Þ0W � 1ðg1 � g2Þ:

The Mahalanobis D2 measures the distance between the two groups to be discriminated,

and thus it also measures the quality of the discrimination: a higher value means better

discrimination. This is similar to the coefficient of determination R2 of a regression, and can

form the basis of a Fisher F test on the null hypothesis that all the centroids are equal

(Figure 11.28). D2 can be used in a stepwise regression.

The rule of classification of geometric discriminant analysis, which is a linear rule

(which is why we speak of linear discriminant analysis), is therefore that we assign each

individual to the group it is nearest to, using theW� 1 metric to calculate the distance of the

individual from the centroid of the group, in other words by carrying out an oblique

projection of x on the discriminant axis. However, this rule should not be used if the two

groups have different a priori probabilities or variances, as suggested by the example

of Figure 11.29.

changeconsum change in consumption 8.42157 9.14047

nbexits number of exits with purchase 0.05182 0.08951

Linear Discriminant Function for response

Variable Label 0 1

Constant -7.49693 -11.26600

nbproducts number of products 0.38455 0.47720

subscription1 subscription to other service 1 -0.0001620 0.0001488

nbchildren number of children 1.11604 0.83056

subscription2 subscription to other service 2 -0.00319 0.00717

Figure 11.27 Fisher’s linear discriminant functions XXX.
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In this example, individual I is nearer to g1 than to g2, but the variance of the second class is

such that it will be better to assign the individual I to it. In this case, we must use another

method: wewill now look at another form of discriminant analysis which is not descriptive but

more general, which can deal with the above example by quadratic discriminant analysis,

which is the optimal method when the two groups have normal distributions but different

variances. We should say that this is a theoretically optimal method, because in practice it

rarely provides better results than those of linear discriminant analysis, which is generally

preferred. This practical weakness of quadratic discriminant analysis is due to the larger

number of parameters to be estimated, meaning that the volumes of frequencies to be

modelled must also be larger.

Squared Distance to response

From
response

0 1

0 0 0.89390

1 0.89390 0

F Statistics, NDF=6, DDF=6378 for Squared
Distance to response

From
response

0 1

0 0 133.48253

1 133.48253 0

Figure 11.28 Mahalanobis D2 and associated Fisher test.

g1

g2

 I

Figure 11.29 Limit of linear discriminant analysis.
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11.6.4 Probabilistic discriminant analysis

This approach is also called Bayesian, because it was developed from Bayes’ theorem:

PðGi=xÞ ¼ PðGiÞPðx=GiÞP
jPðGjÞPðx=GjÞ ;

where it should be noted that, for every i� k (remember that k is the number of classes):

. P(Gi/x) is the a posteriori probability of belonging to Gi, given x (where we know the

characteristics of x, i.e. its ‘personal file’);

. pi¼P(Gi) is the a priori probability of belonging to Gi (the proportion of Gi in

the population);

. fi(x)¼P(x/Gi) is the conditional density of the distribution of x, when its group Gi

is known.

According to the Bayesian classification rule, x is classed in the group Gi where P(Gi/x) is

maximum.

We must therefore calculate P(Gi/x). There are three ways of doing this:

. by initially calculating P(x/Gi) by a parametric method (we assume the multinormality

of x/Gi, possibly with the equality of the covariance matrices Si, meaning that the

number of parameters of the problem is finite);

. by initially estimating P(x/Gi) by a non-parametric method (without any assumption as

to the density function, which is written in the form P(x/Gi)¼ frequency/volume and

which we aim to estimate by the kernel method or the k-nearest-neighbour method), this

method being restricted to large samples where there is no requirement for explicit

formulae with tests of significance on the parameters;

. directly, by a semi-parametric approach in which P(Gi/x) is written in the form

PðGi=xÞ ¼ ea
0xþb

1þ ea
0xþb :

The logistic regression formula can be recognized in the third approach. It can be shown that

the first approach may also lead us to this formula, or may lead to linear (geometric)

discriminant analysis, or to quadratic discriminant analysis which is more general and more

suitable for cases such as that shown in Figure 11.29.

Let us calculate fi(x)¼P(x/Gi) on the assumption of the multinormality of the distribution

(Figure 11.30). The density function of a multinormal distribution N(mi,Si) is written as

fiðxÞ ¼ 1

ð2pÞp=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSiÞ

p exp � 1

2
ðx� miÞ0S� 1

i ðx� miÞ
� �

:
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Sincewewish tomaximize P(Gi/x), which according to Bayes is equivalent to maximizing

pifi(x), we must find the i which maximizes

logðpiÞ� 1

2
ðx� miÞ0S� 1

i ðx� miÞ
1

2
logðdetðSiÞÞ

� �
:

It can be seen that we obtain a quadratic rule in x. To simplify this rule, we must add the

assumption of homoscedasticity: S1 ¼ S2 ¼ . . . ¼ Sk ¼ S (Figure 11.31). This shows that

we classify x in the group Gi which maximizes

logðpiÞ� 1

2
x0S� 1x� 1

2
m0iS

� 1mi þ x0S� 1miÞ
� �

:

Since x0S� 1x is independent of i, this means that we are seeking the maximum of

logðpiÞ� 1

2
m0iS

� 1mi þ x0S� 1mi

� �

It can be seen that the assumption of homoscedasticity, added to the assumption of

multinormality, converts a quadratic rule into a linear rule. Apart from the term log(pi), we

can recognize in this rule the Fisher discriminant function found by the geometric approach,

and the a priori probability pi only adds a constant to the discriminant function. Thus we find

that, if we add the assumption of equiprobability to those of homoscedasticity and multi-

normality, the Bayesian rule (maximize P(Gi/x)) is equivalent to the geometric rule

(maximize the Fisher function).

Figure 11.30 Multinormality without homoscedasticity (source: SAS).
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By writing the Bayes rule for the case of two groups G1 and G2, we can easily deduce

the formula

1

PðG1=xÞ ¼ 1þ p2

p1

� �
e� f ðxÞ;

where f ðxÞ ¼ ðm1--m2Þ0
P--1

x-- 1
2
ðm01

P--1m1--m
0
2

P--1m2Þ is simply the Fisher score function. x

is classed in G1 if P(G1/x)> 0.5, which is equivalent to (p2/p1)e
� f(x)< 1, or alternatively

f(x)> log(p2/p1).

In the case of two groups, the Bayesian rule is therefore equivalent to the rule that the

Fisher score function

f ðxÞ > logðp2=p1Þ;

which generalizes the geometric rule f(x)> 0 when the a priori probabilities p1 and p2 are

different. Additionally, the a posteriori probability P(G1/x) is written

PðG1=xÞ ¼ 1

1þðp2=p1Þe� f ðxÞ ¼
ef ðxÞ

ðp2=p1Þþ ef ðxÞ
;

which is a generalization of the logistic function (see Section 11.8). However, it should be

noted that the form

PðG1=xÞ ¼ 1

1þ e� f 0ðxÞ ¼
ef

0ðxÞ

1þ ef
0ðxÞ

Figure 11.31 Multinormality with homoscedasticity (source: SAS).
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of the logistic model actually offers the same modelling power, since the term (p2/p1)

which is not included in the denominator is incorporated in the linear function

f 0ðxÞð6¼ f ðxÞ ifp1 6¼ p2Þ.

Summary

On the assumption of: the Bayesian rule is:

multivariate normality quadratic

multinormality þ homoscedasticity linear

in the case of 2 groups, it is written f(x)>
log(p2/p1), where f(x) is the Fisher score function

found by a geometrical procedure

multinormality þ homoscedasticity þ
equiprobability

linear and equivalent to the geometric rule

in the case of 2 groups, it is written f(x)> 0 and

the a posteriori probability P(G1/x) is written in

the logistic form

Note that, given the above assumptions of multinormality, homoscedasticity and equiprob-

ability, linear discriminant analysis appears to be a special case of the logistic model

in which the independent variables x act in a linear way. The logistic model in its

specific form P(Gi/x) may appear in other circumstances, even without the above

constraining assumptions.

In addition to its greater generality, the Bayesian approach to discriminant analysis

has the advantage of enabling the costs of incorrect classification to be included. Thus we

use Cij to denote the cost of classification in Gi instead of Gj, we assume that Cii¼ 0, and

the mean cost of classification in Gi is defined as the sum SjCijP(Gj/x). x is then classed in

the group Gi which minimizes the cost. For example, in the case of two groups, x is

classified in G1 if C12P(G2/x)<C21P(G1/x). We may thus decide to classify an x with a

probability of P(G1/x)<P(G2/x) in G1 if the cost of classifying an element of G1 in G2 is

very high.

11.6.5 Measurements of the quality of the model

In addition to the general quality measurements of a predictive model (see Section 11.16.5),

the following measurements are applied specifically to discriminant analysis.

Wilks’ lambda

This is the ratioL¼ det(W)/det(V) of the determinant of the within-class covariance matrix to

that of the total covariance matrix. It varies from 0 to 1. The lower the value, the better the

model is. At the other extreme, ifL¼ 1 all the centroids are equal. This indicator enables us to

answer the two questions which arise concerning the independent variables of a model: do
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these variables discriminate between the classes? and can the classes be discriminated with

fewer variables?

To answer the first question, we must combine a statistical test with Wilks’ lambda so that

we can reject the null hypothesisH0 of the equality of the centroids. Once again, the number of

observations is denoted n and the number of classes to be discriminated for these observations

is denoted k. The lambda L of a model with p variables can be approximated (Rao, 1973)20

by a Fisher distribution with (d1,d2) degrees of freedom, after subjecting L to a transforma-

tion of the form (1–L)/L to generalize the F-ratio of linear regression and Fisher’s

discriminant analysis. The expression of d1 and d2 is rather complex, but is simplified in

the case of two classes, where d1¼ p and d2¼ n � p � 1 (as for the F-ratio of linear

regression). In the case of three classes, d1¼ 2p and d2¼ 2n � 2p � 4 (unless p¼ 1, in

which case d2¼ n � 3). Another case where the expression is simplified is that in which

p¼ 1, since ‘testing that a variable can discriminate between the classes’ is equivalent to

‘testing the usefulness of the contribution of a first variable’, a test which, as we will see

subsequently, has the degrees of freedom d1¼ k � 1 and d2¼ n � k (like the F-ratio of

ANOVA). Note that the Wilks’ lambda of a single variable is the quotient of its within-class

variance divided by its total variance, and is therefore 1 � R2, where R2 is the proportion of

the variance of the variable explained by inclusion in one or other class to be discriminated:

the variable becomes more discriminant as R2 increases. In all cases, the Fisher statistic is

associated with a probability which, if below a certain threshold (often fixed between 0.05

and 0.20) allows us to reject the hypothesis of the equality of the centroids and to accept that

the variables are sufficient to discriminate the classes.

The second question relates to the number of variables required for discrimination, in

other words the selection of the independent variables. Wilks’ lambda can be used in a

stepwise section, for example by using IBM SPSS Statistics or the SAS/STAT STEPDISC

procedure as in the example below. Note that, in the STEPDISC procedure, the default

selection threshold is set at 0.15, because this generally gives better results than a lower or

higher threshold. SAS made this choice on the basis of the work by Costanza and Afifi21 on

linear discriminant analysis. We assume that L0¼ 1, and we start by finding the variable

which leads to the lowest Wilks’ lambda among all the models reduced to one variable, this

value of lambda being denoted L1. The selection process is then reiterated: when p variables

have already been selected and have resulted in the lambda Lp, the lowest possible value

for all models with p variables, we look for the (p þ 1)th variable which minimizes Lpþ 1.

Since we always need to find a stop criterion, we use the one which consists in finding that

the quantity

n� k� p

k� 1

Lp

Lpþ 1

� 1

� �
;

which measures the contribution of the (p þ 1)th variable, follows a Fisher distribution with

(k � 1, n � k � p) degrees of freedom. This enables us to test the null hypothesis that the

(p þ 1)th variable does not improve the model. If no variable provides a sufficiently low

20 Rao, C.R. (1973) Linear Statistical Inference and Its Applications. New York: John Wiley & Sons, Inc.
21 Costanza,M.C. and Afifi, A.A. (1979) Comparison of stopping rules in forward stepwise discriminant analysis.

Journal of the American Statistical Association, 74, 777 –785.
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Lpþ 1 to make the F-ratio above sufficiently large to ensure that the associated probability is

below the chosen threshold (0.15 in STEPDISC), the addition of variables to the model must

be halted. In the example of Fisher’s irises, L0¼ 1 and L1¼ 0.058628, where the first

variable is the petal length, giving a first F-ratio of

150� 3

2

1

L1

� 1

� �
¼ 1180:16

and an associated probability less than 0.0001 (with degrees of freedom 2 and 147), as

indicated in Figure 11.32, obtained as in the following figures by the STEPDISC procedure

in SAS/STAT.

Since L2¼ 0.036884 when the sepal width is added, the second F-ratio is

150� 3� 1

2

L1

L2

� 1

� �
¼ 43:035

and its associated probability is less than 0.0001 (with degrees of freedom 2 and 146). Note

that the sepal width was not the second best variable in the first step of the selection (see

Figure 11.33). This is because its lambda L1 was 0.599217, giving an F-ratio equal to

49.16. In the first step, the best variable after the petal length is the petal width, with

L1¼ 0.071117, markedly lower than the value for the sepal width, and only slightly higher

than the value for the petal length. If the petal width was not selected in the second step,

this is because the information that it contains is already largely contained in the petal

Statistic Value F Value Num DF Den DF Pr > F

0.058628 1180.16 2 147 <.0001

Pillai's Trace 0.941372 1180.16 2 147 <.0001

Average Squared Canonical Correlation 0.470686

Multivariate Statistics

Wilks' Lambda

Figure 11.32 F statistic of the model with one variable.

Statistics for Entry, DF = 2, 147

Variable R-Square F Value Pr > F Tolerance

se_l 0.6187 119.26 <.0001 1.0000

se_w 0.4008 49.16 <.0001 1.0000

pe_l 0.9414 1180.16 <.0001 1.0000

pe_w 0.9289 960.01 <.0001 1.0000

Figure 11.33 Values of the F statistic of the four independent variables.
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length, and the sepal width provides more new information, thus giving a better discrimi-

nation capacity.

We can continue by adding the petal width and then the sepal length, for which the

corresponding lambdas L3 and L4 are low enough for the probabilities associated with the

ratios L2/L3 and L3/L4 to be less than the threshold.

To sum up, in discriminant analysis, the variable selection process provides a sequence of

decreasing lambdas: L1>L2>L3. . .>Lp (see Figure 11.34). The final value of Wilks’

lambda Lp is a global performance indicator for the model, which will be better as Lp

decreases. This sequence ofLi is associated with two series of Fisher statistics, one for each of

the questions posed initially: whether the selected variables enable us to discriminate the

classes, and whether the selected variables are all useful for discrimination. The answer to

each question will be ‘yes’ if the probability associated with the Fisher test is below the

specified threshold. For the selection of the first variable, but only for this, the two questions

and the two tests are equivalent, and the F-ratios are the same.

In the case of Fisher’s irises, we have seen that this first F-ratio is 1180.16. On the other

hand, the F-ratio of the contribution of the second variable is 43.035 (with df 2 and 146; see

Figure 11.35), whereas the F-ratio of the two-variable model is 307.105 (with df 4 and 292;

see Figure 11.36). If these two statistics are different, their probabilities are both below the

threshold and we can reject both null hypotheses, namely that (1) two variables cannot

discriminate the species of iris, and (2) the addition of the second variable does not improve

the discrimination.

Finally,L4¼ 0.023439, and theF-ratios associated withL4 andL3/L4 respectively, which

are 199.145 (see Figure 11.37) and 4.721 (see Figure 11.34), have probabilities less than the

Stepwise Selection Summary

Step Number
In

Entered Partial
R-Square

F Value Pr > F Wilks'
Lambda

Pr <
Lambda

Average
Squared
Canonical
Correlation

Pr>
ASCC

1 1 pe_l 0.9414 1180.16 <.0001 0.05862828 <.0001 0.47068586 <.0001

2 2 se_w 0.3709 43.04 <.0001 0.03688411 <.0001 0.55995394 <.0001

3 3 pe_w 0.3229 34.57 <.0001 0.02497554 <.0001 0.59495691 <.0001

4 4 se_l 0.0615 4.72 0.0103 0.02343863 <.0001 0.59594941 <.0001

Figure 11.34 Changes in Wilks’ lambda in a stepwise procedure.

Statistics for Entry, DF = 2,146

Variable Partial R-Square F Value Pr > F Tolerance

se_l 0.3198 34.32 <.0001 0.2400

se_w 0.3709 43.04 <.0001 0.8164

pe_w 0.2533 24.77 <.0001 0.0729

Figure 11.35 Values of the F statistic for the contribution of the second variable.
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threshold, enabling us to accept that the four variables can discriminate the three species of

iris, and that four variables provide significantly better discrimination than three.

The coefficient of determination R2, or the square of the canonical correlation

This coefficient R2 is equal to the proportion of the variance of the response explained by

its membership of one or other of the classes to be discriminated. In other words, R2 is the ratio

of the between-class variance to the total variance. This ratio is 98% in our example

(Figure 11.38), a very high level which is found in scientific data but not in marketing or

social science data. The aim of discriminant analysis is to maximize R2.

The adjusted coefficient of determination R2

R2 is optimistic, because it increases with the number of variables. To reduce this bias, we can

replace it with an adjusted R2:

adjusted R2 ¼ 1� ð1�R2Þðn� 1Þ
n� p� 1

:

Canonical
Correlation

Adjusted
Canonical

Correlation

Approximate
Standard

Error

Squared
Canonical

Correlation

1 0.984821 0.984508 0.002468 0.969872

2 0.471197 0.461445 0.063734 0.222027

Figure 11.38 Coefficient of determination.

Multivariate Statistics 

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.036884 307.10 4 292 <.0001

Pillai's Trace 1.119908 93.53 4 294 <.0001

Average Squared Canonical Correlation 0.559954

Figure 11.36 F statistic of the model with two variables.

Multivariate Statistics
Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.023439 199.15 8 288 <.0001
Pillai's Trace 1.191899 53.47 8 290 <.0001

Average Squared Canonical Correlation 0.595949

Figure 11.37 F statistic of the model with four variables.
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11.6.6 Syntax of discriminant analysis in SAS

SAS/STAT offers a number of procedures, namely CANDISC for canonical (non-Bayesian)

discriminant analysis, DISCRIM, the most comprehensive, offering geometrical and Bayes-

ian methods, and STEPDISC, described above, which uses linear discriminant analysis for

stepwise selection, not provided by either CANDISC or DISCRIM.

In the example below, the data in the data set DATA are analysed: the dependent

variable is specified by CLASS, and the independent variables follow the instruction

VAR. A first step, STEPDISC, is used to select the independent variables which are

potentially most interesting (see Section 11.6.5). DISCRIM is then called for the first

time, to carry out a parametric discriminant analysis (METHOD¼normal), linear as with

homoscedasticity (POOL¼yes), with a priori probabilities of the classes to be discrimi-

nated proportional to their sizes (PRIORS proportional), with calculation of the canonical

variables (CANONICAL) and testing by cross-validation (CROSSVALIDATE). Remem-

ber that there is only one canonical variable if the dependent variable can only take two

values. The output data set OUT contains the input data, the value of the coefficients of

the canonical variables (if the CANONICAL option has been chosen), the a posteriori

probabilities of each input observation and the resulting assignment (predicted value of

the dependent variable). Each observation is assigned to the class of the dependent

variable which maximizes the a posteriori probability. The output data set OUTSTAT

contains various statistics and the coefficients of the discriminant functions. OUTSTAT

can then be used as the input of a new step, DISCRIM, in order to apply this discriminant

function to a new data set (such as a test data set) specified in TESTDATA. The new

scored data set is specified by TESTOUT.

PROC STEPDISC DATA=mytable.toscore;

CLASS response;

VAR var1 var2 . . . varp; RUN;

PROC DISCRIM DATA=mytable.toscore METHOD=normal POOL=yes

CROSSVALIDATE ALL CANONICAL OUT=mytable.scored

OUTSTAT=mytable.ofstat;

CLASS response;

PRIORS proportional;

VAR var1 var2 . . . varp; RUN;

PROC DISCRIM DATA=mytable.ofstat TESTDATA=mytable.test

TESTOUT=tout;

CLASS response;

VAR var1 var2 . . . varp; RUN;

The start and end of the OUTSTAT data set contain the following observations, in particular

the coefficients of the Fisher discriminant functions (lines 119–122):

The DISCRIM procedure, with the option ALL selected, displays a large number of

outputs, some of which have been described above. These include:

. global within- and between-class covariance matrices, global within- and between-class

correlation matrices, global and class means and variances, etc.;
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Obs response _TYPE_ _NAME_ nbproducts subscription 1 nbchildren subscription 2 changeconsum nbexits

1 . N 6385.00 6385.00 6385.00 6385.00 6385.00 6385.00

2 0 N 5306.00 5306.00 5306.00 5306.00 5306.00 5306.00

3 1 N 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00

4 . MEAN 8.94 371.28 1.34 23.11 1.16 6.48

5 0 MEAN 8.47 281.68 1.38 19.62 1.14 5.96

6 1 MEAN 11.23 811.86 1.15 40.28 1.25 9.05

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

119 0 LINEAR _LINEAR_ 0.38 � 0.00 1.12 � 0.00 8.42 0.05

120 0 LINEAR _CONST_ � 7.50 � 7.50 � 7.50 � 7.50 � 7.50 � 7.50

121 1 LINEAR _LINEAR_ 0.48 0.00 0.83 0.01 9.14 0.09

122 1 LINEAR _CONST_ � 11.27 � 11.27 � 11.27 � 11.27 � 11.27 � 11.27
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. Wilks’ lambda, Pillai’s trace, etc. (Figure 11.32);

. the canonical correlation coefficient, the adjusted coefficient, etc. (Figure 11.38);

. the linear discriminant functions (Figure 11.27) with the options METHOD¼normal

and POOL¼yes;
. the coefficients of the canonical variables (Figure 11.23) with the option CANONICAL;

. the mean values of the canonical variables in each of the classes to be discriminated.

It also displays the confusion matrix (see Section 11.16.4), in other words the matrix

having the real values of the dependent variable in the rows and the values predicted by the

discriminant model in the columns, each cell containing the numbers of observations

concerned. This matrix can reveal a classification error rate for each value of the dependent

variable, with a global error rate. As the number of observations outside the diagonal of

the matrix increases, the error rate rises and the model becomes less predictive. The

DISCRIM procedure offers three different ways of calculating the confusion matrix.

The first method is always executed. In this method, each observation of the learning

sample (the DATA table) is classified by means of the model constructed on this sample,

in other words the model which is chosen and whose characteristics are output

by the procedure. This is known as ‘resubstitution classification’ and it has an optimistic bias.

The second method corrects this bias by applying the model constructed on the learning

sample to a distinct population, forming a validation sample. This validation sample is made

up of the observations from the input table TESTDATA, and the specification of this kind of

table results in the calculation of a confusion matrix on a validation sample.

The third approach also corrects the resubstitution bias, by what is known as the cross-

validation method (see Section 11.3.2). This is done by using the CROSSVALIDATE option

which causes each observation in the DATA table (i.e. the learning sample) to be classified

using the model constructed on the other observations. The confusion matrix is then

displayed, as above. An example is shown in Figure 11.39.

If we want to carry out a quadratic parametric discriminant analysis, we write

PROC DISCRIM DATA=mytable.toscore METHOD=normal POOL=no

and if we wish to carry out a non-parametric discriminant analysis (on the 10 nearest

neighbours), we write

PROC DISCRIM DATA=mytable.toscore METHOD=npar k=10

11.6.7 Discriminant analysis on qualitative variables
(DISQUAL Method)

Quantitative variables can be used to describe the financial operation of a business and

construct a risk score by a linear discriminant analysis (Section 12.10). When attempts were

made to apply this method to scores for lending to individuals, for use when a specialist

consumer credit establishment wishes to examine the risk attached to a request from an

individual, for example a customer buying furniture on credit in a department store, the

problem arose of how to allow for the qualitative variables associated with individuals, such as

sex, family status, socio-occupational category, etc. It was this kind of situation that Gilbert
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Saporta had in mind when he devised the DISQUAL method (DIScrimination on QUALita-

tive variables) in 1975.22

In this method, we start with the qualitative variables, divide all the quantitative variables

into classes (preferably with the same number of categories and similar frequencies), analyse

the multiple correspondences in the indicator matrix of these variables (see Section 7.4),

retrieve the (continuous) coordinates of the individuals on the most discriminating factor axes

(the other axes represent ‘statistical noise’), and then inject these coordinates at the input of a

conventional linear discriminant analysis.

This gives us a Fisher score function for a linear combination of the factor axes. Now,

since these axes are themselves linear combinations of the indicators of the categories of

the initial (qualitative) variables, the Fisher function can be expressed as a linear

combination of indicators of categories, which is equivalent to assigning a mark to each

of these categories. It can be seen that the DISQUAL method not only has the useful

property of processing qualitative variables and avoiding most of the disadvantages of

discriminant analysis as listed in Section 11.6.9, but also provides its results in a very

practical form: the coefficients (the ‘marks’) of two categories are comparable, because we

are concerned here with indicators, instead of quantitative variables which may have widely

differing magnitudes, and the coefficients can also be standardized to give a score between

0 and 100, for example.

DISQUAL has been implemented in SPAD for a long time, but can easily be programmed,

as I have done in SAS language for an example of credit scoring in Section 12.9.

The DISCRIM Procedure
Classification Summary for Calibration Data : WORK. APPRENT
Cross-validation Summary using Linear Discriminant Function

Number of Observations and Percent Classified
into response

From response 0 1 Total
3568 35 36030

99.03 0.97 100.00
1 219 9 228

96.05 3.95 100.00
Total 3787 44 3831

98.85 1.15 100.00
Priors 0.94049 0.05951

Error Count Estimates for response
0 1 Total

Rate 0.0097 0.9605 0.0663
Priors 0.9405 0.0595

Figure 11.39 Confusion matrix by cross-validation.

22 Saporta, G. (1975) Liaisons entre plusieurs ensembles de variables et codage de donn�ees qualitatives. Doctoral
thesis, University of Paris VI.
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11.6.8 Advantages of discriminant analysis

1. It has a direct analytical solution (invert the W matrix).

2. Because of point 1, calculation is very fast. In this respect, discriminant analysis

cannot be beaten.

3. It is optimal when the assumptions of homoscedasticity and multinormality

are correct.

4. The coefficients of the linear combinations provide a result that is relatively explicit

(but slightly less so than the odds ratios of logit regression).

5. The models that are produced are concise and easily programmed by IT personnel.

6. It is very good at detecting global phenomena (whereas decision trees detect

local phenomena).

7. Unlike neural networks and decision trees, it needs far fewer cases for the construc-

tion of the model: a few hundred may be enough.

8. Many algorithms enable the variables explaining the response variable to be selected

in a stepwise way.

9. It facilitates the integration of the classification error costs.

10. It is a method implemented in numerous software.

11.6.9 Disadvantages of discriminant analysis

Conventional linear discriminant analysis which does not make use of the improvement

provided by DISQUAL has a number of drawbacks:

1. It only detects linear phenomena.

2. In principle, it can only be applied to continuous independent variables without

missing values, even if discrete independent variables can be accepted. For discrete or

qualitative variables, or in cases of non-linear phenomena, the DISQUAL method can

be used.

3. It is sensitive to individuals outside the norm (outliers).

4. It theoretically requires the assumptions of multinormality, homoscedasticity and

linear independence of the independent variables. Heteroscedasticity (non-homo-

scedasticity) may be due to the presence of outliers. As regards the existence of

linear relations between the independent variables, or collinearity, this reduces the

stability of the results and may lead to aberrations in the signs of the parameters. It

should be noted that, if the last assumption is fundamental, failure to meet the

requirements of multinormality and homoscedasticity does not necessarily invalidate

discriminant analysis, but in this case the robustness of the discriminant analysis
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will be greater if the classes to be discriminated have frequencies that are close and

sufficiently large. If normal distributions of the variables cannot be achieved,

we must at least ensure that their distributions are unimodal (with only one peak)

and nearly symmetrical.

There is another drawback, from which even the DISQUAL method is not exempt: this is

the absence of statistical tests of the significance of the coefficients, which are present in

logistic regression and are very useful for the choice of independent variables and their

division. However, we can find confidence intervals by bootstrapping (see Section 11.15.1),

albeit that this complicates processing and increases execution times.

As a general rule, it is advisable to take the following measures in order to approach the

constraining assumptions of discriminant analysis:

1. Standardize the variables as far as possible.

2. Carefully select the most discriminating variables.

3. Exclude any of these discriminating variables that are excessively intercorrelated.

4. Exclude extreme individuals or Winsorize (truncate) their extreme values.

5. If some heteroscedasticity persists, it is better to have classes of comparable sizes, even

if it means sampling the population by retaining the whole of the smallest class and

only a fraction of the largest class.

6. Work on homogeneous populations.

7. It is therefore preferable to segment the population in advance and construct a model by

segment before synthesizing all these models (see Section 2.7).

11.7 Prediction by linear regression

There are two reasons for spending some time on the topic of linear regression in a book on

data mining.23 In the first place, linear regression forms the basis of all linear models and is

universally applicable. Its modern variations – such as ‘ridge’ and ‘lasso’ regression – are very

useful, especially in situations where the number of variables is greater than the number of

observations, and in those more common situations where there is significant collinearity

between the predictors. It will also be helpful to deal with linear regression before moving on

to logistic regression and the generalized linear model, as this will enable us to introduce

concepts which will be useful in logistic regression, such as the modelling of a conditional

expectation and the concept of residuals. Certain analogies, such as that between the sum of

squares of residuals in linear regression and deviance in logistic regression, will give us a

better understanding of logistic regression.

23 A more detailed introductory course can be found in Confais, J. and Le Guen, M. (2006) Premiers pas en

r�egression lin�eaire avec SAS. Modulad, 35, 220–363.
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11.7.1 Simple linear regression

Simple linear regression enables us to relate a continuous dependent variable Y to a continuous

independent variable X. It is commonly assumed that the values x1, . . ., xn of X are controlled

and not subject to measurement error, and the corresponding values y1, . . ., yn of Y are

observed. The variable X can be time, and Y can be a quantity measured at different dates.24

Y could also be the potential difference measured at the terminals of a resistor for different

values of current strength X. It is assumed that X and Y are not independent, and that a

knowledge of X enables us to improve our knowledge of Y. Of course, even if we know that

X¼ x, this does not usually mean that the exact value of Y is known, but we assume that it will

enable us to know themeanvalue E(Y|X¼ x), the conditional expectation of Y given thatX¼ x.

More precisely, the basic postulate of linear regression is that E(Y|X¼ x) is a linear function of

x, which can be stated as

EðyiÞ ¼ aþ bxi for every i ¼ 1; . . . n;

or, in an equivalent way, as

yi ¼ aþ bxi þ ei; with EðeiÞ ¼ 0 for every i ¼ 1; . . . n:

The term (a þ bxi) is the deterministic component of the model, (ei) is its stochastic

component, and the values ei are called the ‘errors’. The breakdown into a deterministic

component and a stochastic component reflects the fact that individuals having the same value

of xi can have different responses Y (synchronic variation), or that one individual measured

several times with the same value xi can have different responses Y (diachronic variation), but

in all cases the mean response of individuals having the value xi or of the observations of an

individual having the value xi is completely determined. This is shown in Figure 11.40. This

diagram also reveals the other hypotheses of the linear model, namely:

. the variance of the errors is the same for all values of X (homoscedasticity): V(ei)¼ s2;

. the errors are linearly independent (Cov(ei,ej)¼ 0 8i 6¼ j);

. the errors are normally distributed (ei�N(0,s2)).

Note also the essential condition that n> 5, or preferably n> 15.

24 In this case, the existence of a trend (without seasonality) in the time series x1, . . ., xn can be tested in a more

general context, without using the strong assumptions of linear regression. The non-parametric Mann–Kendall test

can be used. This is applied to the statistic S of the same name, which is the sum of the signs of the differences xj � xi,

where j> i. If S is divided by its maximum value, namely n(n � 1)/2 if there are no ties, we will recognize Kendall’s

tau (see the SectionA.2.8). Under the null hypothesis that there is no tendency, and if n> 10, this statistic S is correctly

approximated by a normal distribution with a mean of 0 and variance Var(S) which is a cubic function of n. If n� 10,

an exact test must be used. By comparing the value of Swith a tabulated value or one given by a quantile of the normal

distribution, we can decide whether or not to reject the null hypothesis. Another test, the Sen test, can also be used to

reject the null hypothesis, and also provides a robust estimator of the slope, which is the median of the slopes of all the

pairs of points (i,xi). In the Sen test, a confidence interval around the median slope is calculated, and this slope is

considered to be significantly different from zero if its confidence interval does not contain 0, enabling us to reject the

null hypothesis.
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Clearly, the last two hypotheses are transferred to the values of yi: Cov(yi,yj)¼ 0 and yi�
N(a þ bxi,s

2). The hypothesis of normality means that linear regression is included in the

family of general linear models, whereas in generalized linear models (see Section 11.9.6) the

conditional distribution of Y given X¼ xi is not necessarily normal.

To return to simple linear regression, we postulate the existence of a relation E(Y|X¼
x)¼ a þ bxwhich wewill attempt to estimate on the basis of a sample. We therefore seek the

estimators a and b of a and b. This is usually done with the ordinary least squares (OLS)

method, which involves finding the coefficients a and b which minimize the differences

Xn
i¼1

ðyi � a� bxiÞ2:

We first find the estimator b of the slope,

b ¼
P

iðxi ��xÞðyi ��yÞP
iðxi ��xÞ2 ¼ covðX; YÞ

s2x
;

with the usual notation for the means, �x ¼Pixi=n and �y ¼
P

iyi=n. We then find the estimator

a of the constant,

a ¼ �y� b�x:

For every xi, the predicted value of yi is a þ bxi. We say that the straight line Ŷ ¼ aþ bX fits

the cloud of points. The errors ei are estimated by the residuals yi � (a þ bxi).

Note that we can never find the actual coefficients a and b, because:

. the linear model is often only an approximation to reality;

. we are only working on samples, not the whole population;

. measurement errors occur.

Figure 11.40 The hypotheses of linear regression.
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Estimation on another sample would result in different estimators a0 and b0. If these

estimators are measured on a certain number of samples, we find a dispersion of their

values, and if these are represented graphically in a dispersion diagramwith a horizontal axis

a and vertical axis b, we will see an elliptical cloud of points, with centres at E(a) and E(b),

inclined from the upper left-hand side to the lower right-hand side because the estimators

are negatively correlated: if the constant term is overestimated, the slope of the straight line

is underestimated.

The estimators a and b therefore have a degree of variance. However, we can use the

hypotheses E(ei)¼ 0, V(ei)¼ s2 and Cov(ei,ej)¼ 0; 8i 6¼ j; of the linear model to refine our

knowledge of these estimators (these two hypotheses are reformulated by saying that the

variance—covariance matrix of the error is s2I).We can then show that the OLS estimators are

free of bias, which means that their means meet the condition that E(a)¼ a and E(b)¼ b. We

can also show that the OLS method is optimal in that it yields estimators that have the least

variance of all the unbiased linear estimators (the Gauss–Markov theorem). Such estimators

are referred to as best linear unbiased estimators (BLUE). This property of minimal variance

is useful because it guarantees the stability of the coefficients, the correct generalization of the

model, and the reliability of the predictions. The BLUE property of OLS estimators explains

the very widespread use of this method. However, an even lower variance is sometimes

preferable to an absence of bias for the purpose of increasing the accuracy of predictions;

this is discussed below and comes from the fact that the mean square error (MSE) of an

estimator, i.e. the average of the square of the differences between the observed and the

estimated values, is the sum of its variance and the square of its bias.

The supplementary hypothesis of normality ei�N(0,s2) signifies that the estimators a and

b have a normal distribution. On this hypothesis, the maximum likelihood estimators coincide

with the least squares estimators (see Section 11.8.5).

The variances V(a) and V(b) are related to the variance s2 of the errors:

s2a ¼ s2
1

n
þ �x2P

iðxi ��xÞ2
" #

and s2b ¼ s2
1P

iðxi ��xÞ2
" #

From this we can deduce the confidence intervals at the 100(1 � a)% level:

a ta=2;n� p� 1 � sa and b ta=2;n� p� 1 � sb:
These formulae show that there are three ways of decreasing the variances:

. by increasing the size n of the sample,

. by increasing the range of the observed values of X (important: the model is only valid

over this range),

. by reducing the variance s2 of the errors in the sample.

Another way of reducing an excessive variance is to accept slightly biased estimators (see

ridge regression, in Section 11.7.11).

The slope b of the regression line provides the direction (positive, negative or non-

monotonic) of the relation between Yand X, but not its strength, which is given by the variance

of the errors s2, also known as the variance of the error e. Like the coefficients a and b, s2 is
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unknown, and we have to find an estimator of it. This is done by calculating the residual sum

of squares,

ESS ¼
Xn
i¼1

ðyi � a� bxiÞ2;

as shown in Figure 11.41, then dividing ESS by the number of degrees of freedom

n � p � 1 (where p¼ 1, the number of independent variables, not counting the constant).

The quantity

ESS

n� 2

is an unbiased estimator of s2. We recognize the mean square error and its square root is the

root mean square error (RMSE).

11.7.2 Multiple linear regression and regularized regression

Simple linear regression can be generalized to the case of several independent variables Xi,

giving multiple linear regression, and in this case we write

Y ¼ b0 þ b1X1 þ . . . þ bpXp þ e;

adding an important supplementary hypothesis, namely the linear independence of the Xi.

The above equation can be written in matrix form for the n observations:

y1
y2
. . .
y3

0
BB@

1
CCA ¼

1 x11 . . . x1p
1 x21 . . . x2p
. . . . . . . . . . . .
1 xn1 . . . xnp

0
BB@

1
CCA

b0
b1
. . .
bp

0
BB@

1
CCAþ

e1
e2
. . .
en

0
BB@

1
CCA

)(∑ −=
i

i yyRSS

squaresofsumelmod
2ˆ

)(∑ −=
i

ii yyESS

residual sum of squares
2ˆ

)(∑ −=
i

i yyTSS

total sum of squares
2

xi

yi

TSS = RSS + ESS

Figure 11.41 Analysis into sums of squares.
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or, more concisely, as

Y ¼ Xbþ e:

where X is a n� ðpþ 1Þ-matrix.

The usual procedure in multiple linear regression is to find the estimator b ¼
b0 b1 . . . bpð Þ of the least squares of the vector b ¼ b0 b2 . . . bp

� �
, in other

words the one that minimizes the sum

Xn
i¼1

yi � b0 �
Xp
j¼1

xijbj

 !2

:

Using the matrix notation Y, X, At to denote the transposed matrix of anymatrix A, and ||A||

for the norm of A, the expression to be minimized is written:

Y �Xbk k2 ¼ ðY �XbÞtðY �XbÞ ¼ YtY � 2btXtY þ btXtXb:

If this quantity is seen as a function of b, we must find b such that this quantity is minimal,

which is done by differentiating it with respect to b,

@=@bð Y �Xbk k2Þ ¼ � 2XtY þ 2XtXb;

and the condition

@=@bð Y �Xbk k2Þ ¼ 0

means that b must satisfy the least squares equation

b ¼ ðXtXÞ� 1
XtY : ð11:2Þ

This can easily be verified in the case where we have

X ¼ 1 x1
1 x2

� �
and Y ¼ 1 y1

1 y2

� �
:

This is because

ðXtXÞ� 1
XtY ¼ X� 1Y ¼ 1

x2 � x1

x2 � x1
� 1 � 1

� �
y1
y2

� �
¼ 1

x2 � x1

x2y1 � x1y2
y2 � y1

� �
:

Now, it is clear that
y2 � y1

x2 � x1

is indeed the estimator of the slope, while

x2y1 � x1y2

x2 � x1
¼ y1 þ y2

2
� y2 � y1

x2 � x1

x1 � x2

2

� �

is the estimator of the constant.
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Since the vector of the estimated values is Ŷ ¼Xb, and b¼ (XtX)� 1XtY, this vector is

expressed as

Ŷ ¼ XðXtXÞ� 1
XtY ¼ HY ;

where the n � n matrix H¼X(XtX)� 1Xt is called the ‘hat matrix’, because of the symbol

appearing on top of the Y. The trace of this matrix, in other words the sum of its n diagonal

elements hi, is p þ 1, since TrðHÞ ¼ TrððXtXÞ�1
XtXÞ ¼ TrðIpþ1Þ and each of these is in the

range from 1/n to 1 (inclusive). These terms are called ‘leverages’ or ‘leverage values’,

because they are related to the effect of each observation i on the fit. The leverage in i is a

measure of the distance between the values of X taken in i and the mean values over the n

observations. The leverages depend only on X, not on Y, but their effect on the fit can easily be

imagined, if we think of an observation very distant from the others: when its vector of Xs

tends towards infinity, the fit will tend to bemade to this observation only, and the residual will

be very small. This is the leverage effect.

As in simple linear regression, the Gauss–Markov theorem holds, and the OLS estimators

are the unbiased estimators which have minimal variance. Furthermore, if the errors are

normally distributed, the estimators will also be normally distributed.

As in simple regression, the quantity

ŝ2 ¼ ESS

n� p� 1

is an unbiased estimator of the variance of the error s2.

As for the variance of each residual ei ¼ yi � ŷi, this is related to the variance of the error s
2

and to the leverage hi:

VarðeiÞ ¼ s2ð1� hiÞ:

It is therefore always less than the variance of the error s2, and can even become very small if

the leverage is very large. This is evidently due to the fact that the fit tends to be made only to

the observation concerned. If the errors ei are normally distributed, the residuals ei are too.

We can deduce from formula (11.2) that the variance–covariance matrix of the estimator

b is
VðbÞ ¼ s2ðXtXÞ� 1: ð11:3Þ

We can check this in our little example above, and find the variance s2a of the constant and
s2b of the slope, as expressed above. For example, we have

s2b ¼
s2

x21 þ x22 � 2m
¼ s2

ðx1 � mÞ2 þðx2 � mÞ2 ;

where m ¼ ðx1 þ x2Þ=2.
The variances of the estimators (bj), which, according to equality (11.3), are proportional

to the diagonal terms of (XtX)� 1, become very large if the independent variables are collinear.

In fact, the determinant of the matrix (XtX) becomes close to 0 and this is difficult to invert.

This leads to inaccuracies in the estimated parameters of the model and errors in the

predictions, even if R2 is large. We will return to these difficulties in Section 11.7.8.
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These diagonal terms are also proportional to 1=ð1�R 2
j Þ, where Rj is the multiple

correlation coefficient of the jth variable with the p � 1 other independent variables. These

ratios are those by which s2 is multiplied to give the variances of the estimators (bj) and this is

why they are called ‘variance inflation factors’ (see Section 3.14). It is generally considered

that they must be less than 10, and the mean of the p inflation factors is sometimes used as a

global measurement of multicollinearity.

These diagonal terms are also related to the inverses of the eigenvalues of the matrix XtX,

some of which are close to 0 in cases of collinearity. This explains why condition indices are

used to detect collinearity (see Section 3.14).

If collinearity is present and it is difficult to invert the matrix XtX, one way of dealing with

the collinearity is to add a constant k to the diagonal terms of XtX to make it invertible without

any numerical difficulty. This is the principle of ‘ridge’ regression as proposed by Hoerl and

Kennard (1970).25 The ‘ridge’ estimator is then

bR ¼ ðXtXþ kIÞ� 1
XtY:

This is equivalent to finding the estimator bR that minimizes

Xn
i¼1

yi � b0 �
Xp
j¼1

xi; jbj

 !2
þ k

Xp
j¼1

b2j :

In vector terms, we can rewrite this expression as

Y �Xbk k2 þ k bk k2:

This is equivalent to finding bR¼ (b0 b1 . . . bp)
t so as to minimize

Xn
i¼1

yi � b0 �
Xp
j¼1

xi;jbj

 !2

subject to the condition
Pp

j¼1 b
2
j � C2 (C is related to k). For this reason, we also describe this

as the ‘shrinkage method’. The greater the value of k (the smaller the value of C), the more the

coefficients ‘shrink’. The aim is to avoid unstable coefficients and very large coefficients

which ‘compensate’ each other, sometimes at the cost of inconsistency of signs. The

variance–covariance matrix of bR is

VðbRÞ ¼ s2ðXtXþ kIÞ� 1ðXtXÞðXtXþ kIÞ� 1:

It is interesting to note that a well-chosen value of kmay not only allow us to invert (XtX þ kI)

without problems and to control the variance of the estimator, but also lead to a variance that is

25 Hoerl, A.E. and Kennard, R.W. (1970) Ridge regression: biased estimation for nonorthogonal problems.

Technometrics, 12, 55–67.
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so greatly reduced that it compensates for the increase in bias (E(bR) 6¼b) in such a way that

E bR � bk k2
	 


� E b� bk k2
	 


The mean square error of the estimation of b by bR is lower than that of the estimation by b.

This is because the mean square error is the sum of the variance and the square of the bias of

the estimator:

Eð bR � bk k2Þ ¼ VðbRÞþEðb� bÞ2:

This parameter k can be seen as a ‘cursor’ enabling us to choose more bias and less variance

(when k large) or less bias and more variance (when k is small), in a continuous way, thus

optimizing the prediction accuracy. This fine-tuning is an advantage of shrinkage regression

as compared with PLS regression and principal component regression.

In the case of simple linear regression, the unbiased estimator of the slope is

b ¼
P

iðxi ��xÞðyi ��yÞP
iðxi ��xÞ2 ;

and we can show that the ‘ridge’ estimator of parameter k is

bR ¼
P

iðxi ��xÞðyi ��yÞP
iðxi ��xÞ2 þ k

:

The mean square error of bR reaches its minimum when k¼ s2/b2.
In practice, s2 and b2 are unknown, and we search for the optimal value of k by combining

the following criteria:

. a variance inflation factor close to 1;

. a moderate increase in the RMSE;

. stable coefficients bR from k onwards.

In order to apply this last criterion, we plot the values of the coefficient bR for each

independent variable as a function of k on the same graph, so that they are superimposed.

This is known as a ‘ridge trace’. Some examples will be discussed later on. Ridge regression is

an effective method of regularization which is easy to apply and is widely used.

In 1996, Robert Tibshirani introduced a new method of regularisation (also known as

‘penalization’), the lasso (least absolute shrinkage and selection operator).26 In this linear

method, the sum Xn
i¼1

yi � b0 �
Xp
j¼1

xi; j; bj

 !2

26 Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,

Series B, 58(1), 267–288.
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is minimized subject to the condition
Pp

j¼1 bj
�� �� � t, instead of

Pp
j¼1 b

2
j � C2 as in ridge

regression. In the same way, we aim to minimize

Xn
i¼1

yi � b0 �
Xp
j¼1

xi;jbj

 !2

þ k
Xp
j¼1

bj
�� ��:

In 2005, Zou andHastie proposed a compromise (the ‘elastic net’) between the lasso and ridge

regression,27 in which the penalization takes the formXp
j¼1

1

2
ð1� aÞb2j þ a bj

�� ��� �
:

The lasso is present when a¼ 1 and ridge regression is present when a¼ 0.

Other kinds of penalization have recently been proposed by various researchers, in

the form Xp
j¼1

bj
�� ��d;

where d is between 0 and 2, the values of d lying between 0 and 1 beingmore suitable for cases

where many of the coefficients to be estimated are small. The difficulty that arises in terms of

computing is that of finding the simultaneous optimal values of k and d quickly enough.28

Each value of d has a corresponding constraint domain: with two dimensions, this is a disc

when d¼ 2, a lozenge when d¼ 1, and a ‘star’ when d< 1, this star contracting towards the

axes as d approaches 0. The arms of the star correspond to cases in which one of the

coefficients to be estimated is small. If d is less than 1, the constraint domain is concave and

not convex, giving rise to problems of optimization as mentioned above. Various computing

algorithms have been suggested, such as the LARS procedure of Efron and Hastie29 (available

in the lars package of R) and the GLMNET procedure based on ‘coordinate descent’, a much

faster computing method (available in the glmnet package).

After multiple linear regression, these regularization methods have been applied in other

contexts, as follows: logistic regression, the generalized linear model (Tibshirani, 1996;30

Park & Hastie, 2007),31 the Cox proportional hazards survival model (Tibshirani, 1997),32

support vector machines (Hastie et al., 2004),33 quantile regression (Li & Zhu, 2007),34 etc. In

27 Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society, Series B, 67(2), 301–320.
28 See, for example, http://www-stat.stanford.edu/�jhf/talks/GPS_R.pdf and http://www-stat.stanford.edu/�jhf/

ftp/GPSpaper.pdf, both presentations by Jerome H. Friedman.
29 Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004) Least angle regression (with discussion), Annals of

Statistics, 32, 407–499.
30 Tibshirani, Regression shrinkage and selection via the lasso, cited in n. 26.
31 Park, M.Y. and Hastie, T. (2007) L1-regularization path algorithm for generalized linear models. Journal of the

Royal Statistical Society, Series B, 69(4), 659–677.
32 Tibshirani, R. (1997) The lasso method for variable selection in the Cox model. Statistics in Medicine, 16,

385–395.
33 Hastie, T., Rosset, S., Tibshirani, R. and Zhu, J. (2004) The entire regularization path for the support vector

machine. Journal of Machine Learning Research, 5, 1391–1415.
34 Li, Y. and Zhu, J. (2008) L1-norm quantile regression. Journal of Computational and Graphical Statistics, 17,

163–165. See also Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel Hilbert spaces. Journal

of the American Statistical Association, 102, 255–268.
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logistic regression, for example, it is not the square error but the log-likelihood that is

penalized. The ‘grouped lasso’ was introduced in 2006 by Yuan and Lin35 to include or

exclude groups of variables; for example, such a group may be all the categories of a

qualitative variable.

11.7.3 Tests in linear regression

In a linear regression on p independent variables, the number of degrees of freedom of the

‘regression’ sum of squares, RSS, is p. The equivalent of the ANOVA F-ratio is

F ¼ RSS=p

ESS=ðn� p� 1Þ :

On the null hypothesis that all the regression coefficients are zero, F has a Fisher distribution

with (p, n � p � 1) degrees of freedom. In the following example of the regression of

heating consumption on the external temperature and insulation thickness, the F test is

considered significant because the probability associated with F¼ 167.933 is less than 5%.

The table in Figure 11.42 also shows the estimator of the variance of the error, equal to

9727.56. This quantity is equal to the square of 98.627 which appears in Figure 11.47

(‘standard error of the estimate’).

The number of observations has a significant effect: a small sample (say, less than 20

observations) detects only the strong relations, but a large sample detects all the relations,

even weak ones (H0 is rejected even though RSS is small with respect to ESS).

In addition to the F-ratio, and the RMSE which must be as small as possible, another

important quality indicator of the model is the coefficient of determination:

R2 ¼ RSS

TSS
¼ 1� ESS

TSS
:

This represents the part explained by the regression to the sum of squares of the deviations

from the mean. In the case of simple linear regression, R2 is equal to r2, the square of the

Pearson correlation coefficient of X and Y. More generally, R2 is the square of the Pearson

coefficient of correlation of Y with its prediction Ŷ (in other words, its projection on the

regression line). R is called the coefficient of multiple correlation of Ywith the variables Xi. In

all cases, R2 ranges from 0 to 1 and the fit improves as R2 approaches 1. As this happens, the

Sum of Squares df Mean Square F Significance

Regression 3267046.665 2 1633523.333 167.933 .000

Residual 116727.068 12 9727.256

Total 3383773.733 14

Figure 11.42 Illustration of the F test of a linear regression.

35 Yuan,M. and Lin, Y. (2006)Model selection and estimation in regressionwith grouped variables. Journal of the

Royal Statistical Society, Series B, 68, 49–67.
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cloud of points becomes closer to the regression line, and the equation for the regression line

becomes a better predictor of the phenomenonmeasured.We say that there is a good fit, or that

the regression line fits the cloud well. If R2¼ 1, the cloud is actually identical to the straight

line, and the prediction by the regression straight line is perfect: the regression equation

always yields the exact value that is to be predicted. In two dimensions, R2 is the square of the

coefficient of correlation between the dependent variable Y and the independent variable X

(called the regressor or predictor), and is therefore related to the elongation of the cloud of

points as shown in Figure A.7 in Appendix A.

Looking at the example (Figure 11.43) of heating consumption regressed on the insulation

thickness, we find a degree of dispersion of the cloud around the regression line. This is

indicated by a moderate R2 of 0.22. Taking the example (Figure 11.44) of heating consump-

tion regressed on the external temperature, we find a markedly greater concentration of the

points around the regression line. The cloud is elongated along the straight line. This is

indicated by a high R2 of 0.76. In both cases, of course, the slope of the line is negative,

because the consumption decreases when the external temperature rises or when the thickness

of the insulation increases.

When the cloud deviates from the straight line, this may be due to measurement errors or

other anomalies, but the usual cause is a lack of useful information for describing the data and

predicting the phenomenon of interest. The work of modelling then consists of finding the

variables that can be added to the model, in other words to the linear equation, to provide a

better approximation to the cloud of points. Note, however, that we then move into a space

with more dimensions, each new variable adding a new dimension.
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Figure 11.43 Regression of consumption on insulation.
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Returning to our example of heating consumption, regressed simultaneously on the two

variables of temperature and insulation thickness, we obtain the equation

consumption ¼ 1467:64� 37:06� temperature� 29:77� insulation;

which, as Figure 11.45 shows, is much closer to the cloud of points than either of the straight

lines, even the temperature line. Thus we have achieved our aim of finding regressors, in other

words independent variables, which provide the best description of the phenomenon to be

measured, in the sense that the heating consumption estimated by the resulting linear equation

(the points on the plane) is very close to the actual consumption (the points in the cloud). This

is indicated by a very high value of R2, at 0.97, very close to the sum of the values of the R2 of

the simple regressions on insulation thickness and external temperature. This almost ideal

situation is rather unusual. It is present here because the two regressors are hardly correlated at

all (see Figure 11.49). Consequently, the information provided by each variable has hardly any

redundancy in relation to the information provided by the other variable, and nearly all of their

discriminant powers are added together.

On the other hand, if the two variables were highly correlated, we would find a markedly

less satisfactory fit, as shown in Figure 11.46, where the cloud is clearly more dispersed

around the plane. The R2 that is displayed also shows that it does not exceed the R2 of the first

variable: the second variable adds virtually nothing to the regression or to the resulting model.

And yet, the equation in Figure 11.46 shows that the sign of the ‘temperature’ variable remains

negative: we shall see in Section 11.7.11 that collinearity can lead to an inversion of signs. For
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Figure 11.44 Regression of consumption on temperature.
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the present example, the variable ‘othervariable’ is defined as the sum of the temperature and a

random Gaussian term following an N(0,1) distribution.

This is an extreme situation, but the opposite situation in which the variables are not

correlated at all is rarely encountered, even though, as is well known, the R2 of the regression

generally increases with the number of variables. However, we should be wary of the

excessive optimism of R2, because this increases ‘mechanically’ with the number of

variables, to a greater extent than the real fit of the linear model (a straight line with a

regressor, a plane with two regressors, a ‘hyperplane’ with more than two regressors) to the

cloud of points. It is therefore best to rely on the adjusted R2, defined in the same way as in

linear discriminant analysis:

R2adjusted ¼ 1� ð1�R2Þðn� 1Þ
n� p� 1

This adjusted R2 is always smaller than R2 (see Figure 11.47), even when p¼ 1, and may

even be negative.

Leaving aside these global indicators, the contribution of each variable can be evaluated

by dividing its coefficient by the standard deviation of the coefficient. When this quotient t is

greater than þ 2 or less than � 2, the coefficient is significantly different (at the 95% level)

consumption = 1467.64 + -37.06 * temperat + -29,77 * insulatio

R-square = 0.97
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Figure 11.45 Regression of consumption on insulation and temperature.
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from 0. This is the case shown in Figure 11.48. If this were not the case, we would have to

exclude the variable from the model. As the absolute value of t increases, the predictive power

of the variable rises together with its contribution to the linear model. This is true, for example,

of the temperature variablewith respect to the insulation variable. Note that the value of tmust

not be confused with that of the coefficient of the variable: the coefficient only indicates the

slope of the line, and a large coefficient can be associated with a small t, in other words a high

standard deviation and a high uncertainty concerning the coefficient. The contribution of the

variable is related to its t but not to its coefficient, which can also bemultiplied or divided if the

units of the variable are changed. As a special case, in simple linear regression the p-value of

the Student test on the single predictor is equal to the p-value of the Fisher test, described

above, on the mean squares.
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Figure 11.46 Regression of consumption on two highly correlated variables.

R R square 
Adjusted R 

square
Std Error of the 

Estimate Durbin-Watson

.983 .966 .960 98.627 1.819

Figure 11.47 Quality indicators of a linear regression.
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Unstandardized Coefficients 
Standardized
Coefficients t Sig

B Std. Error Beta

(Constant) 1467.643 62.422 23.512 .000

temperature -37.060 2.295 -.866 -16.147 .000

insulation -29.774 3.492 -.457 -8.526 .000

a  Dependent Variable : consumption 

Figure 11.48 Coefficients of a linear regression.

These results, obtainedwith IBMSPSS Statistics for example, can also be obtainedwith the R

software, using the commands shown below. The first of these creates the ‘heating’ data set in the

form of a data frame. In R, a data frame is a table of data composed of vectors having the same

length but not necessarily the samemode (numeric or character); this is analogous to an SAS table.

> heating <-

data.frame(consumpt=c(1042,1377,622,154,357,874,1388,1138,900,460

,119,770,1670,1223,199),

+ temperat=c(4.4,-2.8,4.4,22.8,17.8,1.1,-12.8,-13.3,-5.0,17.2,

18.3,5.0,-6.1,3.3,14.4),

+

isolatio=c(7.6,7.6,25.4,15.2,15.2,15.2,15.2,25.4,25.4,7.6,25.4,

15. 2,7.6,7.6,25.4))

The lm function of R then executes a linear regression and creates the object ‘heating.lm’,

whose summary function can be used to extract the main results and diagnostics of the

regression.

> heating.lm <- lm(consumpt�temperat+insulatio,data=heating)

> summary(heating.lm)

Call:

lm(formula = consumpt � temperat + insulatio, data = heating)

Residuals:

Min 1Q Median 3Q Max

-143.921 -63.025 1.599 52.781 202.574

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1467.643 62.422 23.512 2.09e-11 ***

temperat -37.060 2.295 -16.147 1.67e-09 ***

insulatio -29.774 3.492 -8.526 1.95e-06 ***

— — —

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 98.63 on 12 degrees of freedom

Multiple R-squared: 0.9655, Adjusted R-squared: 0.9598

F-statistic: 167.9 on 2 and 12 DF, p-value: 1.685e-09
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The plot function is used to extract the four graphs shown in Figure 11.50 from the object

‘heating.lm’. It must be preceded by an instruction par(mfrow¼c(n,m)), which displays n�m

graphs on the same page, in n rows and m columns. The upper graphs enable us to check the

hypotheses of homoscedasticity (the graph of residuals as a function of the predicted values)

and normality (the graph of studentized residuals as a function of the quantiles of the normal

distribution) of the residuals.

par(mfrow=c(2,2))

plot(heating.lm)

We can see that the sign of the coefficients is negative, meaning that the heating consumption

decreases as the insulation thickness and external temperature increase. This check on the

signs may appear to be trivial – and in this case it is – but it can allow us to detect any of the

major anomalies which may always occur in databases (unexpected signs may also be due to

interactions between the predictors).

More generally, when we have obtained a regression equation, we must examine the

meaning of this equation and especially that of the constant. Sometimes an undesired negative

constant appears in a linear regression. For example, if we are modelling a cost of a takeover,

the constant may represent the fixed cost. In some cases, the constant may be negative

although no interpretation with a negative value can be found. We must then check to see if

this is due to the presence of aberrant points which should be excluded. We can also see if it is

possible to add a variable (even one having only a moderate significance) to the model in order

to change the sign of the constant. Or we can attempt to segment the population to replace the

single regression equation with one equation for each segment (for each type of service, in the

example of the takeover cost).

The resulting coefficients enable us to calculate the regression equation, which was our

aim. We must also ensure that the hypotheses of the linear model have been confirmed.

Since this is a multiple linear regression, we must start by ensuring that there is no strong

collinearity between the predictors. For this purpose, we calculate the Pearson linear

regression coefficient as shown in Figure 11.49 (a more general test, valid when more

than two predictors are present, is described in the next section). We have introduced the

dependent variable (consumption) into this correlation calculation, enabling us to check not

only that the two predictors ‘insulation’ and ‘temperature’ are practically uncorrelated, but

also that these two predictors are reasonably strongly correlated (negatively, of course) with

consumption. Note that the correlation coefficients � 0.465 and � 0.870 are close to the

regression coefficients.

11.7.4 Tests on residuals

The three hypotheses on the residuals must then be checked: these are the normality of their

distribution, the equality of their variance (homoscedasticity) and the absence of autocorre-

lation (no correlation between ei and eiþ 1). An example discussed below will show why

these checks are so important and how they complement the analyses already carried out on

the F-ratio, R2, etc.

When the number of observations is not too large, graphic observation is a very useful way

of making these checks. The graphics often show the standardized residuals ri, which are the
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residuals ei standardized to allow for their variance s2(1 � hi) (see above):

ri ¼ ei

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p :

In this formula, the variance of the error s2 is replaced by its estimator,

ŝ2 ¼ ESS

n� p� 1
:

We also define the studentized residuals which are calculated as shown above but with the

usual estimator of s2 replaced by the estimator found bymaking the adjustment without the ith

observation, so that this estimator is independent of ei.

If the standardized residual of an observation does not lie between � 2 and þ 2, then it is

significantly different from 0 at the 5% level. Remember that, under the hypotheses of the

linear model, the residuals ei follow a normal distribution N(0,s2(1 � hi)). Such a residual

may indicate an aberrant observation, an outlier.

The normality of the distribution of the residuals is tested as mentioned in Section 3.6,

using graphics, P-P plots and statistical tests such as the Kolmogorov–Smirnov test.

A visual tool for detecting heteroscedasticity (non-equality of variances) and autocorre-

lation of the residuals is the residual plot. The standardized residuals are represented as a

function of the dependent variable Y (or of the predicted variable Ŷ). This diagram also allows

us to check at a glance that no standardized residual exceeds the critical value of 2. In the

preceding example (see Figure 11.50), one of the residuals is slightly greater than 2 and must

be watched carefully. This point will be discussed further below.

To test the equality of the variance of the residuals, we can also use the Levene test,

grouping the values of Y into classes. The residual plot shown on the right of Figure 11.52 is

Correlations

consumption temperature insulation

consumption 1.000 -.870 -.465

temperature -.870 1.000 .009

Pearson Correlation 

insulation -.465 .009 1.000

consumption .000 .040

temperature .000 .488

Sig. (1-tailed) 

insulation .040 .488

consumption 15 15 15

temperature 15 15 15

N

insulation 15 15 15

Figure 11.49 Correlation coefficients.

372 CLASSIFICATION AND PREDICTION METHODS



not acceptable, because the estimation of Y given X is accurate when Y is small, but inaccurate

when Y is large. It is not uncommon for the variance to increase with X.

In SAS/STAT, there is an option of the linear regression procedure REG that can test the

null hypothesis of the equality of the variance of the residuals. This is the SPEC option, which

launches the White test:

PROC REG DATA=heating;

MODEL consumption = temperature insulation / SPEC;

This gives a result indicating that homoscedasticity is present when the probability (0.7541 in

this case; see Figure 11.51) is greater than 0.05. The test is not very powerful for small samples

(it is rare to have a probability of less than 0.05), but we can remember that a higher

probability means a more satisfactory state of affairs.

When heteroscedasticity is present, it is advisable to replace the ordinary least squares

with theweighted least squares (see Section 11.7.12 on robust regression), or to replace Ywith

its logarithm, square root or inverse (when the variance increases, as in Figure 11.52), or with

its exponential or square (when the variance decreases). For example, we can regress log(Y) on

X. Another cause of heteroscedasticity may be the lack of an essential variable in the model,

as we shall see below, returning to the example of heating consumption.

Figure 11.50 Diagrams of the residuals.

PREDICTION BY LINEAR REGRESSION 373



Autocorrelation of the residuals must also be avoided, as shown in Figure 11.53 where the

mean values are overestimated and the extreme values underestimated. Autocorrelation of the

residuals can be detected by the Durbin–Watson statistic, given byPn
i¼2 ðei � ei� 1Þ2Pn

i¼1 e
2
i

:

This ranges from 0 to 4, but must be close to 2 for the autocorrelation to be acceptable. It is

less than 2 for positive correlations (because the successive values of the residuals are close to

each other) and greater than 2 for negative correlations. As a general rule, the Durbin–Watson

statistic should lie between 1.5 and 2.5. This test is valid even if the distribution of the

DF Chi2-Square Pr > Chi2Sq

0.75412.655 

Test of First and Second 
Moment Specification 

Figure 11.51 White’s test.

Figure 11.52 Heteroscedasticity of the residuals.

Figure 11.53 Autocorrelation of the residuals.
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residuals is not normal. In the preceding example (Figure 11.47) we saw that the Durbin–

Watson statistic is satisfactory (¼ 1.819). If autocorrelation is present, we can try to replace X

with X2 and regress Yon X2, as in the example shown below of regression of yb on x according

to Tomassone et al.36

11.7.5 The influence of observations

The last point to check concerning the quality of the prediction is the effect of outliers and

aberrant observations.

We have already seen that a high standardized residual, especially one above the critical

threshold of 2 in absolute terms, can be related to an aberrant observation. However, it is

possible for an aberrant observation not to be associated with a large residual, and other

criteriamust be considered. Note that the converse is also true: in our example, observation 13,

which has a standardized residual of 2.3, also has the highest value of Y, but this value is not

actually outside the norm.

A criterion that is different from the standardized residual is the leverage introduced in

Section 11.7.2. For each observation, this measures the difference between the observation

and the mean, and the resulting effect of the observation on the fit. Since the leverages have a

mean value of (p þ 1)/n (see above), we should not trust an observation if its leverage exceeds

2(p þ 1)/n. In our example, this threshold is 0.4. Figure 11.50 shows that no lever exceeds this

threshold, even if one of them is close to it. Note that this is not observation 13. This

demonstrates that the leverage and the residual are not completely equivalent criteria, but

rather complementary. The hatvalues function in R can find the leverage values, in the same

way as the INFLUENCE option of the SAS REG procedure (see below).

> lm <- lm(consumpt�temperat+insulatio,data=heating)

> hatvalues(lm)

1 2 3 4 5 6 7 8

0.15652 0.18512 0.175915 0.2476104 0.1624177 0.0741230 0.23097134 0.351407

928 746 08 4 3 9 11

9 10 11 12 13 14 15

0.22686 0.24432 0.275965 0.0677090 0.2169993 0.1572647 0.22677387

321 253 73 7 6 1

Another way of measuring the effect of an individual is to remove it and then see if the

regression coefficients remain within the confidence intervals of the initial coefficients.

The Cook’s distance of an observation measures the exact deviation of the vector of the

coefficients with and without this observation, and it is generally best to be wary of Cook

distances of more than 1. This value of 1 corresponds to the limit value of the Fisher–Snedecor

distribution Fp,n–p–1 as n and p tend to infinity: the distribution is then concentrated towards

this value. Given that p is alwaysmuch smaller than infinity, we can refine the threshold of 1 by

allowing for the real value of p and assuming that an observation has a very large effect when

its Cook’s distance exceeds the median value of Fp,n–p–1 (or Fp,1 if there are numerous

observations). The Cook’s distance is found for each observation when this is requested in

IBM SPSS Statistics, or by using the R option in the REG procedure of SAS/STAT; this option

also provides the real value to be predicted for each observation, the predicted value, the

36 Tomassone, R., Lesquoy, É. and Millier, C. (1983) La R�egression: nouveaux regards sur une ancienne

m�ethode statistique. Paris: Masson.
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standard error on the prediction of the mean, the residual, the standard error of the residual, the

standardized residual which is the ratio of the two preceding quantities, and finally the

position of the standardized residual in the range [� 2; þ 2] (Figure 11.54).

PROC REG DATA=heating;

MODEL consumption = temperature insulation / R INFLUENCE;

In the example of Figure 11.54, since p¼ 2 and n¼ 15, we examine the values of the

distribution F2,12, whose median is 0.73, as calculated using tables available on the Internet

(http://geai.univ-brest.fr/�carpenti/statistiques/table1.php#fisher) or by using the R software:

> qf(0.5,2,12)

[1] 0.7347723

We can see that no observation has a Cook’s distance exceeding the median 0.73 of F2,12,

the largest value being 0.498. If the number of observations tended towards infinity, the

distribution of Fp,1 would be examined, and the median would then be 0.69, which is still

higher than all the Cook’s distances.

In most predictive models, there are a lot of observations and from six to eight variables,

and the Cook’s distance therefore has to be compared with the median of the distribution

F6,1, (i.e. 0.89) or F8,1 (i.e. 0.92), these medians being close to the threshold of 1 which is

normally recommended.

Note that some authors suggest a more prudent threshold of 4/(n–p–1), which in this case

is 0.33; the thirteenth observation (D¼ 0.498) exceeds this threshold and the tenth observation

(D¼ 0.304) is close to it.

Output statistics 

Obs.
Dependent 

Variable
Predicted 

Value
Std Error

Mean Predict Residual
Std Error 

Residual   -2-1 0 1 2 

1 1042 1078 39.0205 -36.2933 90.580 -0.401 |      |      | 0.010

2 1377 1345 42.4356 31.8726 89.031 0.358 |      |      | 0.010

3 622.0000 548.3107 41.3663 73.6893 89.533 0.823 |      |•     | 0.048

4 154.0000 170.0991 49.0772 -16.0991 85.549 -0.188 |      |      | 0.004

5 355.4006 357.0000 39.7477 1.5994 90.263 0.0177 |      |      | 0.000

6 974.3076 874.0000 26.8517 -100.3076 94.901 -1.057 |    ••|      | 0.030

7 1388 1489 47.3995 -101.4457 86.490 -1.173 |    ••|      | 0.138

8 1138 1204 58.4656 -66.2779 79.429 -0.834 |     •|      | 0.126

9 896.6775 900.0000 46.9761 3.3225 86.721 0.0383 |      |      | 0.000

10 603.9215 460.0000 48.7503 -143.9215 85.736 -1.679 |   •••|      | 0.304

11 119.0000 33.1726 51.8111 85.8274 83.922 1.023 |      |••    | 0.133

12 829.7724 770.0000 25.6637 -59.7724 95.229 -0.628 |     •|      | 0.010

13 1670 1467 45.9435 202.5736 87.272 2.321 |      |••••  | 0.498

14 1223 1119 39.1121 103.9404 90.540 1.148 |      |••    | 0.082

15 177.7077 199.0000 46.9669 21.2923 86.726 0.246 |      |      | 0.006

Residual D
Student Cook’s

Figure 11.54 Standardized residuals and Cook distance of the observations.
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When the influential observations have been detected, using the Cook’s distance, the

variables responsible for this influence can be identified more precisely, by means of the

DFBETAS indicator defined for each variable. In SAS, this is obtained by the option

INFLUENCE in the REG procedure; in R, it is found by the dfbetas function.

The DFBETAS indicator is the standardized difference between the estimated coefficient

and the coefficient estimated without the observation. We need to examine any DFBETAS in

excess of 2=
ffiffiffi
n

p
, a threshold which is equal to 0.52 in this case. The table obtained with SAS

(Figure 11.55) shows values of DFBETAS which exceed this threshold for observations 10

and 13 (and also observation 7 for temperature), which were also those closest to the critical

threshold of the Cook’s distance and exceeded or approached the critical threshold of 2 in

absolute terms for standardized residuals.

11.7.6 Example of linear regression

The example published by Tomassone et al. (cited in Section 11.7.4), which is similar to that

of F. J. Anscombe,37 clearly shows the importance of residual analysis, and of graphic

Output statistics 

DFBETAS

Obs. Residual RStudent
Hat Diag

H
Cov

Ratio DFFITS Intercept insolatio temperat

1 0.00070.1260 -0.1577-0.16641.47820.1565-0.3862 -36.2933 

2 -0.0646-0.1139 0.15340.16431.54270.18510.3446 31.8726 

3 -0.00630.2953 -0.17030.37481.32340.17590.8112 73.6893 

4 -0.0883-0.01350.0072-0.10351.71030.2476-0.1804 -16.0991 

5 0.0057-0.0006 0.00150.00751.54990.16240.0170 1.5994 

6 0.0891-0.16110.0331-0.30071.04590.0741-1.0626 -100.3076 

7 0.5501-0.26920.0369-0.65411.17160.2310-1.1935 -101.4457 

8 0.42820.1272-0.3415-0.60591.67310.3514-0.8231 -66.2779 

9 -0.0094-0.6915 0.01390.01991.67860.22690.0367 3.3225 

10 -0.6263-0.69150.6390-1.04470.76970.2443-1.8373 -143.9215 

11 0.38110.3947 -0.29200.63271.36390.27601.0248 85.8274 

12 -0.00640.0195 -0.0831-0.16471.25990.0677-0.6111 -59.7724 

13 -0.8320-1.0069 1.40151.57610.27740.21702.9939 202.5736 

14 -0.0345-0.3801 0.48110.50321.08670.15731.1650 103.9404 

15 0.06050.0880 -0.06110.12761.65390.22680.2357 21.2923 

Figure 11.55 Residuals, leverages and DFBETAS of the observations.

37 Anscombe, F.J. (1973) Graphs in statistical analysis. The American Statistician, 27(1), 17–21.
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visualization in general. They construct a data set (Figure 11.56) which is the starting point for

several regression analyses.

They studied the regression of ya on x, yb on x, yc on x, yd on x, and, finally, ye on xe. On

each occasion, they found the same sums of squares, the same variance of the residuals

RMSE2, the same coefficient of variation (100 times RMSE divided by the mean of the

dependent variable), the same F-ratio, the same R2 and adjusted R2, the same regression line,

the same standard error of the coefficients, etc. (Figure 11.57).

However, the situations are very different, as shown by the dispersion diagrams in

Figure 11.58, which show, reading from left to right and from top to bottom, ya cross-

tabulated with x, yb cross-tabulated with x, yc cross-tabulated with x, yd cross-tabulated

with x, and, finally, ye cross-tabulated with xe. Although the first cloud of points appears to

fall within the scope of linear regression, this is clearly not the case with the clouds formed

by yb and yd with x (on the right in the figure), which indicate a non-linear relationship. As

for the clouds formed by yc with x, and ye with xe, each of these has one abnormal

observation which artificially increases (yc with x) or decreases (ye with xe) the slope of the

regression line. In the case of yc with x, the R2 (equal to the square of the linear correlation

coefficient of x and yc here) would be virtually equal to 1 without the abnormal

observation, because the other observations are almost perfectly linearly related. Converse-

ly, in the case of ye with xe, the abnormal observation causes a high correlation of 0.81 to

appear. Although all the parameters calculated above are identical in the five regressions,

we suspect that the analyses on the residuals will give very different results. This will

certainly be instructive!

ye xe yd yc yb ya x 

5.65413.723.8647.3990.1135.535 7 

7.07213.724.9428.5463.779.942 8 

8.49113.727.5048.4687.4264.249 9 

9.90913.728.5819.6168.7928.656 10 

9.90913.7212.2210.6912.6910.74 12 

9.90913.728.84210.6112.8915.14 13 

11.3313.729.91910.5314.2513.94 14 

11.3313.7215.8611.7516.559.45 14 

12.7513.7213.9711.6815.627.12 15 

12.7513.7219.0912.7517.2113.69 17 

12.7513.7217.2013.8916.2818.10 18 

14.1613.7212.3312.5917.6511.29 19 

15.5813.7219.7615.0414.2121.37 19 

15.5813.7216.3813.7415.5815.69 20 

17.0013.7218.9514.8814.6518.98 21 

27.4433.2812.1929.4313.951769 23 

Figure 11.56 Example of linear regression, provided by Tomassone et al.
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For this purpose, a function introduced in SAS 9.1, ODS GRAPHICS, can be used to

obtain the residual plot and several other graphic diagnostic elements,38 simply by inserting

the PROC REG syntax, which we have already considered, between the commands:

ODS HTML;

ODS GRAPHICS ON;

and

ODS GRAPHICS OFF;

ODS HTML CLOSE;

In order to be active, the ODS GRAPHICS instructions must always be associated with an

HTML, PDF or RTF destination. TheRTF destination enables the graph to be plotted in aWord

document, while the HTML destination is used to display the graph in the SAS results window.

Note that the SAS/GRAPH licence is essential for ODS GRAPHICS, even if an independent

Java driver is used, rather than SAS/GRAPH procedures such as GPLOT or GCHART. The

interested reader should consult the SAS reference39 and Reporting avec SAS by Olivier

Decourt,40 which are full of useful information on ODS and ODS GRAPHICS. ODS

GRAPHICS has been accompanied since SAS 9.1.3 by a new SAS language, GTL (Graph

Template Language), formodifying the graphs produced by the procedures and also for creating

Analysis of variance 

Source DF
Sum of

Squares
Mean

Square
F

Value Pr > F 

Model 0.0003 22.6234.6234.61

Error 10.4145.414

Corrected Total 380.115

Root MSE 3.22 R-Square 0.62

Dependent Mean 12.60 Adj R-Sq 0.59

Coeff Var 25.60

 Parameter Estimates 

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t| 

Intercept 0.8476 0.202.670.521 

x 0.0003 4.750.170.811 

Figure 11.57 Statistics of the regressions provided by Tomassone et al.

38 And many other graphics for many procedures (more than 40 in SAS 9.2): CORR, FREQ, UNIVARIATE,

BOXPLOT, NPAR1WAY, TTEST, CORRESP, PRINCOMP, FACTOR, CLUSTER, ANOVA, RSREG, ROBUS-

TREG, LOESS, LOGISTIC, GAM, GENMOD, GLM, MI, MIXED, ARIMA, LIFETEST, etc.
39 Haworth, L.E., Zender C.L., Burlew M.M. (2009) Output Delivery System: The Basics and Beyond. SAS

Publishing.
40 Decourt, O. (2008) Reporting avec SAS. Paris: Dunod.
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new graphs in a very flexible way, offering manymore options than the standard ones provided

in the procedures (an example of application will be given in Section 12.7).

In the REG procedure, the result is a finely crafted graph. An example is shown in

Figure 11.59 for the regression of ya on x. The three basic hypotheses on the residuals

(normality of distribution, equality of variance and absence of autocorrelation) are evidently

satisfied. This can be confirmed by the calculation of the Durbin–Watson statistic.

Durbin–Watson D 2.538

Number of Observations 16

1st Order Autocorrelation � 0.277

ya
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x

2322212019181716151413121110987
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x
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Figure 11.58 Dispersion diagrams of the regressions provided by Tomassone et al.
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This shows only a small negative autocorrelation.

For the regression of yb on x, the ODS graph shows a typical case of positive autcorrelation

of the residuals (see the upper left-hand corner of Figure 11.60), confirmed by the Durbin–

Watson statistic.

Durbin-Watson D 0.374

Number of Observations 16

1st Order Autocorrelation 0.595

Figure 11.59 ODS GRAPHICS for the first regression of Tomassone et al.
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It would be preferable to regress yb on x2, or use the GLM procedure:

PROC GLM DATA= tomassone;

MODEL yb = x x*x;

RUN ;

In the regression of yc on x, the standardized residuals are all very close to 0, with the

exception of the sixteenth observation. A notable element of the ODS graph (Figure 11.61) is

the representation of the Cook’s distance, which very clearly exceeds the limit value 1 for the

sixteenth observation.

Figure 11.60 ODS GRAPHICS for the second regression of Tomassone et al.
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We will skip the regression of yd on x and consider the regression of ye on xe, which is a

limit case of heteroscedasticity of the residuals, as shown by the residual plot in Figure 11.62

(but even without this, there would be no doubt).

11.7.7 Further details of the SAS linear regression syntax

Even without ODS GRAPHICS, PROC REG in SAS/STAT can be used to obtain

diagrams of residuals and many other graphic diagnostic elements. We can simply use the

normal syntax:

Figure 11.61 ODS GRAPHICS for the third regression of Tomassone et al.
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PROC REG DATA=heating;

MODEL CONSUMPTION = TEMPERATURE INSULATION / R;

followed by an instruction of this kind:

PLOT STUDENT.*P. NPP.*R.;

In this case, this instruction displays a residual plot (‘STUDENT.’ means ‘standardized

residual’ and ‘P.’ means ‘predicted value’) and a residual P-P plot (Figures 11.63 and 11.64).

In simple linear regression, if we wish to superimpose the points of the regression line, in

other words the predicted value of y as a function of the predictor x, on the cloud of points, we

must write:

PLOT Y*X P.*X / OVERLAY;

Figure 11.62 ODS GRAPHICS for the fifth regression of Tomassone et al.
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Figure 11.63 Residual plot output by PROC REG.

Figure 11.64 Residual P-P plot output by PROC REG.
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Clearly, we could simply display the cloud of points Y�X. If we wish to superimpose the

regression line on the cloud of points (as in Figure 11.58), we can specify it in the graph type

‘I¼ rl’ of the GPLOT graphic procedure (which provides the coefficients of the regression in

the log window):

SYMBOL1 V = square I =rl C=black;

PROC GPLOT DATA=test;

PLOT ya*x;

It is even possible to use PROC REG in interactive mode and obtain new diagrams after

removing an observation whose residual exceeds two standard deviations:

REWEIGHT STUDENT.>2;

PLOT;

or after adding a variable to a model or removing a variable from it:

DELETE INSULATION;

PLOT;

The model is automatically recalculated each time and the diagram is redisplayed.

Figure 11.65 shows the possible cost of removing a variable from the model. Without the

variable ‘insulation’, R2 has markedly decreased, and the residual plot also shows a tendency

towards heteroscedasticity of the residuals. If such heteroscedasticity appears, we should try

to establish whether a new variable could be added to themodel. The heteroscedasticity can be

quantified by the probability associated with the White test, which is now much less than the

Figure 11.65 Residual plot after the exclusion of a predictor.
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probability of 0.7541 found previously (see Figure 11.51) with the two predictors ‘insulation’

and ‘temperature’:

DF Chi-Square Pr > Chi-Sq

0.16423.612

Test of First and Second 
Moment Specification 

In interactive mode, the RUN instructions do not quit PROC REG, and another procedure,

a DATA step, is required, or the instruction

QUIT;

11.7.8 Problems of collinearity in linear regression: an example using R

When a number of independent variables are (strongly) linearly correlated with each other,

this has the following results:

. estimators, in other words regression coefficients, which are unstable because they are

highly sensitive to even small variations of the variable to be regressed;

. regression coefficients which may be very large, if they ‘compensate’ each other;

. inverted signs on regression coefficients in some cases, making their interpretation

incorrect and in any case counter-intuitive;

. high variances for the regression coefficients;

. reduced reliability of the predictions.

We will illustrate these phenomena with a simple, but striking, example provided by

Bernadette Govaerts, included in her STAT2430 course at the Catholic University of Louvain

(see the University’s website).

There are four observations, on which a linear regression is to be carried out on two

variables X1 and X2, the variable to be regressed being first Y, and then Z in a second

regression. The values of these variables are as follows:

X1 ¼
1

2

3

4

0
BB@

1
CCA X2 ¼

1:01
1:99
3:01
3:99

0
BB@

1
CCA Y ¼

16

34

44

46

0
BB@

1
CCA Z ¼

17

34

44

46

0
BB@

1
CCA:

It would be hard to find more closely correlated variables than X1 and X2.

These variables are entered into the R software in the following way, in the form of a data

frame as before.

> colin <-

data.frame(X1=c(1,2,3,4),X2=c(1.01,1.99,3.01,3.99),Y=c(16,34,44,46 ),

Z=c(17,34,44,46))
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The correlations are checked with the cor function. They are all positive and very close to 1.

> cor(colin)

X1 X2 Y Z

X1 1.0000000 0.9999677 0.9415545 0.9450493

X2 0.9999677 1.0000000 0.9415241 0.9450971

Y 0.9415545 0.9415241 1.0000000 0.9998956

Z 0.9450493 0.9450971 0.9998956 1.0000000

We then calculate the two linear regressions of Y on X1 and X2, then Z on X1 and X2.

> colin1.lm <- lm(Y�X1+X2,data=colin)

> colin2.lm <- lm(Z�X1+X2,data=colin)

The results of the first regression show that the coefficients are not significantly different from

0, that of X1 being equal to 1 and that of X2 being practically zero. However, there is a very

high R2 of 0.89.

> summary(colin1.lm)

Call:

lm(formula = Y � X1 + X2, data = colin)

Residuals:

1 2 3 4

-4 4 4 -4

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.000e+01 1.077e+01 0.928 0.524

X1 1.000e+01 4.454e+02 0.022 0.986

X2 -7.754e-12 4.472e+02 -1.73e-14 1.000

Residual standard error: 8 on 1 degrees of freedom

Multiple R-squared: 0.8865, Adjusted R-squared: 0.6596

F-statistic: 3.906 on 2 and 1 DF, p-value: 0.3369

The results of the second regression should be very similar, given that the variable Z is equal to

Y, except for the first observation, which is 17 instead of 16. The coefficients are still not

significantly different from 0. However, they are completely different from those found for Y.

The coefficient of X1 has become negative, while that of X2 is not zero at all.

> summary(colin2.lm)

Call:

lm(formula = Z � X1 + X2, data = colin)

Residuals:

1 2 3 4

-3.75 3.75 3.75 -3.75
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.88 10.10 1.077 0.476

X1 -2.75 417.60 -0.007 0.996

X2 12.50 419.26 0.030 0.981

Residual standard error: 7.5 on 1 degrees of freedom

Multiple R-squared: 0.8932, Adjusted R-squared: 0.6796

F-statistic: 4.182 on 2 and 1 DF, p-value: 0.3268

This example illustrates the instability of the coefficients which may even result in the

inversion of the signs. Of course, it is not normal to have a negative sign for the coefficient of

X1, which is positively correlated with Z. Note that R2 is always very high, which clearly

shows that this does not provide a guarantee of a good fit.

This also shows the usefulness of an explicit model as opposed to a ‘black box’ model, the

archetypeofwhich is theneuralnetwork.Afitcanbe foundandresult inahighglobal indicatorof

fit (R2 in this case) which might satisfy us. However, it may happen, as in this case, that this fit

cannotbe relied on.This canbedetected ifweapply themodel to another data set, but there is not

alwaysanothercomparabledataset,ortheremaynotbeenoughtime,andinanycasethedetection

of an unsatisfactory application of the model does not reveal the cause. However, when the

coefficients and their standard errors are available, any difficulties are immediately revealed.

The instability of fit in the presence of closely correlated variables is very evident in the

graphs, and R can generate an excellent 3Dgraphic display, as shown in Figures 11.66 and 11.67:

Figure 11.66 Fit in the presence of closely correlated predictors.
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> scatter3d(colin$X1, colin$Y, colin$X2, fit="linear",

residuals=TRUE,bg="white", axis.scales=FALSE, grid=TRUE,

ellipsoid=FALSE, xlab="X1",ylab="Y", zlab="X2")

> scatter3d(colin$X1, colin$Z, colin$X2, fit="linear",

residuals=TRUE,bg="white", axis.scales=FALSE, grid=TRUE,

ellipsoid=FALSE, xlab="X1",ylab="Z", zlab="X2")

The scatter3d function is part of the Rcmdr package (see Section 5.3.4) and draws 3D

scatterplots with various regression surfaces. Note that the rgl and mgcv packages have to

be installed.

In numerical terms, what has actually happened in our example? In a regression

calculation, the matrix to be inverted is XtX, where X is the matrix

X ¼
1 1 1:01
1 2 1:99
1 3 3:01
1 4 3:99

0
BB@

1
CCA

Figure 11.67 Another fit in the presence of the same closely correlated predictors.
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We can input this matrix into R on a column by column basis, which is the default

option:

> X <- matrix(c(1,1,1,1,1,2,3,4,1.01,1.99,3.01,3.99),nrow=4)

This is the matrix after input:

> X

[,1] [,2] [,3]

[1,] 1 1 1.01

[2,] 1 2 1.99

[3,] 1 3 3.01

[4,] 1 4 3.99

The matrix XtX is as follows:

t(X) %*% X

[,1] [,2] [,3]

[1,] 4 10.00 10.0000

[2,] 10 30.00 29.9800

[3,] 10 29.98 29.9604

As for the inverse (XtX)� 1, this is obtained thus:

> solve(t(X) %*% X)

[,1] [,2] [,3]

[1,] 1.8125 30.625 -31.25

[2,] 30.6250 3100.250 -3112.50

[3,] -31.2500 -3112.500 3125.00

Clearly, the inversion of the matrix is problematic, with very high coefficients.

This is where the basic principle of ridge regression can be helpful (see Section 11.7.2).

This principle consists in ‘translating’ the diagonal of the matrix XtX to be inverted by a value

k, which is equivalent to calculating an estimate under the constraint of the norm of the vector

of the parameters.

The regression lm.ridge is available in the MASS package of R, which must be loaded

in advance:

> library(MASS)

Its syntax is similar to that of linear regression, to which is added the specification of

the translation to be performed on the matrix XtX. We can test a range of values, which

in this case are all the values of k, denoted lambda, in the range from 0 to 0.1, in steps

of 0.001.

> ridge <- lm.ridge(Y�X1+X2,data=colin,lambda=seq(0,0.1,0.001))

Weobtain a vector of parameters for each value of lambda. The first 20 and the last of these are

displayed below, showing a good stability of the coefficients when lambda¼ 0.02.
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> coef(ridge)

X1 X2

0.000 10.000000 10.000000 -4.948835e-12

0.001 9.959026 5.570771 4.445619e+00

0.002 9.959483 5.301762 4.714445e+00

0.003 9.961648 5.204298 4.811042e+00

0.004 9.964279 5.153741 4.860547e+00

0.005 9.967103 5.122655 4.890504e+00

0.006 9.970026 5.101509 4.910480e+00

0.007 9.973005 5.086121 4.924677e+00

0.008 9.976020 5.074365 4.935227e+00

0.009 9.979058 5.065048 4.943329e+00

0.010 9.982112 5.057448 4.949707e+00

0.011 9.985178 5.051102 4.954827e+00

0.012 9.988253 5.045699 4.959000e+00

0.013 9.991334 5.041025 4.962441e+00

0.014 9.994420 5.036924 4.965308e+00

0.015 9.997510 5.033284 4.967712e+00

0.016 10.000603 5.030017 4.969742e+00

0.017 10.003698 5.027060 4.971461e+00

0.018 10.006795 5.024360 4.972922e+00

0.019 10.009893 5.021878 4.974165e+00

0.020 10.012993 5.019580 4.975223e+00

. . .
0.100 10.259530 4.944714 4.951475e+00

This stability can be seen on the ‘ridge trace’ graph which shows the values of the parameter

estimates as a function of the values of lambda.

> plot(ridge)
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We then replace Y by Z and obtain similar results.

> ridge <- lm.ridge(Z�X1+X2,data=colin,lambda=seq(0,0.1,0.001))

> coef(ridge)

X1 X2

0.000 10.87500 -2.750000 12.500000

0.001 10.94508 3.981050 5.740919

0.002 10.95218 4.388398 5.330731

0.003 10.95668 4.534992 5.182336

0.004 10.96047 4.610285 5.105526

0.005 10.96397 4.655983 5.058430

0.006 10.96731 4.686572 5.026504

0.007 10.97057 4.708409 5.003365

0.008 10.97377 4.724725 4.985769

0.009 10.97693 4.737334 4.971895

0.010 10.98006 4.747334 4.960640

0.011 10.98318 4.755428 4.951300

0.012 10.98628 4.762088 4.943399

0.013 10.98937 4.767642 4.936610

0.014 10.99245 4.772324 4.930696

0.015 10.99552 4.776307 4.925484

0.016 10.99859 4.779722 4.920843

0.017 11.00165 4.782667 4.916673

0.018 11.00470 4.785222 4.912896

0.019 11.00776 4.787446 4.909452

0.020 11.01080 4.789389 4.906289

. . .
0.100 11.25059 4.780527 4.819236

> plot(ridge)

We find that the estimates of the coefficients are very similar for Y and Z, with values around

4.9 for the coefficients of X1 and X2. In this case, this proximity of the values is quite

compatible with the proximity of Y and Z.

We can use the valuewhich seems appropriate for lambda, namely 0.02.We first create the

diagonal matrix to be used for the translation of the matrix XtX to be inverted. Note that ridge

regression does not usually penalize the constant. In fact, if the constant were penalized, this

would mean that the results of the ridge would depend on the origin of Y, and the translation of

all the values of the dependent variable would not result in a similar translation of the

predictions. Therefore it is not exactly the diagonal matrix [0.02 0.02 0.02], but rather the

matrix [0 0.02 0.02] which is used to translate XtX.

> kI = diag(3)*0.02

> kI[1,1] <- 0

> kI

[,1] [,2] [,3]

[1,] 0 0.00 0.00

[2,] 0 0.02 0.00

[3,] 0 0.00 0.02
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We can check that the inverse matrix (XtX þ kI)� 1 does not include any more very high

values:

> solve(t(X) %*% X + kI)

[,1] [,2] [,3]

[1,] 1.504920281 -0.004969981 -0.4969981

[2,] -0.004969981 24.752494931 -24.7505069

[3,] -0.496998131 -24.750506938 24.9493062

Finally, we check that the products (XtX þ kI)� 1XtY and (XtX þ kI)� 1XtZ do actually

provide us with the estimates of the vectors of coefficients, according to the formula given in

Section 11.7.2:

> solve(t(X) %*% X + kI) %*% t(X) %*% Y

[,1]

[1,] 10.000994

[2,] 5.049501

[3,] 4.950101

> solve(t(X) %*% X + kI) %*% t(X) %*% Z

[,1]

[1,] 10.998976

[2,] 4.799014

[3,] 4.901396

11.7.9 Problems of collinearity in linear regression:
diagnosis and solutions

Collinearity is usually measured with Pearson’s linear correlation coefficient of the variables

considered in pairs. If there are more than two predictors, however, we have seen that a more

sophisticated and rigorous measurement is the variance inflation factor (VIF) and its inverse,

the tolerance (see Section 3.14), which, for a variableXi, is 1 – (R
2 of the linear regression ofXi

on the other variables). According to the usual criteria (see Section 3.14), the tolerance should

be greater than 0.2, or at least 0.1. We can also look at the condition indices of the correlation

matrix as mentioned in Section 3.14. These tests are requested in the REG procedure of SAS/

STAT by adding the keywords TOL and COLLIN (and VIF for the variance inflation factor).

Let us return to the previous example.

DATA COLIN;

INFILE DATALINES DELIMITER = ‘,’ ;

INPUT X1 X2 Y Z ;

DATALINES;

1,1.01,16,17

2,1.99,34,34

3,3.01,44,44

4,3.99,46,46

RUN ;
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PROC REG DATA = COLIN;

MODEL Y = X1 X2 / TOL VIF COLLIN ;

RUN ;

Very small values of tolerance and very large values of the VIF and condition index are a

sign of collinearity (Figure 11.68).

If we return to the earlier example of the regression of energy consumption on external

temperature and insulation thickness, we will obtain diametrically opposite results

(Figure 11.69).

PROC REG DATA=heating;

MODEL consumption = temperature insulation / TOL VIF COLLIN;

RUN ;

In our example, the tolerance is much greater than 0.2, and the condition indices are therefore

all less than 5. An absence of collinearity between the predictors is confirmed in this case, and

supports the calculation of the Pearson correlation coefficients carried out above.

There are various remedies for the collinearity of a number of variables:

. the removal of the variables concerned (allowingR2 to decrease a little in order to reduce

the collinearity);

. the creation of a synthetic variable combining and replacing the variables concerned (for

example, the ratio of two variables);

. transformation (logarithm, etc.) of the variables concerned (see Section 3.9);

. biased ridge regression as described in Section 11.7.2, or another regression with

regularization (such as lasso regression, also described in Section 11.7.2);

Parameter Estimates 

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t| Tolerance
Variance
Inflation

Intercept 00.52360.9310.7703310.00000 1 

X1 155010.00006451 0.98570.02445.4391110.00000 1 

X2 155010.00006451 1.00000.00447.213602.22045E-11 1 

Collinearity Diagnostics 

Proportion of variation 

Number Eigenvalue
Condition

Index Intercept X1 X2

1 0.00000126 0.000001270.015271.000002.88483 

2 0.00001465 0.000015070.815055.004970.11516 

3 0.99998 0.999980.16967733.758560.00000536 

Figure 11.68 Measures of collinearity – example 1.
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. principal component regression, which involves regressing the dependent variable

not on the initial variables, but on their principal components in a PCA, and

then moving from principal component regression coefficients to coefficients on the

initial variables;

. PLS regression, described in one of the following sections.

Ridge, lasso, principal component and PLS regression will be compared on an example in

Section 11.7.11.

The most important requirement is to make a good selection of the independent variables

of a linear regression. As for logistic regression or discriminant analysis, there are stepwise

selection procedures implemented in software such as R, SAS and IBM SPSS Statistics:

. In forward selection there is no variable in the model to begin with, and we add, one by

one, those which have the largest F-ratio (largest sum of squares of the model), which

must be significant with an associated probability equal to or below a certain fixed

threshold: this threshold is called the threshold ‘to enter’ (in the SAS REG procedure,

its default value is 0.5 and it is denoted SLE). The process is interrupted when there

are no more variables external to the model which have a significant F-ratio at the

fixed threshold.

. In backward selection, we start by entering all the variables into the model and then

reject, one by one, thosewhich have the smallest F-ratios (the smallest sum of squares of

the model). The variables are rejected if their F-ratio is not significant, in other words as

long as the associated probability is at least equal to a certain fixed threshold: this

threshold is called the threshold ‘to stay’ (in the SAS REG procedure, its default value is

0.1 and it is denoted SLS). The procedure is interrupt when all the variables of the model

have a significant F-ratio at the fixed threshold.

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t| Tolerance
Variance
Inflation

Intercept 0<.000123.5162.422231467.64327 1

insulation 1.000080.99992 <.0001-8.533.49207-29.77430 1

temperature 1.000080.99992 <.0001-16.152.29515-37.06030 1

Collinearity Diagnostics 

Proportion of variation 

Number Eigenvalue
Condition

Index Intercept insulation temperature

1 0.06767 0.032740.032511.000002.14485 

2 0.92453 0.021710.015921.672950.76635 

3 0.00780 0.945550.951574.914880.08879 

Figure 11.69 Measures of collinearity – example 2.
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. In stepwise selection, there is no variable at the outset, and those having the largest

F-ratios are added one by one, as in forward selection. However, at each step it is

possible to remove one (and only one) of the variables if its F-ratio is no longer

significant at the threshold ‘to stay’. It is only after this operation that the next variable

can be selected, if appropriate. The process is interrupted when there is no longer any

variable external to the model with a significant F-ratio ‘to enter’ and when every

variable in the model has a significant F-ratio ‘to stay’.

. There are some cases in which the above methods do not provide the best possible

selection of k variables (as in the example by Brenot, Cazes and Lacourly (1975)41

mentioned in Section 4.5.2 of the course by Confais and Le Guen, cited in note 23

above). Another method, with a better performance than STEPWISE, is MAXR

(MaximumR Improvement), implemented in the SAS software. This is also a stepwise

method, which aims to maximize R2 for each value of the number of independent

variables. MAXR starts by choosing the variable that gives the greatest R2, and then

adds the one that causes the greatest increase in R2. When this two-variable model has

been established, all the possible permutations between one of the two variables of

the model and an external variable are tested, the R2 of the regression is calculated,

and the permutation that is carried out is the one that provides the maximum increase

in R2. A third variable, which once again is the one that causes the greatest increase in

R2, is then added. This process of permutation of the variables is repeated until no

further choice of variable increases R2. The difference between the STEPWISE and

MAXR methods is that all the possible permutations are evaluated in MAXR every

time, but only the ‘least good’ variable is excluded in STEPWISE. Clearly, MAXR

requires much more calculation.

Here is an example of the SAS syntax:

PROC REG DATA=heating;

MODEL consumption = temperature insulation / SELECTION = STEPWISE SLE =

0.05;

11.7.10 PLS regression

PLS regression finds a compromise between the two objectives of maximizing the explained

variance of the predictors Xi (the principle of PCA) and maximizing the correlation between

the Xi and the dependent variable Y (the principle of regression). To do this, we search for the

linear combinations Tj of the Xi that maximize cov2(Tj,Y)¼ r2(Tj,Y).var(Tj).var(Y). As in

principal component regression, we perform a projection on linear combinations of the

predictors that are not intercorrelated, but the PLS components differ from the principal

components in that they optimize the correlation with the dependent variable at the same

time as the variance of the predictors. In this sense, PLS regression is an extension of

the finding that, in principal component regression, the components with the largest variance

41 Brenot, J., Cazes, P. and Lacourly, N. (1975) Pratique de la r�egression: Qualit�e et protection.Cahiers du BURO,
23, 181.
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are not necessarily the most predictive. A first conclusion to be drawn from this was that it

might be best to select the principal components that were most correlated with the

dependent variable, even if these were not the first in decreasing order of variance. PLS

regression refines this idea by incorporating the constraint of correlation with the response

in the determination of the components.

The advantage of PLS regression is that it can be used when there are a large number of

variables showing collinearity, and even if the number of independent variables is greater than

the number of observations. It has also been shown (de Jong, 1993)42 that PLS on p

components is always more predictive (the prediction is more correlated with the dependent

variable) than regression on the first p principal components. We use cross-validation (see

below) to determine a number p of components which are both small enough to avoid

overfitting and large enough to explain most of the variance of the Xi (objective 1) and Y

(objective 2). p is rarely higher than 3 or 4. The PLS regression algorithm is fast, because it

consists of a sequence of simple regressions, without inversion or diagonalization of matrices.

It is therefore efficient when large volumes of data are processed.

These properties make PLS regression particularly useful in chemistry, spectrometry, the

petroleum industry, cosmetics, biology, medicine and the food industry. For example, in

cosmetics, it allows the user to retain all the ingredients of a product, which represent a very

large number of independent variables. In the food industry, it is used for sensory analysis, in

which the classification of a product by a number of tasters (variable Y) is explained as a

function of its physical, chemical and flavour properties (which may be up to several hundred

in number). This method is starting to appear in statistical software, and is found in SAS,

SPAD and R (pls package), in the specialist The Unscrambler product (Camo) and especially

in the SIMCA (Soft Independent Modeling of Class Analogy) software which is the standard

product in this field.

PLS regression was invented by Svante Wold (1983),43 following the initial work of his

father Herman Wold (1966)44 on the PLS approach in structural equation models. This

regression was followed by PSL2 regression, developed to predict a number of continuous

dependent variables Yj simultaneously, even if these variables are more numerous than the

observations. This work is being continued by Michel Tenenhaus and others,45 together with

work on methods concerned with PLS logistic regression as described in Section 11.9.5, and

the Cox-PLSmodel for survival data with independent variables that are strongly correlated or

more numerous than the observations.

The PLS regression algorithm will now be outlined. The first step is to find a combination

T1¼Sil1iXi of the Xiwhich maximizes both the variance of T1 and the correlation between T1
and Y. This is equivalent to maximizing the square of the covariance:

cov2ðT1; YÞ ¼ r2ðT1; YÞ � varðT1Þ � varðYÞ:

42 de Jong, S. (1993) PLS fits closer than PCR. Journal of Chemometrics, 7, 551–557.
43 Wold, S.,Martens, H. andWold, H. (1983) Themultivariate calibration problem in chemistry solved by the PLS

method. In B. Ka
�
gstr€om and A. Ruhe (eds),Matrix Pencils, Lecture Notes in Mathematics 973, pp. 286–293. Berlin:

Springer.
44 Wold, H. (1966) Estimation of principal component and related models by iterative least squares. In P.R.

Krishnaiah (ed.), Multivariate Analysis, pp. 391–420. New York: Academic Press.
45 See Tenenhaus, M. (1998) La r�egression PLS: th�eorie et pratique. Paris: Technip.
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The solution is provided by the calculation of the covariance l1i¼ cov(Y,Xi) followed by

the normalization of the vector l1i so that ||(l11,. . ., l1p)||¼ 1. Thus we have

T1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

covðY ;XiÞ2
r X

i

covðY ;XiÞ �Xi:

The regression of Y on T1 gives a residual Y1,

Y ¼ c1T1 þ Y1;

while the regression of Xi on T1 gives the residuals X1i,

Xi ¼ c1iT1 þX1i:

In a second step, the same operation is repeated, replacing Y with its residual Y1 and

replacing the Xiwith their residuals X1i. We obtain a combination T2¼Si l2iX1iwith ||(l21,. . .,
l2p)||¼ 1 and l2i proportional to cov(Y1,X1i). Then we regress Y1 on T2 and the X1i on T2,

obtaining a residual Y2 and residuals X2i:

Y1 ¼ c2T2 þ Y2;
X1i ¼ c2iT2 þX2i:

These operations are repeated until the number of components TK gives a satisfactory

result, which is checked by cross-validation as described below.

Finally, we can write

Y ¼ c1T1 þ Y1 ¼ c1T1 þ c2T2 þ Y2 ¼ . . . ¼ SjcjTj þ residual;

and this expression is replaced with an expression for the regression of Yas a function of the Xi

in place of the Tj. The calculation of the PLS regression is then complete. Note that, by

construction, the coefficients l1i of the first factor of the PLS regression have the same sign as

that of the correlations between Yand theXi. Therefore there is none of the kind of surprise that

may occur with least squares linear regression. This property is not generalized to the set of

coefficients of theXi in the expression for Ywhen a number of factors are extracted. In fact, the

coefficients l2i of T2 with respect to the X1i have the same sign as that of the correlations

between Y1 and theX1i, but this sign is not necessarily that of the coefficients of T2 with respect

to the Xi.

Let us return to the way in which the choice of the number of components operates by

cross-validation. At each step h, we wish to decide whether or not to retain the hth PLS

component. This is done until we reach a step in which the PLS component is not retained.

For this purpose, we calculate the residual sum of squares (RESSh), as in linear regression:

RESSh ¼
X
k

y h� 1ð Þ;k � ŷ h� 1ð Þ;k
	 
2

where ŷðh� 1Þ;k ¼ chth;k is the prediction of yðh� 1Þ;k calculated for each observation k.
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The observations are then distributed into g groups, and the current step of the PLS

algorithm is then executed g times on Yh–1 and the Xh–1,i, removing one group each time. We

then calculate PRESSh, the predicted residual sum of squares, which is similar to RESSh but

avoids overfitting by replacing the prediction ŷðh� 1Þ;k with the prediction ŷðh� 1Þ;�k deduced

from the analysis performed without the group containing the observation k. Thus we have

PRESSh ¼
X
k

ðyðh� 1Þ;k � ŷðh� 1Þ;� kÞ2:

We retain the hth PLS component if PRESSh� g�RESSh–1. To define RESS0, we postulate that
it is equal to

Pðyi ��yÞ2, where �y is the mean of Y. The parameter g ranges from 0 to 1, and we

often specify that g¼ 0.95 if n< 100, and g¼ 1 if n� 100.

11.7.11 Handling regularized regression with SAS and R

Let us now compare ridge regression, principal component regression and PLS regression on a

data set obtained from the book by Tomassone et al. cited in Section 11.7.4, on pine

processionary caterpillars. We assume that the data set is available in an SAS table and is

stored in the SAS XPORT format.

A conventional SAS7BDAT data set is converted to XPORT format as follows:

LIBNAME ridge ‘C:\Users\St�ephane\Documents\Datamining\Data sets\

Data for linear regression’ ;

LIBNAME To_R XPORT

‘C:\Users\St�ephane\Documents\Datamining\Software
Datamining\R\data.xpt’ ;

DATA To_R.data ;

SET ridge.caterpillars ;

RUN ;

This data set is then imported into R, using the foreign package (supplied with R) and the

Hmisc package, which has to be installed, and which provides functions such as sasxport.get

which can read the formatted values, the labels and the lengths of variables. Hmisc provides

higher-performance imports than foreign.

> library(foreign) #Load the needed packages.

> library(Hmisc)

Package attachment: ‘Hmisc’

The following object(s) are masked from package:base

format.pval,

round.POSIXt,

trunc.POSIXt,

units

> caterpillars<-

sasxport.get("c:\\Users\\St�ephane\\Documents\\Datamining\\Software
Datamining\\R\\data.xpt")
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Here are the data, displayed by the print command:

> print(caterpillars)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 log

1 1200 22 1 4.0 14.8 1.0 1.1 5.9 1.4 1.4 2.37 0.86288996

2 1342 28 8 4.4 18.0 1.5 1.5 6.4 1.7 1.7 1.47 0.38526240

3 1231 28 5 2.4 7.8 1.3 1.6 4.3 1.5 1.4 1.13 0.12221763

4 1254 28 18 3.0 9.2 2.3 1.7 6.9 2.3 1.6 0.85 -0.16251893

5 1357 32 7 3.7 10.7 1.4 1.7 6.6 1.8 1.3 0.24 -1.42711636

6 1250 27 1 4.4 14.8 1.0 1.7 5.8 1.3 1.4 1.49 0.39877612

7 1422 37 22 3.0 8.1 2.7 1.9 8.3 2.5 2.0 0.30 -1.20397280

8 1309 46 7 5.7 19.6 1.5 1.3 7.8 1.8 1.6 0.07 -2.65926004

9 1127 24 2 3.5 12.6 1.0 1.7 4.9 1.5 2.0 3.00 1.09861229

10 1075 34 9 4.3 12.0 1.6 1.8 6.8 2.0 2.0 1.21 0.19062036

11 1166 24 17 5.5 16.7 2.4 1.5 11.5 2.9 1.7 0.38 -0.96758403

12 1182 41 32 5.4 21.6 3.3 1.4 11.3 2.8 2.0 0.70 -0.35667494

13 1179 15 0 3.2 10.5 1.0 1.7 4.0 1.1 1.6 2.64 0.97077892

14 1256 21 0 5.1 19.5 1.0 1.8 5.8 1.1 1.4 2.05 0.71783979

15 1251 26 2 4.2 16.4 1.1 1.7 6.2 1.3 1.8 1.75 0.55961579

16 1536 38 31 5.7 17.8 3.1 1.7 11.4 2.8 1.9 0.06 -2.81341072

17 1554 27 20 5.6 20.2 2.8 1.9 9.2 2.7 1.3 0.13 -2.04022083

18 1305 30 6 3.8 15.7 1.4 1.2 7.2 2.1 1.9 1.00 0.00000000

19 1316 34 8 3.1 11.4 1.5 1.8 5.0 1.6 2.0 0.41 -0.89159812

20 1427 39 19 4.6 15.2 2.4 1.6 9.1 2.4 1.9 0.72 -0.32850407

21 1575 20 32 5.2 18.9 3.0 1.7 9.4 2.5 1.8 0.67 -0.40047757

22 1397 26 16 4.2 14.8 2.2 1.6 7.7 2.2 1.8 0.12 -2.12026354

23 1377 29 4 5.3 19.8 1.2 1.8 6.8 1.6 1.9 0.97 -0.03045921

24 1574 24 23 5.2 17.8 2.4 1.8 7.8 2.2 2.0 0.07 -2.65926004

25 1396 45 13 4.7 15.2 1.7 1.6 7.8 2.1 1.4 0.10 -2.30258509

26 1393 27 5 4.7 18.3 1.2 1.7 7.5 1.7 2.0 0.68 -0.38566248

27 1433 23 18 6.5 21.0 2.7 1.8 13.7 2.7 1.3 0.13 -2.04022083

28 1349 24 1 2.7 5.8 1.0 1.7 3.6 1.3 1.8 0.20 -1.60943791

29 1208 23 2 3.5 11.5 1.1 1.7 5.4 1.3 2.0 1.09 0.08617770

30 1198 28 15 3.9 11.3 2.0 1.6 7.4 2.8 2.0 0.18 -1.71479843

31 1228 31 6 5.4 21.8 1.3 1.7 7.0 1.5 1.9 0.35 -1.04982212

32 1229 21 11 5.8 16.7 1.7 1.8 10.0 2.3 2.0 0.21 -1.56064775

33 1310 36 17 5.2 17.8 2.3 1.9 10.3 2.6 2.0 0.03 -3.50655790

We wish to predict the variable log using the functions x1, x2, x4 and x5. A correlation

calculation shows that all the predictors are negatively correlated with the dependent variable

log, and that x4 and x5 are strongly correlated.

> varselec <- subset(caterpillars,select=c(log,x1,x2,x4,x5))

> cor(varselec)

log x1 x2 x4 x5

log 1.0000000 -0.5336138 -0.4294398 -0.4252949 -0.2009383

x1 -0.5336138 1.0000000 0.1205209 0.3210528 0.2837739

x2 -0.4294398 0.1205209 1.0000000 0.1366877 0.1134163

x4 -0.4252949 0.3210528 0.1366877 1.0000000 0.9046552

x5 -0.2009383 0.2837739 0.1134163 0.9046552 1.0000000

We perform a linear regression and find that the coefficients of x4 and x5 are much larger than

the others, and that the coefficient of x5 is inconsistent because it is positive. The risk of the
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inconsistency of signs in the presence of collinearity was pointed out previously and this has

now occurred, since the coefficients of the collinear variables are very large and ‘compensate’

each other with opposite signs.

> lm <- lm(log�x1+x2+x4+x5,data=caterpillars)

> summary(lm)

Call:

lm(formula = log � x1 + x2 + x4 + x5, data = caterpillars)

Residuals:

Min 1Q Median 3Q Max

-2.02086 -0.25012 0.09002 0.35179 1.71056

Coefficients:

Estimate Std. t value Pr(>|t|)

Error

(Intercept) 7.732144 1.488584 5.194 1.63e-05 ***

x1 -0.003924 0.001148 -3.419 0.001946 **

x2 -0.057343 0.019388 -2.958 0.006236 **

x4 -1.356138 0.319834 -4.240 0.000220 ***

x5 0.283058 0.076260 3.712 0.000905 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 0.7906 on 28 degrees of freedom

Multiple R-squared: 0.6471, Adjusted R-squared: 0.5967

F-statistic: 12.83 on 4 and 28 DF, p-value: 4.677e-06

Logically, therefore, we attempt to carry out a ridge regression, as in Section 11.7.8, using the

lm.ridge function.

> library(MASS)

> ridge <-

lm.ridge(log�x1+x2+x4+x5,data=caterpillars,lambda=seq(0,1,0.05))

> coef(ridge)

x1 x2 x4 x5

0.00 7.732144 -0.003923681 -0.05734270 -1.356138 0.2830582

0.05 7.716554 -0.003924173 -0.05732296 -1.336309 0.2782978

0.10 7.701162 -0.003924468 -0.05730150 -1.317100 0.2736848

0.15 7.685961 -0.003924575 -0.05727841 -1.298481 0.2692126

0.20 7.670941 -0.003924505 -0.05725376 -1.280427 0.2648748

0.25 7.656098 -0.003924265 -0.05722764 -1.262911 0.2606653

0.30 7.641423 -0.003923864 -0.05720012 -1.245910 0.2565785

0.35 7.626912 -0.003923310 -0.05717127 -1.229403 0.2526092

0.40 7.612557 -0.003922611 -0.05714116 -1.213367 0.2487522

0.45 7.598353 -0.003921772 -0.05710984 -1.197782 0.2450030

0.50 7.584296 -0.003920801 -0.05707738 -1.182631 0.2413569

0.55 7.570380 -0.003919704 -0.05704383 -1.167895 0.2378098

0.60 7.556600 -0.003918487 -0.05700925 -1.153558 0.2343577
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0.65 7.542952 -0.003917154 -0.05697367 -1.139603 0.2309969

0.70 7.529433 -0.003915712 -0.05693715 -1.126015 0.2277236

0.75 7.516037 -0.003914165 -0.05689974 -1.112781 0.2245346

0.80 7.502760 -0.003912518 -0.05686147 -1.099886 0.2214266

0.85 7.489601 -0.003910776 -0.05682238 -1.087318 0.2183965

0.90 7.476554 -0.003908942 -0.05678252 -1.075065 0.2154414

0.95 7.463616 -0.003907021 -0.05674191 -1.063114 0.2125586

1.00 7.450785 -0.003905017 -0.05670059 -1.051455 0.2097454

> plot(ridge)

We find that the coefficients only change very slightly when the parameter of the ridge

regression varies between 0 and 1 (Figure 11.70), unlike the case in the preceding section. We

can check that the lambda parameter must be more than 50 if we want the coefficients to

converge towards consistent values, particularly if they are to be negative for x5. This will be

easily understood if we remember that a matrix XtX is translated from a diagonal kl: this

translation must be greater as XtX increases. According to the order of magnitude of the

regressors, we can therefore obtain k parameters which are very different and not comparable

from one data set to another or from one situation to another. Furthermore, we do not obtain

comparable ridge coefficients, since they depend on the order of magnitude of the regressors.

For these reasons, it is often preferable to apply ridge regression to standardized variables, in

other words those which are centred and reduced. This is not done by the ridge function in R,

but is provided by the RIDGE option of the SAS REG procedure.

Here is the SAS syntax for ridge regression:

PROC REG DATA = ridge.caterpillars RIDGE = 0 to 1 BY 0.05

OUTVIF OUTEST = coeff_ridge ;

MODEL log = X1 X2 X4 X5 ;

PLOT / RIDGEPLOT ;

RUN ;

QUIT;
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Figure 11.70 Ridge trace with R.
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The RIDGE option is followed by the range of values which we wish to assign to the ridge

parameter. The instruction OUTEST¼<file_name> is used to write lines of the RIDGE type

to the specified data set, these lines containing:

. each value of the ridge parameter;

. the corresponding coefficients of the predictors;

. the root mean square error.

The OUTVIF option also causes lines of the RIDGEVIF type, each containing the VIF of each

predictor for each value of the ridge parameter, to be written to the OUTEST data set.

The OUTEST data set would contain the information required for displaying the ridge

trace (see Section 11.7.8) using the GPLOT procedure, but the instruction PLOT/RIDGE-

PLOT does this automatically (Figure 11.71), as long as the coefficients have been stored in a

table by the OUTEST option.

This time, by contrast with the result obtained with R, we find that the interval [0, 1]

contains all the values of the ridge parameter k that may be of interest. The ridge trace graph

shows good stabilization of the coefficients for k¼ 0.3 or thereabouts.

The graph of the VIFs as a function of k (Figure 11.72) also shows us that the VIFs have

values close to 1 for k¼ 0.3 (and above k¼ 0.2 in fact).

AXIS1 LABEL = (ANGLE = 90 FONT=‘Arial/bold’ H=1.5 "VIF") ;

AXIS2 LABEL = (FONT=‘Arial/bold’ H=1.5) ;

PROC GPLOT DATA = coeff_ridge ;

WHERE _TYPE_ = "RIDGEVIF" ;

log = 7.7321 -0.0039X1 -0.0573X2 -1.3561X4 +0.2831X5
N     
33    

Rsq   
0.6471

Adj Rsq
0.5967

RMSE  
0.7906
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Figure 11.71 Ridge trace with SAS.
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PLOT (X1 X2 X4 X5) * _RIDGE_ _ / OVERLAY LEGEND VAXIS = axis1

HAXIS=axis2 ;

RUN ;

QUIT ;

Finally, the graph of RMSE as a function of k (Figure 11.73) shows that RMSE still increases

significantly for k> 0.3, showing the usefulness of stopping at this value of k to avoid

unnecessarily increasing the RMSE.

AXIS1 LABEL = (ANGLE = 90 FONT=‘Arial/bold’ H=1.5 "RMSE") ;

AXIS2 LABEL = (FONT=‘Arial/bold’ H=1.5) ;

PROC GPLOT DATA = coeff_ridge ;

WHERE _TYPE_ = "RIDGE" ;

PLOT _RMSE_ _ * _RIDGE_ / OVERLAY VAXIS = axis1 HAXIS=axis2 ;

RUN ;

QUIT ;

Although the ridge function of the MASS package in R does not carry out ridge regression on

standardized data and does not provide the above information, it is still possible to write a

simple function in R to obtain it. This is an interesting exercise, using the formulae shown in

earlier sections. I have not incorporated the cross-validation which is executed by the ridge

function in R but not by the SAS RIDGE option.

ridges <- function (X,Y,lambda)

{

PLOT X5X4X2X1

V
IF

0

1

2

3

4

5

6

Ridge regression control value
1.00.90.80.70.60.50.40.30.20.10.0

Figure 11.72 Value of VIFs as a function of the ridge parameter.

PREDICTION BY LINEAR REGRESSION 405



n <- length(Y)

X.std <- cbind(1,scale(X)/sqrt(n-1))

# standardization of variables

p <- dim(X.std)[[2]] # p = number of columns of X

xscale <- sqrt(apply(X,2,var)*(n-1))

xmeans <- apply(X,2,mean) # mean of each variable

if(sum(lambda==0)==0) lambda <- c(0,lambda)

# if necessary, add 0 to the values of the ridge parameter

r <- length(lambda) # number of values of parameter

VIF <- matrix(NA,r,p-1)

beta <- matrix(NA,r,p)

RMSE <- matrix(NA,r,1)

for(i in 1:r)

{

k <- lambda[i]

kI <- diag(p)*k

# note: the intercept is not penalized

kI[1,1] <- 0

X.k <- t(X.std) %*% X.std + kI

inv <- solve(t(X.k)) # solve(x) = inverse of x

beta[i,] <- inv %*% t(X.std) %*% Y

# ridge coefficients on standardized data

R
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1.00.90.80.70.60.50.40.30.20.10.0

Figure 11.73 Value of RMSE as a function of the ridge parameter.
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Here we apply the formula

bR ¼ ðXtXþ kIÞ� 1
XtY:

# calculation of VIF

VIF[i,] <- diag(inv%*%t(X.std)%*%X.std%*%inv)[-1]

The VIF is deduced from the formula

VðbRÞ ¼ s2ðXtXþ kIÞ� 1ðXtXÞðXtXþ kIÞ� 1:

# calculation of RMSE

E <- Y - X.std%*%cbind(beta[i,]) # vector containing the residuals of the

observations

RMSE[i] <- sqrt(sum(E^2)/(n-p)) # sum of squared residuals = RMSE

Note that the RMSE is the same regardless of whether it is calculated on the standardized data

or not.

} # end of loop on lambda

# return to non standardized data

beta.orig <- t(t(beta[,2:p])/xscale)

intercept <- beta[,1]-apply(t(t(beta.orig)*xmeans),1,sum)

beta.orig <- cbind(intercept,beta.orig)

# summary of results

result = cbind(lambda,RMSE,beta.orig,VIF)

colnames(result) <-

c("lambda","RMSE","intercept",colnames(X),paste("VIF",colnames(X)))

return(result)

} # end of function

Before calling this function, we must write the predictors in the form of a matrix X and the

dependent variable in the form of a matrix (vector) Y:

> X <- as.matrix(subset(caterpillars,select=c(x1,x2,x4,x5)))

> Y <- as.matrix(subset(caterpillars,select=log))

The function is then called with these matrices entered as parameters. We also specify that we

wish to test the ridge parameters in the range from 0 to 1, at intervals of 0.05.

The table output by our ridges function contains the same information as the OUTEST data

set of the REG procedure in SAS, the VIFs being placed on the same row as the coefficients of

the predictors. The values calculated by R are exactly the same as those calculated in SAS.

Before going on to discuss principal component regression, I will show how to move from

ridge coefficients on the predictors to ridge coefficients on their principal components in SAS,

and then point out an interesting feature of this.
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> ridges(X,Y,lambda=seq(0,1,0.05))

lambda RMSE intercept x1 x2 x4 x5 VIF x1 VIF x2 VIF x4 VIF x5

[1,] 0.00 0.7906457 7.732144 -0.003923681 -0.05734270 -1.3561376 0.283058218 1.1226491 1.0264271 5.6720928 5.5110555

[2,] 0.05 0.8185528 7.292476 -0.003872789 -0.05611179 -0.9222523 0.178514258 0.9970852 0.9264669 2.5644138 2.5083573

[3,] 0.10 0.8520473 6.941476 -0.003762661 -0.05439221 -0.7123137 0.127482111 0.8941393 0.8411502 1.5161179 1.4934876

[4,] 0.15 0.8783931 6.637951 -0.003639039 -0.05259143 -0.5885637 0.097174800 0.8072301 0.7673305 1.0354242 1.0268062

[5,] 0.20 0.8991023 6.366848 -0.003515143 -0.05082609 -0.5069205 0.077075464 0.7328510 0.7029336 0.7729488 0.7710813

[6,] 0.25 0.9159576 6.120608 -0.003395569 -0.04913543 -0.4489423 0.062767912 0.6685869 0.6463876 0.6122958 0.6139278

[7,] 0.30 0.9301538 5.894636 -0.003281930 -0.04753189 -0.4055623 0.052070070 0.6126304 0.5964509 0.5056715 0.5091733

[8,] 0.35 0.9424531 5.685779 -0.003174656 -0.04601725 -0.3718094 0.043777999 0.5635795 0.5521239 0.4304881 0.4349792

[9,] 0.40 0.9533492 5.491703 -0.003073668 -0.04458881 -0.3447337 0.037171982 0.5203243 0.5125914 0.3749255 0.3799056

[10,] 0.45 0.9631716 5.310588 -0.002978676 -0.04324198 -0.3224758 0.031794678 0.4819733 0.4771825 0.3322991 0.3374745

[11,] 0.50 0.9721467 5.140965 -0.002889300 -0.04197150 -0.3038070 0.027341146 0.4478023 0.4453404 0.2985897 0.3037848

[12,] 0.55 0.9804350 4.981621 -0.002805140 -0.04077204 -0.2878837 0.023599998 0.4172176 0.4165996 0.2712570 0.2763665

[13,] 0.60 0.9881534 4.831532 -0.002725802 -0.03963841 -0.2741075 0.020419919 0.3897281 0.3905684 0.2486279 0.2535894

[14,] 0.65 0.9953894 4.689825 -0.002650914 -0.03856575 -0.2620431 0.017689645 0.3649249 0.3669155 0.2295610 0.2343391

[15,] 0.70 1.0022095 4.555745 -0.002580129 -0.03754954 -0.2513657 0.015325470 0.3424648 0.3453586 0.2132541 0.2178303

[16,] 0.75 1.0086661 4.428636 -0.002513130 -0.03658563 -0.2418289 0.013263167 0.3220582 0.3256563 0.1991285 0.2034953

[17,] 0.80 1.0148008 4.307920 -0.002449626 -0.03567020 -0.2332418 0.011452615 0.3034592 0.3076012 0.1867570 0.1909137

[18,] 0.85 1.0206473 4.193088 -0.002389353 -0.03479977 -0.2254546 0.009854104 0.2864581 0.2910140 0.1758179 0.1797684

[19,] 0.90 1.0262333 4.083687 -0.002332073 -0.03397116 -0.2183482 0.008435762 0.2708746 0.2757394 0.1660646 0.1698154

[20,] 0.95 1.0315823 3.979314 -0.002277566 -0.03318146 -0.2118263 0.007171705 0.2565536 0.2616418 0.1573049 0.1608641

[21,] 1.00 1.0367140 3.879605 -0.002225634 -0.03242802 -0.2058106 0.006040691 0.2433608 0.2486032 0.1493867 0.1527633
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First of all, we must calculate a ridge regression on the standardized variables in order to

obtain ridge coefficients that can be used with the coefficients of the variables on the principal

components. These coefficients, produced by the PRINCOMP procedure, are those of the

standardized variables. This is done as follows:

PROC STANDARD DATA= ridge.caterpillars OUT=reduced MEAN=0 STD=1 ;

VAR x1 x2 x4 x5 ;

RUN ;

PROC REG DATA = reduced RIDGE = 0 to 1 BY 0.05 OUTEST =

coeff_ridge_std ;

MODEL log = x1 x2 x4 x5 ;

PLOT / RIDGEPLOT ;

RUN ;

QUIT ;

We obtain the ridge coefficients:

DATA coeff_ridge_pc (DROP = _model_ _ _type_ _ _depvar_ _ _

pcomit_) ; SET coeff_ridge_std ;

WHERE _TYPE_ = "RIDGE" ;

RUN ;

The coefficients of the variables on the principal components are obtained as the output of a

PCA executed by the PRINCOMP procedure.

PROC PRINCOMP DATA = reduced OUT = pcr OUTSTAT = coef ;

VAR x1 x2 x4 x5 ;

RUN ;

The SCORE procedure multiplies the ridge regression coefficients on standardized variables

(DATA set) by the coefficients of the principal components on the variables Xi (SCORE data

set). For each line of the first data set (DATA), in other words each value of the ridge parameter,

this procedurewill calculate the scalar product of the vector (x1 x2 x3 x4) of the first data set by

each vector (x1 x2 x3 x4) of the second, for each line of the _SCORE_ type, therefore each

principal component of this second data set. For each line, the result will be placed in a variable

whose name is given by the _NAME_ variable of the SCORE data set.

PROC SCORE DATA=coeff_ridge_pc SCORE=coef OUT=coeff_ridge_pc2 ;

VAR x1 x2 x4 x5 ;

RUN ;

DATA coeff_ridge_pc2 ;

SET coeff_ridge_pc2 ;

prin1 = prin1*SQRT(2.1141) ;

prin2 = prin2*SQRT(0.9758) ;

prin3 = prin3*SQRT(0.8158) ;

prin4 = prin4*SQRT(0.0943) ;

RUN ;

PREDICTION BY LINEAR REGRESSION 409



The first data set (DATA) contains the ridge regression coefficients on standardized variables:

Obs _RIDGE_ _RMSE_ Intercept X1 X2 X4 X5 log

1 0.00 0.79065 � 0.81328 � 0.50630 � 0.41881 � 1.41143 1.21787 � 1

2 0.05 0.81855 � 0.81328 � 0.49973 � 0.40982 � 0.95985 0.76807 � 1

3 0.10 0.85205 � 0.81328 � 0.48552 � 0.39726 � 0.74135 0.54850 � 1

4 0.15 0.87839 � 0.81328 � 0.46957 � 0.38411 � 0.61256 0.41810 � 1

5 0.20 0.89910 � 0.81328 � 0.45358 � 0.37121 � 0.52759 0.33162 � 1

6 0.25 0.91596 � 0.81328 � 0.43815 � 0.35887 � 0.46725 0.27006 � 1

7 0.30 0.93015 � 0.81328 � 0.42349 � 0.34715 � 0.42210 0.22403 � 1

8 0.35 0.94245 � 0.81328 � 0.40965 � 0.33609 � 0.38697 0.18836 � 1

9 0.40 0.95335 � 0.81328 � 0.39662 � 0.32566 � 0.35879 0.15993 � 1

10 0.45 0.96317 � 0.81328 � 0.38436 � 0.31582 � 0.33562 0.13680 � 1

11 0.50 0.97215 � 0.81328 � 0.37283 � 0.30654 � 0.31619 0.11764 � 1

12 0.55 0.98044 � 0.81328 � 0.36197 � 0.29778 � 0.29962 0.10154 � 1

13 0.60 0.98815 � 0.81328 � 0.35173 � 0.28950 � 0.28528 0.08786 � 1

14 0.65 0.99539 � 0.81328 � 0.34207 � 0.28167 � 0.27273 0.07611 � 1

15 0.70 1.00221 � 0.81328 � 0.33293 � 0.27425 � 0.26161 0.06594 � 1

16 0.75 1.00867 � 0.81328 � 0.32429 � 0.26721 � 0.25169 0.05707 � 1

17 0.80 1.01480 � 0.81328 � 0.31609 � 0.26052 � 0.24275 0.04928 � 1

18 0.85 1.02065 � 0.81328 � 0.30831 � 0.25416 � 0.23465 0.04240 � 1

19 0.90 1.02623 � 0.81328 � 0.30092 � 0.24811 � 0.22725 0.03630 � 1

20 0.95 1.03158 � 0.81328 � 0.29389 � 0.24234 � 0.22046 0.03086 � 1

21 1.00 1.03671 � 0.81328 � 0.28719 � 0.23684 � 0.21420 0.02599 � 1

The second data set (SCORE) contains the coefficients of the principal components on the

variables Xi, in the observations of the SCORE type. The MEAN and STD observations have

values of 0 and 1 respectively, because the PCAwas conducted on standardized variables. This

changes nothing in the SCORE coefficients, but if theMEAN and STD observations contained

the mean and standard deviation of each variable Xi, the values of the Xi would have been

standardized before the calculation of the scalar product.

Obs _TYPE_ _NAME_ X1 X2 X4 X5

1 MEAN 0.0000 0.0000 0.0000 0.0000

2 STD 1.0000 1.0000 1.0000 1.0000

3 N 33.0000 33.0000 33.0000 33.0000

4 CORR X1 1.0000 0.1205 0.3211 0.2838

5 CORR X2 0.1205 1.0000 0.1367 0.1134

6 CORR X4 0.3211 0.1367 1.0000 0.9047

7 CORR X5 0.2838 0.1134 0.9047 1.0000

8 EIGENVAL 2.1141 0.9758 0.8158 0.0943

9 SCORE Prin1 0.3697 0.1846 0.6484 0.6394

10 SCORE Prin2 0.2156 0.9359 � 0.1793 � 0.2131

11 SCORE Prin3 0.9033 � 0.2995 � 0.1980 � 0.2350

12 SCORE Prin4 0.0312 0.0157 � 0.7129 0.7003
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Now, to express the coordinates of the variables X1, . . . , Xn on the principal components

Prin1, we have to multiply the previous coefficients 0.3697, . . . , 0.6394 by the square root

1.4540 of the eigenvalue 2.1141 of Prin1 (see section 7.1.1).

The first line of the data set OUT corresponds to the ridge parameter 0.00 and contains the

coefficients �0.50630, �0.41881, . . . of Y on X1, X2, . . . , so that the scalar product

(� 0.50630� 0.3697� 1.4540) � (0.41881� 0.1846� 1.4540) � (1.41143� 0.6484

� 1.4540) þ (1.21787� 0.6394� 1.4540)¼ � (0.4009� 1.4540)¼ � 0.5829

is equal to the coefficient of Yon Prin1.We do the same calculation for Prin2, Prin3 and Prin4.

The set of ridge regression coefficients on the principal components is as follows:

_RIDGE_ Prin1 Prin2 Prin3 Prin4

0.00 � 0.58289 � 0.50150 � 0.30594 0.56406

0.05 � 0.56943 � 0.47705 � 0.28827 0.36856

0.10 � 0.55657 � 0.45488 � 0.27253 0.27370

0.15 � 0.54428 � 0.43468 � 0.25842 0.21767

0.20 � 0.53252 � 0.41619 � 0.24571 0.18069

0.25 � 0.52125 � 0.39921 � 0.23418 0.15444

0.30 � 0.51046 � 0.38357 � 0.22369 0.13486

0.35 � 0.50010 � 0.36910 � 0.21409 0.11968

0.40 � 0.49015 � 0.35569 � 0.20529 0.10757

0.45 � 0.48060 � 0.34321 � 0.19718 0.09769

0.50 � 0.47140 � 0.33159 � 0.18969 0.08947

Finally, the GPLOT procedure is used to display the absolute values of the ridge coefficients

on principal components, as a function of their ridge parameter value.

DATA coeff_ridge_pc3 ;

SET coeff_ridge_pc2 ;

prin1 = ABS(prin1) ;

prin2 = ABS(prin2) ;

prin3 = ABS(prin3) ;

prin4 = ABS(prin4) ;

RUN ;

GOPTIONS RESET=all;

SYMBOL1 v=CIRCLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL2 v=SQUARE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL3 v=TRIANGLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL4 v=DOT i=JOIN c=BLACK w=2 h=1.5 l=2 ;

AXIS1 LABEL = (ANGLE = 90 FONT=‘Arial/bold’ H=1.5

"Coefficients") ;

AXIS2 LABEL = (FONT=‘Arial/bold’ H=1.5) ;

PROC GPLOT DATA = coeff_ridge_pc3 ;

PLOT (prin1 – prin4) * _ridge_ / OVERLAY LEGEND VAXIS = axis1

HAXIS=axis2 ;

RUN ;

QUIT ;
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Figure 11.74 and the preceding table of coefficients reveal a remarkable property of ridge

regression:46 it progressively decreases the absolute values of the coefficients of all the

principal components. This is not necessarily the case with the coefficients of the predictors,

which may increase in absolute value, as shown by the example in Section 11.7.8.

Moreover, the coefficient of a principal component is decreased by the ridge regression to

a greater extent if the variance of this component is smaller: the coefficient of the first principal

component decreasesmoderately, whereas the coefficient of the last principal component falls

abruptly. We say that ridge regression penalizes the principal components with low variance.

Figure 11.74 is at least as informative as the conventional ‘ridge plot’, and the phenome-

non which it reveals is sometimes much more apparent. It also shows a consistency between

ridge regression and the regression which will be carried out subsequently by eliminating, one

by one, the principal components that are less useful to the regression: as we will see, Prin3 is

eliminated first, and this is the component whose ridge coefficient has the lowest absolute

value for k ¼ 0, i.e. for least squares regression.

Unlike ridge regression, principal component regression (PCR) does not progressively

decrease the coefficients of the principal components, but deletes them one after another, since

it eliminates the principal components one after another, starting with those having the

smallest variance and finishing with the first principal component. The discrete and discon-

tinuous nature of this process causes significant, even abrupt, variations in the coefficients of

the predictors, which contrast with the progressive variation of the coefficients in ridge

Figure 11.74 Variation of the ridge coefficients of the principal components.

46 See Section 3.4.3 of Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statistical Learning:

Data Mining, Inference and Prediction. New York: Springer.
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regression. For PCR, the analogue of the lambda parameter of ridge regression is the number

of principal components that are retained. This is the regularization parameter, which is varied

to a greater or lesser degree according to the collinearity of the predictors. Its minimum value

(lambda¼ 0, or number of principal components equal to the number of predictors)

corresponds to conventional linear regression, and its value increases in the presence of

collinearity and when there are abnormally large regression coefficients to be corrected.

Let us return to our example. Here is the PCOMIT option in the SAS REG procedure

which launches the PCR. An advantage of this option is that it enables the regression to be

carried out once only on a set of possible values of the number of principal components. For

example, the following syntax calculates the regression with the omission of 0, 1, 2 and then 3

components, starting with the components with the smallest variance.

PROC REG DATA = ridge.caterpillars PCOMIT = 0 1 2 3 OUTEST =

coeff_pcr ;

MODEL log = x1 x2 x4 x5 ;

RUN ;

QUIT ;

In R, the syntax is as follows:

library(pls)

pcr= pcr(log�x1+x2+x4+x5,data=caterpillars,ncomp=2)

Only one value of the number of components can be specified. This number can also be chosen

by cross-validation.

Returning to SAS, we can represent the values of the coefficients as a function of the

number of components omitted (Figure 11.75). These are contained in the data set written at

the output of the procedure by means of the instruction OUTEST ¼ <file_name>, and they

are extracted by selecting the records of the IPC (incomplete principal components) type.

GOPTIONS RESET=all ;

SYMBOL1 v=CIRCLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL2 v=SQUARE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL3 v=TRIANGLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL4 v=DOT i=JOIN c=BLACK w=2 h=1.5 l=2 ;

AXIS1 LABEL = (ANGLE = 90 FONT=‘Arial/bold’ H=1.5

"Coefficients") ;

AXIS3 LABEL = (ANGLE = 90 FONT=’Arial/bold’ H=1.5 "RMSE") ;

AXIS2 LABEL = (FONT=‘Arial/bold’ H=1.5) ;

PROC GPLOT DATA = coeff_pcr ;

WHERE _TYPE_ = "IPC" ;

PLOT (x1 x2 x4 x5) * _PCOMIT_ _ / OVERLAY LEGEND VAXIS = axis1

HAXIS=axis2 ;

PLOT _RMSE_ _ * _PCOMIT_ _ / VAXIS = axis3 HAXIS=axis2;

RUN ;

QUIT ;

We can also represent the RMSE as a function of the number of components dropped

(Figure 11.76).
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Figure 11.75 Variation of the PCR coefficients according to the number of principal

components dropped.
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Figure 11.76 Variation of the RMSE according to the number of principal components

dropped.

414 CLASSIFICATION AND PREDICTION METHODS



We can see that we must exclude at least one principal component in order to stabilize the

coefficients (x4 and x5, which are closely correlated, have strong coefficients which

‘compensate’ each other). The removal of a principal component causes a marked increase

in RMSE, but this increases less when a second component is dropped, then rises steeply again

if a third one is dropped. A good choice is to retain two or three principal components.

Another type of principal component regression can be carried out, based on the principle

that the principal components most closely related to the dependent variable are not

necessarily those with the largest variance.

A PCA is carried out, followed by linear regression with global selection of the principal

components, in order to find, for each possible value p of the number of variables in the model,

where p varies over a chosen range, the best combinations of p principal components with

respect to a fixed criterion, for exampleR2. This search, which is global rather than stepwise, is

carried out by using the leaps and bounds algorithm (Section 3.13).

PROC PRINCOMP DATA = ridge.caterpillars OUT = pcr OUTSTAT = coef ;

VAR X1 X2 X4 X5 ;

RUN ;

PROC REG DATA = pcr ;

MODEL log = prin1-prin4 / SELECTION = rsquare CP AIC BIC RMSE ;

RUN ;

QUIT ;

The SELECTION¼ rsquare option detects the best subsets of k variables with respect to R2,

and displays these subsets. If nothing else is specified, SAS only considers the subsets of

1, 2, . . ., p variables, where p is the total number of predictors. The minimum number of

subsets searched for can be set by the option START¼ n (default value 1), while themaximum

number of subsets searched for can be set by the option STOP¼ n (default value p). In this

way we can specify a range. Also, if we only wish to retain the best k subsets of each size, we

can specify the option BEST¼ k. The default value of BEST is p if p> 10. If p� 10, all the

subsets are selected by default. In large data sets, a small value of BEST considerably reduces

the computing time.

Two criteria other than R2 can be optimized by this option, namely the adjusted R2

(SELECTION¼ adjrsq) and the Mallows Cp (SELECTION¼ cp). But R2 is most widely

used, although it has the drawback of always favouring the most complex model, unlike the

MallowsCp. However, it is possible to display other criteria, as we have done. Thus our syntax

displays the CP, RMSE, AIC and BIC. The last two of these are defined in Section 11.8.6 in the

context of logistic regression, but their definition is the same for linear regression. The Cp

statistic, introduced by Mallows (1973),47 resembles the (more general) AIC, because it is a

measure of the sum of squares of the errors, penalized by the number of predictors:

CpðqÞ ¼ ðn� p� 1ÞESSðqÞ
ESSðpÞ � nþ 2ðqþ 1Þ;

where ESS(q) is the sum of residual squares for q predictors, and q� p.

47 Mallows, C.L. (1973). Some comments on Cp. Technometrics, 15(4), 661–675.
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For Cp, the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC), we seek the lowest possible value, preferably close to pþ 1 forCp (the latter can be less

than pþ 1, or even negative).

Number

in model

R-square C(p) AIC BIC Root MSE Variables in model

1 0.2192 32.9454 9.2779 8.9721 1.11765 Prin1

1 0.2052 34.0582 9.8654 9.5043 1.12764 Prin4

1 0.1623 37.4646 11.6016 11.0806 1.15770 Prin2

1 0.0604 45.5467 15.3886 14.5381 1.22607 Prin3

2 0.4244 18.6653 1.2157 1.3977 0.97547 Prin1 Prin4

2 0.3815 22.0717 3.5898 3.4102 1.01120 Prin1 Prin2

2 0.3675 23.1845 4.3298 4.0407 1.02260 Prin2 Prin4

2 0.2796 30.1539 8.6212 7.7283 1.09130 Prin1 Prin3

2 0.2656 31.2666 9.2575 8.2796 1.10187 Prin3 Prin4

2 0.2227 34.6730 11.1324 9.9106 1.13362 Prin2 Prin3

3 0.5867 7.7916 � 7.7128 � 5.6621 0.84074 Prin1 Prin2 Prin4

3 0.4848 15.8738 � 0.4424 � 0.0577 0.93865 Prin1 Prin3 Prin4

3 0.4419 19.2801 2.1992 2.0314 0.97698 Prin1 Prin2 Prin3

3 0.4279 20.3929 3.0182 2.6850 0.98918 Prin2 Prin3 Prin4

4 0.6471 5.0000 � 10.9258 � 7.2038 0.79065 Prin1 Prin2 Prin3

Prin4

The table displayed by SAS shows that the best two-variable model is not the one with prin1

and prin2, which would be selected by the PCOMIT option, but the model with prin1 and

prin4. Furthermore, the best three-variable model contains prin1, prin2 and prin4, and does

not contain prin3. To optimizeR2 or another of the indicators, therefore, wemust not select the

principal components in the order of the eigenvalues.

We can now restart the procedure to find the RMSE and the coefficients associated with the

best combinations of variables.

PROC REG DATA = pcr OUTEST = coeff_pcr ;

MODEL log = prin1-prin4 / SELECTION = rsquare CP AIC BIC RMSE BEST = 1 ;

RUN ;

QUIT ;

Number
in model

R-square C(p) AIC BIC Root MSE Variables in model

1 0.2192 32.9454 9.2779 8.9721 1.11765 Prin1

2 0.4244 18.6653 1.2157 1.3977 0.97547 Prin1 Prin4

3 0.5867 7.7916 � 7.7128 � 5.6621 0.84074 Prin1 Prin2 Prin4

4 0.6471 5.0000 � 10.9258 � 7.2038 0.79065 Prin1 Prin2 Prin3

Prin4
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GOPTIONS RESET=all ;

SYMBOL1 v=CIRCLE i=JOIN c=BLACK ;

SYMBOL2 v=SQUARE i=JOIN c=BLACK ;

SYMBOL3 v=TRIANGLE i=JOIN c=BLACK ;

SYMBOL4 v=DOT i=JOIN c=BLACK ;

PROC GPLOT DATA = coeff_pcr ;

PLOT _RMSE_ * _IN_ ;

RUN ;

QUIT ;

Looking at Figure 11.77, three appears to be a good number of components to retain, because

the RMSE increases sharply with one or two principal components.

The expression for the principal component regression coefficients is then used, with the

expression for the principal components as a function of the standardized initial predictors, to

deduce the expression for the coefficients of regression on the initial predictors, as a function

of the number of principal components retained.

dim X1 X2 X4 X5

1 � .001148501 � 0.010134 � 0.24975 � 0.05958

2 � .000704437 � 0.006174 � 1.50800 0.23941

3 � .001552613 � 0.071232 � 1.42056 0.26456

4 � .003923681 � 0.057343 � 1.35614 0.28306
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Figure 11.77 Variation of the RMSE according to the number of principal components

retained.
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The variation of these coefficients as a function of the number of principal components is

shown in Figure 11.78. The coefficients of conventional linear regression will be found when

four principal components are retained.

GOPTIONS RESET=all;

SYMBOL1 v=CIRCLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL2 v=SQUARE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL3 v=TRIANGLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL4 v=DOT i=JOIN c=BLACK w=2 h=1.5 l=2 ;

AXIS1 LABEL = (ANGLE = 90 FONT=‘Arial/bold’ H=1.5

"Coefficients") ;

AXIS2 LABEL = (FONT=‘Arial/bold’ H=1.5) ;

PROC GPLOT DATA = t ;

PLOT (X1 X2 X4 X5) * dim / OVERLAY LEGEND VAXIS = axis1

HAXIS=axis2 ;

RUN ;

QUIT ;

Where one or four principal components are retained, the coefficients are the same as those in

Figure 11.75, but this is not the case with two or three components. When the principal

components were selected simply according to their variance, the coefficients converged

(towards negative values) as soon as a principal component was excluded (Prin4), while it is

necessary towait until there is only one principal component left (Prin1)when these components

have been selected with a view to their relationship with the dependent variable. It is the fourth
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Figure 11.78 Variation of the PCR coefficients according to the number of principal

components retained.
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principal component, prin4, that interferes with the convergence of the coefficients: when it was

excluded and the other threewere kept, the coefficients converged (first regression), which is not

the casewhen the third component is excluded (second regression). This result is consistent with

Figure 11.74. This discrepancy between results of both regressions corresponds to the fact that

Prin4 curve intersects Prin2 and Prin3 curves in Figure 11.74.

This example shows the difficulty of choosing between optimization of the regression,

based on the RMSE for example, and fast continuous convergence of the coefficients. These

difficulties occur with principal component regression but not with ridge regression, which

may be preferred for this reason.

Wewill now take a look at PLS regression, which has some similarities with the regression

we have just carried out. As I mentioned above, the aim of PLS regression is to explain, by an

appropriate choice of the number of components extracted, the greater part of the variance of

both the Xi (objective 1) and the dependent variable (objective 2).

In the R software, PLS regression requires the use of the pls package, and is carried out

as follows:

library(pls)

simpls= mvr(log�x1+x2+x4+x5,data=caterpillars, ncomp=4,

method="simpls")

Wewill use the SIMPLSmethod of de Jong (1993).48 The calculations for this method are fast,

and in this case, with only one dependent variable, it is equivalent to the NIPALS algorithm

forming the basis of PLS regression. Other methods are available, and it is also possible to

request cross-validation to find the optimal number of components.

simpls= mvr(log�x1+x2+x4+x5,data=caterpillars, validation="CV",

method="simpls")

In SAS, PLS regression is carried out with the PLS procedure, which has a very simple syntax.

In the first example below, I have added the option NFAC¼ 4 to request the extraction of four

components. By default, NFAC ismin(15,p,n), where p is the number of predictors and n is the

number of observations. It is useful to start by requesting the maximum number of

components, to obtain Figure 11.79, which displays the percentage variance of the predictors

(on the left) and of the dependent variable (on the right) as a function of the number of

components extracted. We can see that the fourth component has hardly any effect on the

variance of the dependent variable (which changes from 62.3% to 64.7%), but has more of an

effect on the variance of the predictors(rising from 82.5% to 100%).

I have specified the choice of the SIMPLS method as for R. With only one dependent

variable, the different methods give the same results.

PROC PLS DATA = ridge.caterpillars METHOD = simpls NFAC = 4 ;

MODEL log = X1 X2 X4 X5 ;

RUN ;

48 de Jong, S. (1993) SIMPLS: an alternative approach to partial least squares regression. Chemometrics and

Intelligent Laboratory Systems, 18, 251–263.
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To determine the optimal number of components, we will use the variation in the value of

PRESS found by cross-validation, as mentioned in Section 11.7.10. One option which is

widely used for this purpose is ‘CV¼one’. It canfind thevalue ofPRESS,which, as shownhere,

reaches its minimum when the four components are extracted. Of course, we may sometimes

need fewer components, or even a single component, to find theminimumPRESS.However,we

can see that the PRESS decreases more between two and three principal components than

between three and four, suggesting that it may be sufficient to extract three components.

PROC PLS DATA = ridge.caterpillars METHOD = simpls CV = one ;

MODEL log = X1 X2 X4 X5 ;

RUN ;

Cross Validation for the Number of Extracted Factors

Number of

Extracted Factors

Root Mean

PRESS

0 1.03125

1 0.836625

2 0.79649

3 0.717582

4 0.679275

Minimum root mean PRESS 0.6793

Minimizing number of factors 4

However, the procedure has extracted four components, the number being determined automati-

cally by cross-validation. Since this is equivalent to performing the conventional linear regression

which has already been done, we will restart the procedure and specify three components, which

appears to be a useful number in terms of both the PRESS and the resulting variance.

PROC PLS DATA = ridge.caterpillars METHOD = simpls NFAC = 3 ;

MODEL log = X1 X2 X4 X5 / SOLUTION ;

RUN ;

Percent Variation Accounted for by Partial Least Squares Factors
Model Effects Dependent VariablesNumber of 

Extracted
Factors

Current Total Current Total

1 40.5213 40.521347.928347.9283
2 49.9609 9.439675.603227.6749
3 62.3601 12.399282.54976.9465
4 64.7081 2.3480100.000017.4503

Figure 11.79 Variance accounted for, as a function of the number of components.
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The SOLUTION option on the MODEL line displays the PLS coefficients on both the

standardized predictors and the raw predictors.

Parameter Estimates for Centered and Scaled Data

log

Intercept 0.0000000000

X1 � .5250356913

X2 � .2429739212

X4 � .9601628308

X5 0.8423477018

Parameter Estimates

log

Intercept 8.447241975

X1 � 0.005065509

X2 � 0.041416195

X4 � 1.148520786

X5 0.243732672

These coefficients are closer to the coefficients foundby regression on the principal components

1, 2 and 4 than to those for components 1 to 3 found by PCOMIT (see Figure 11.84).

As before, it is interesting to see how the coefficients vary as a function of the number of

components extracted. As the PLS procedure only finds the coefficients for the number of

components specified or determined by cross-validation, this procedure has to be run for every

possible number of components extracted. This is done with a macro that records the

calculated coefficients in an ODS data set each time, concatenates them in a single data

set, and then prints them. The parameters of this macro are the data set name, the variables and

the maximum number of components to be extracted.

%MACRO pls (data,n,y,x) ;

%DO i = 1 %TO &n ;

ODS OUTPUT ParameterEstimates = pls&i ;

PROC PLS DATA = &data METHOD = simpls NFAC = &i ;

MODEL &y = &x / SOLUTION ;

RUN ;

DATA pls&i ;

SET pls&i ;

nbfact = &i ;

RUN ;
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%IF &i = 1 %THEN %DO ;

DATA pls ;

SET pls&i ;

RUN ;

%END ;

%ELSE %DO ;

PROC APPEND BASE = pls

DATA = pls&i ; RUN ;

%END ;

%END ;

PROC TRANSPOSE DATA = pls OUT=t (DROP= _name_) ;

VAR &y ;

BY nbfact ;

ID RowName ;

RUN ;

PROC PRINT DATA = t ;

RUN ;

%MEND ;

%pls (ridge.caterpillars,4,log,X1 X2 X4 X5) ;

This is what is produced when the macro is run:

nbfact Intercept X1 X2 X4 X5

1 6.257883169 � 0.003021586 � 0.042962193 � 0.298577984 � 0.034123901

2 7.824476462 � 0.004530997 � 0.070126309 � 0.281904679 0.040173384

3 8.447241975 � 0.005065509 � 0.041416195 � 1.148520786 0.243732672

4 7.732143743 � 0.003923681 � 0.057342697 � 1.356137608 0.283058218

GOPTIONS RESET=all;

SYMBOL1 v=CIRCLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL2 v=SQUARE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL3 v=TRIANGLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL4 v=DOT i=JOIN c=BLACK w=2 h=1.5 l=2 ;

AXIS1 LABEL = (ANGLE = 90 FONT=’Arial/bold’ H=1.5 "Coefficients") ;

AXIS2 LABEL = (FONT=‘Arial/bold’ H=1.5) ;

PROC GPLOT DATA = t ;

PLOT (x1 x2 x4 x5) * nbfact / OVERLAY LEGEND VAXIS = axis1

HAXIS=axis2 ;

RUN ;

QUIT ;
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Figure 11.80 shows that the coefficients with three PLS components are close to those found by

regression on the principal components prin1, prin2 and prin4. It also shows that, unlike this

regression whose coefficients are only stabilized with a single principal component, the

coefficients of the PLS regression are stabilized with two components, suggesting that this

solution should be tested. PLS regression on two components also yields a lower RMSE (0.89)

than those of regressions on two principal components (in accordancewith the de Jong theorem

mentioned above). No principal component regression provides such a low RMSE, except for

the regression on prin1, prin2 and prin4 (RMSE¼ 0.84), and of course the regression on all the

principal components (RMSE ¼ 0.79). Now, these two regressions do not have stabilized

coefficients. So far, only PLS regression on two principal components and ridge regressionwith

k¼ 0.3 have a relatively low RMSE (0.93) combined with stabilized coefficients.

With two PLS components, we obtain coefficients close to those of ridge regression, with a

slightly lower RMSE (more precisely, the square root of PRESS). PLS regression on two

components therefore appears to be a possible alternative to ridge regression in this case, but

we have to bear in mind the rather abrupt variation of the coefficients and the difficulty of

determining the correct number of components to be retained. It is a difficult choice.

The results shown above demonstrate that, in PLS regression, the optimization of the

variance of the predictors tends to lead to the optimization of the correlationwith the dependent

variable, so that PLS regression becomes less similar to least squares regression and more

similar to ridge regression and principal component regression, although it is closer to the

variant of PCR in which the principal components are chosen not in decreasing order of

variance, but as a function of their discriminant power.
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Figure 11.80 Variation of the PLS coefficients according to the number of components

retained.
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The final method of regularized regression to be described in this section is the lasso,

introduced in Section 11.7.2. In SAS, the lasso method first appeared in a procedure in

Version 9.2. This procedure is GLMSELECT, which, as its name implies, is dedicated to the

selection of variables, which it does by various methods, such as the lasso and the LARS

(least angle regression) method of Efron et al. (2004).49 The last of these is also the basis for

an efficient lasso calculation method, implemented in the lars package in R. In GLMSE-

LECT, a variety of selection and stop criteria are available, based on various indicators for

selection, and on criteria of significance and validation for stopping. The results can be

displayed in graphs, enhanced by ODS GRAPHICS. This procedure can then be linked to a

REG or GLM procedure. Like the last of these (Section 11.7.13), GLMSELECT handles

qualitative predictors.

The following syntax applies a lasso regression to the preceding variables, taking the

Mallows Cp as the predictor selection criterion and as the stop criterion. This means that the

predictor selected at each step is the one which minimizes the Mallows Cp, and the selection

process is interrupted when this criterion increases again. This stop criterion is not always

strict enough, because it is sometimes better to avoid a supplementary variable that does little

to decrease the Mallows Cp (or the AIC, BIC, etc.). This is the case here. The instruction

STATS¼ . . . displays the criteria specified in the selection summary table. The instruction

DETAILS¼ all provides a detailed display of the selection process, with the values of the

indicators, for each step in the process (Figure 11.81). Finally, with ODS GRAPHICS, the

instruction PLOTS¼ all displays a set of graphs describing the variation of the selection

quality indicators.

ODS GRAPHICS ON ;

ODS OUTPUT ParameterEstimates = lasso ;

PROC GLMSELECT DATA = ridge.caterpillars PLOTS=all ;

MODEL log = x1 x2 x4 x5 / selection=lasso (CHOOSE=cp STOP=cp)

STATS=(rsquare adjrsq bic aic cp) DETAILS=all ; RUN ;

ODS GRAPHICS OFF;

LASSO Selection Summary
Step Effect

Entered
Effect
Removed

Number
Effects In

Adjusted
 R-Square

AIC BIC CP

0 Intercept 48.338315.5939 50.44430.00001
1 X1 41.422112.8199 48.51020.08372
2 X2 38.191311.5128 47.96330.12353
3 X4 18.29951.4441 36.46020.39784
4 X5 5.0000*-7.2038* 24.0742*0.5967*5

* Optimal Value Of Criterion

Figure 11.81 Summary of the steps of the lasso.

49 Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004) Least angle regression (with discussion), Annals of

Statistics, 32, 407–499.
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One of the graphs (Figure 11.82) shows the values of the coefficients of the standardized

predictors as a function of the selection step. None of the graphs produced by SAS shows the

coefficients of the raw predictors, but we can do this with the GPLOT procedure, after

retrieving the values of these coefficients into an ODS data set specified before the procedure.

This will allow us to compare these coefficients with those calculated by the other regression

methods used in this section.

PROC TRANSPOSE DATA = lasso OUT=step (DROP= _name_) ;

WHERE Step GE 0 ;

VAR Estimate ;

BY Step ;

ID Effect ;

RUN ;

DATA step ;

SET step ;

IF x1 = . THEN x1 = 0 ;

IF x2 = . THEN x2 = 0 ;

IF x4 = . THEN x4 = 0 ;

IF x5 = . THEN x5 = 0 ;

RUN ;

PROC PRINT DATA = step ;

RUN ;

Figure 11.82 Variation of the standardized lasso coefficients and the Mallows Cp.
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Step Intercept X1 X2 X4 X5

0 � 0.813281 0 0 0 0

1 0.689875 � 0.001143 0 0 0

2 1.432322 � 0.001549 � 0.007175 0 0

3 5.914430 � 0.003364 � 0.045782 � 0.218643 0

4 7.732144 � 0.003924 � 0.057343 � 1.356138 0.283058

GOPTIONS RESET=all;

SYMBOL1 v=CIRCLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL2 v=SQUARE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL3 v=TRIANGLE i=JOIN c=BLACK w=2 h=1.5 l=2 ;

SYMBOL4 v=DOT i=JOIN c=BLACK w=2 h=1.5 l=2 ;

AXIS1 LABEL = (ANGLE = 90 FONT=’Arial/bold’ H=1.5 "Coefficients") ;

AXIS2 LABEL = (FONT=’Arial/bold’ H=1.5) ;

PROC GPLOT DATA = step ;

WHERE step > 0 ;

PLOT (x1 x2 x4 x5) * step / OVERLAY LEGEND VAXIS = axis1 HAXIS=axis2 VREF = 0;

RUN ;

QUIT ;

Figure 11.83 shows that the coefficients are stable up to the third step, which suggests that we

should retain three predictors, a choice confirmed by the graph of the Mallows Cp, which

shows a significant drop between the second and third steps. The information displayed by the

DETAILS¼ all option (not reproduced here) shows that the RMSE of the lasso with three
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Figure 11.83 Variation of the lasso coefficients.
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variables is 0.96611. We can see that this is greater than the value for ridge regression with

k¼ 0.3 (RMSE¼ 0.93015) and for PLS regression on two components (RMSE¼ 0.89246).

More generally, the graph of the coefficients reveals two facts:

. Unlike the ‘ridge plot’, the horizontal axis is not a continuous scale, because each value

of this axis corresponds to a step, not to a value of the lasso parameter, which changes

continuously.

. Each change of step is characterized by the elimination of a coefficient, whereas ridge

coefficients can tend towards 0, but are not eliminated in succession.

This can be understood if we remember (see Section 11.7.2) that these coefficients are found

under the constraint
Pp

j¼1 bj
�� �� � t, instead of the constraint

Pp
j¼1 b

2
j � C2 used for ridge

regression. Clearly, if t is sufficiently small, some coefficients can have no other solutions than

bj¼ 0, because other solutions would result in a sum ofmore than t.However, we have b2j < bj
for bj< 1, which always permit non-zero solutions, even if they are very small, to the quadratic

constraint. Because of this characteristic, lasso regression is not only a method of regulariza-

tion, like ridge regression, but also a method of selecting variables.

In the SASGLMSELECT procedure, the lasso is implemented solely as amethod of selecting

variables, and this is why the only values of the parameter twhich are considered (though thevalue

of t is not stated) are thosewhich coincidewith the elimination of the coefficient of a variable. The

intermediate values are disregarded in order to produce the graph and the outputs.

Wemay feel that it is a pity to eliminate the coefficient of a predictor entirely and thus lose

the information that it might provide. We may also regret that the GLMSELECT procedure

cannot make the lasso parameter vary continuously, which would allow us to slightly allow for

the variable x5, and possibly to bring the RMSE closer to the value for ridge regression.

Where our present problem is concerned, the lasso method does not perform as well as

ridge regression and PLS regression on two components, which are still the best methods

because they combine a stability of coefficients with a reasonably low RMSE.

Here is a summary of the results:

We can see that the coefficients of PLS regression on three components are close to those

of regression on principal components 1, 2 and 4, and also that those of PLS regression on two

components are close to those of ridge regression (Figure 11.84).

x1 x2 x4 x5 RMSE

linear regression � 0.00392 � 0.05734 � 1.35614 0.28306 0.79065

ridge regression (k¼ 0.3) � 0.00328 � 0.04753 � 0.40556 0.05207 0.93015

lasso regression (on 3 variables) � 0.00336 � 0.04578 � 0.21864 0 0.96611

PCR on components 1, 2, 4 � 0.00155 � 0.07123 � 1.42056 0.26456 0.84074

PCR on components 1, 2, 3 � 0.00437 � 0.06130 � 0.09789 � 0.01593 0.97698

PLS regression on 2 components � 0.00453 � 0.07013 � 0.28190 0.04017 0.89246

PLS regression on 3 components � 0.00507 � 0.04142 � 1.14852 0.24373 0.84710

Figure 11.84 Comparison of linear, ridge, lasso, PCR and PLS regressions.
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As for ridge regression, we can express the lasso coefficients as a function of the principal

components, instead of the predictors. This leads us to Figure 11.86, which shows a behaviour

of the lasso which is intermediate between that of ridge regression and principal component

regression: the coefficients are not eliminated one after another as in PCR, but they are

decreased less progressively than in ridge regression.
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Figure 11.85 Comparison of coefficients in different regression methods.

Figure 11.86 Variation of the lasso coefficients of the principal components.
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In the lasso, it is the coefficients of some of the predictors, not those of the principal

components, that are eliminated. The effect of this selection is therefore less abrupt than in

PCR, because it has less effect on the coefficients of the other predictors than the elimination

of the coefficient of a principal component. However, we then lose all the information that was

contributed by the eliminated predictors.

Before leaving this topic, it is worth looking at the lars package mentioned previously,

which implements the lasso in R. The lars function is called by entering the predictors and the

dependent variable in matrix form, and specifying that we wish to calculate the lasso (other

variants, including LARS regression, are available).

> library(lars)

> X <- as.matrix(subset(caterpillars,select=c(x1,x2,x4,x5)))

> Y <- as.matrix(subset(caterpillars,select=log))

lasso= lars(X,Y,type="lasso")

We obtain the results given above.

> summary(lasso)

LARS/LASSO

Call: lars(x = X, y = Y, type = "lasso")

Df Rss Cp

0 1 49.596 48.338

1 2 44.022 41.422

2 3 40.752 38.191

3 4 27.067 18.299

4 5 17.503 5.000

> coef (lasso)

x1 x2 x4 x5

[1,] 0.000000000 0.000000000 0.0000000 0.0000000

[2,] -0.001142795 0.000000000 0.0000000 0.0000000

[3,] -0.001548896 -0.007174823 0.0000000 0.0000000

[4,] -0.003364430 -0.045782227 -0.2186428 0.0000000

[5,] -0.003923681 -0.057342697 -1.3561376 0.2830582

The example used in this section has enabled us to compare the different methods of

regularization, namely ridge, lasso, PLS and PCR. Depending on the choice of the regulari-

zation parameter, the regression coefficients that are selected may vary significantly. The

values of this parameter are continuous in ridge and lasso regression, but discrete in PLS and

PCR. The choice of this parameter is therefore more progressive for ridge and lasso

regression; it is made easier by the ‘ridge plot’ which plots the variation of the coefficients

as a function of the regularization parameter. The lasso is less progressive, because it

eliminates some of the coefficients, and consequently some of the predictors.

With PLS and PCR, the choice of the parameter, in other words the number of

components, is less simple and obvious, because the variation of the coefficients is discon-

tinuous (very much so in some cases) and their convergence may be slow. Sometimes,

convergence does not take place until the number of components is reduced to one. This

means a loss of information and a worsening of the RMSE which is a criterion of fit. In all
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cases, the RMSE in PLS regression is smaller than the value in principal component

regression, in accordance with the de Jong theorem.

An interesting discussion of these methods can be found in Section 3.6 of the book by

Hastie, Tibshirani and Friedman (2009), already mentioned in Section 11.3.3 above, which

cites a comparative study which finds that ridge regression has the advantage in minimizing

the prediction error.

11.7.12 Robust regression

Robust regression algorithms are intended to provide predictions which are less sensitive to

outliers and are valid when the residuals of the observations do not have a normal distribution.

They are also widely used in statistical software, such as SAS, R, S-PLUS and STATA. They

operate by replacing the least sums (or means, which is equivalent) of squares with one of the

following expressions (this is not an exhaustive list):

. the sum of the absolute values Si |yi � a � bxi|, a form of regression called L1, which

has been known since 1757 but has the drawback of not having a formula which yields

the coefficients and standard errors;

. the ‘least winsored squares’, with replacement of the values exceeding the extreme

percentiles Qx and Q100–x (for example, Q1 and Q99) with Qx and Q100–x themselves;

. the ‘least trimmedsquares’,witheliminationof thevaluesexceeding theextremecentiles;

. the median least squares;

. the weighted least squares (weighted by the inverse of the variance of the dependent

variable, to compensate for the heteroscedasticity, assuming for example pi ¼ s2=s2i in
the neighbourhood of a point xi);

. locally weighted least squares on neighbours (LOESS: LOcal regrESSion).

Let us take a closer look at LOESS regression (Cleveland, 1979),50 also called LOWESS

(LOcallyWEighted Smoothing Scatter). We choose a smoothing parameter, which represents

a certain percentage of the set of points. In the set of x (vector of predictors), a certain number

of neighbourhoods are determined by the value of the smoothing parameter. The smaller this

percentage, the more numerous the neighbourhoods will be. Note that these neighbourhoods

generally overlap, and, even in the case of a parameter equal to 1, there are several

neighbourhoods (three in our example below). But the smoothing parameter s determines

the number n of points to be taken into account in each local regression: n is the smallest

integer less than or equal to (total frequency� s). If there are 16 observations and s¼ 0.6, then

n¼ 9. In each neighbourhood, we weight each of the n points according to a decreasing

function of its distance from the centre of the neighbourhood. We then perform a linear (or if

necessary quadratic) regression in each neighbourhood, with allowance for the weightings.

This principle is similar to that of the moving means method.

50 Cleveland, W. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American

Statistical Association, 74(368), 829–836.
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In SAS, the regression is linear by default, but it is possible to request quadratic regression by

adding the option DEGREE¼2 to the MODEL instruction (see the syntax below). It is not a

global function that is determined, but a fit of polynomials of degree1or 2,which aremoreor less

numerous according to the value of the smoothing parameter (Figure 11.87). This modelling by

polynomial fitting is both the strength and theweakness of LOESS regression. Its strength lies in

its capacity to model complex situations. Its weakness is seen in the absence of a mathematical

function to describe the regression in analytical terms (and enable it to be programmed), in the

need for a rather large number of observations, and in the greater complexity of calculation,

which may be significant for large data volumes. LOESS regression is implemented in SAS, R

and S-PLUS. In SAS it is implemented by the special LOESS procedure:

PROC LOESS DATA = test;

MODEL Y = X / SMOOTH = .2 TO 1 BY .2 ;

ODS OUTPUT outputstatistics = testloess;

RUN;

PROC SORT DATA = testloess; BY SmoothingParameter X; RUN;

SYMBOL1 c=black v=dot;

SYMBOL2 c=black v=point i=join l=1;

PROC GPLOT DATA = testloess;

BY SmoothingParameter;

PLOT DepVar*X = 1 Pred*X = 2 / OVERLAY;

RUN;

QUIT;

The LOESS procedure can be used to test several values of the smoothing parameter at

once, and to record the results in a table specified by the command ODS OUTPUT

Smoothing Parameter=1yd
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20

x
2322212019181716151413121110987

Figure 11.87 LOESS regression: effect of the smoothing parameter.
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outputstatistics¼ . . . . This table contains one observation for each value of the triplet

(independent variable Y, dependent variable X, and smoothing parameter). This table contains

X, Y (renamed DepVar), the predicted value of Y (renamed Pred), and the smoothing parameter.

We can then display a number of dispersion diagrams equal to the number of distinct values of

the smoothing parameter. In each diagram, we can then use the GPLOT procedure to

superimpose (with the OVERLAY option) the pairs (X,Y) and the pairs (X,Ŷ), these being

linked by a curve (with the i¼join option). The resulting diagrams are shown in Figure 11.87,

which applies, by way of example, to the fourth (yd) of Tomassone et al. (see Section 11.7.6).
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Figure 11.87 LOESS regression (Continued).
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The LOESS procedure also offers an option for specifying a quality-of-fit criterion, such as

the AIC (Section 11.8.5), and for automatically obtaining the value of the smoothing parameter

which optimizes the criterion (by means of the option SELECT¼<criterion> in the MODEL

instruction). In fact, there are variants of these criteria for avoiding overfitting (if the smoothing

parameter is too small) which would result from the use of the conventional criteria. If two

values of the smoothing parameter are optimal, the largest value is chosen. In our example, with

the modified AIC, the optimal smoothing parameter is 0.78. Referring to the LOESS curves

described above, and to Figure 11.5, the choice of a value close to 0.78 appears entirely justified.
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Figure 11.87 LOESS regression (Continuation and Conclusion).
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11.7.13 The general linear model

The general linear model (GLM) deals with continuous dependent variables by incorporating

simple and multiple linear regression, analysis of variance (ANOVA) and analysis of

covariance (ANCOVA). The independent variables can not only be continuous (they are

called ‘covariates’) as in linear regression, but also qualitative (these are called ‘factors’, and

their categories are called ‘levels’) as in ANOVA, or both continuous and qualitative as in

ANCOVA. There may be several continuous dependent variables in the MANOVA and

MANCOVA variants. Several software can be used to model various ‘effects’. If continuous

dependent variables are denotedY,Y1 andY2, continuous covariables are denotedX1,X2,. . .,
and qualitative factors are denoted A, B. . ., we can model the effects of, for example:

. simple regression, by MODEL Y¼X;

. multiple regression, by MODEL Y¼X1 X2;

. polynomial regression, by MODEL Y¼X1 X1�X1;

. multivariate regression, by MODEL Y1 Y2¼X1 X2;

. ANOVA, by MODEL Y¼A;

. principal (or main effects), by MODEL Y¼A B C;

. interactions by MODEL Y¼A�B B�C A�B�C;

. nested, byMODELY¼AB(A), equivalent to Y¼AA�B, which means that B nested in

A appears not directly but cross-tabulated with A;

. MANOVA, by MODEL Y1 Y2¼A B;

. ANCOVA, by Y¼A X;

. crossing of a continuous variable and a qualitative variable, by MODEL Y¼X1�A,
equivalent to Y¼X1� 1A1 . . . X1� 1Ak, where 1Ai is the indicator of the ith category

of A.

General effects, defined by the user, can also bemodelled. Thus the documentation of the SAS

software cites the general example of the model Y¼X1�X2�A�B�C(D E).

The SAS GLM procedure, among others, allows the parameters to be set for all these

effects.

TheGLMcan handlemodels with fixed, random ormixed effects. It also handlesmodels with

repeated measures. Factors and covariables can have fixed effects. They are controlled by the

experimenter andall their valuesmust be taken into account. Since the aim is toquantify their effect

on the dependent variable, this analysis is similar to a regression analysis (predictive purpose).

Factors and covariables can also have random effects, only a sample of the values of these

being known. This is not a matter of quantifying their effect, but simply the proportion of the

variance of the dependent variable that they account for. This analysis is similar to a

correlation analysis (descriptive purpose). It is for example performed to compare the effect

of two packages of a product on the purchases of consumers in a number of stores, or to

compare two treatments given to patients in a number of hospitals. If the aim is not to predict

434 CLASSIFICATION AND PREDICTION METHODS



the result of a treatment as a function of the hospital, but simply to avoid the bias due to the

place where treatment is given, the ‘hospital’ variable is stated to be a random effect.

Mixed-effects models are mixtures of fixed and random effects models.

In the SAS software, the GLM and MIXED procedures take fixed, random and mixed

effects into account. Here is an example of the syntax:

PROC GLM DATA=example ;

CLASS department degree ;

MODEL salary = department degree ;

RANDOM department ;

LSMEANS degree ;

RUN ;

In this example, we wish to account for an employee’s salary on the basis of his degree (fixed

effect) while allowing for the department to which he belongs (random effect).

The syntax of the MIXED procedure is very similar to that of the GLM procedure, and

the estimates it provides are the same. However, the standard errors associated with these

estimates are larger in the MIXED procedure, which takes into account not only the variance

of the error (mean squared residuals) like the GLM procedure, but also the variance of

the random effect. The MIXED procedure is preferable for the analysis of random effects,

even if the calculations are more complex and lengthy for large data volumes. Other reasons

for preferring the MIXED procedure are indicated below, in the context of repeated measures

models. In both procedures, the LSMEANS instruction launches the calculation of the mean

least squares for each category of the fixed effect (or fixed effects if appropriate).

proc MIXED data=example ;

CLASS department degree ;

MODEL salary = degree ;

RANDOM department ;

LSMEANS degree ;

RUN ;

Themeasurements y1, y2, . . ., yk of the dependent variable Yon a number of individuals can

be correlated (longitudinal data) in the case of a single individual observed k times (for

example, before and after a medical treatment) or k individuals sharing a common character-

istic (same family, same segment). We therefore have to abandon the assumption of linear

regression that there is no correlation between the measures for a number of individuals. In

this case, we must use a repeated measures model. As wewill see, there is a model of this type

for logistic regression (Section 11.9.2), because Y can be continuous or discrete. A repeated

measures model can cope with both fixed and random effects simultaneously. A repeated

measures model can handle the following effects:

. ‘within-subject effects’, which can vary for a single individual, such as the effect of time

or treatment (comparison of a patient before and after treatment);

. ‘between-subject effects’, constant for the observations of a single individual, such as

the effect of the patient’s characteristics, age, sex, blood group, etc. (comparison of the

patient with others);

. ‘within-subject-by-between-subject effects’, such as the interactions between the

treatment and the patient’s characteristics.
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In the SAS software, GLM and MIXED are used to execute the above analyses, with the

following differences:

. the GLM procedure is based on least squares and the MIXED procedure is based on the

maximum likelihood;

. the GLM procedure does not handle observations with missing values;

. the MIXED procedure handles qualitative and continuous within-subject effects,

whereas GLM handles only qualitative within-subject effects;

. the MIXED procedure automatically determines within-subject-by-between-subject

effects, and automatically distinguishes within-subject effects from between-subject

effects, unlike GLM, in which they have to be distinguished explicitly;

. the MIXED procedure requires an explicit specification of the within-subject varian-

ce–covariance matrix, but offers a choice of different matrix forms.

In the example below, sex is a between-subject effect and age is a within-subject effect; a

measurement is made four times for each individual, at four different ages. GLM considers

age to be a qualitative variable, with four specified levels: 8, 10, 12 and 14 years. If

unspecified, they are considered to be 1, 2, 3 and 4.

PROC GLM DATA=glm_example ;

CLASS sex ;

MODEL y1-y4 = sex ;

REPEATED age 4 (8 10 12 14) ;

RUN ;

The equivalent syntax with the MIXED procedure is as follows:

PROC MIXED DATA= mixed_example ;

CLASS sex age individual ;

MODEL y = sex|age ;

REPEATED / TYPE=cs SUB=individual ;

RUN ;

We find that the between-subject and within-subject effects are not explicitly distinguished,

but that awithin-subject variance–covariancematrix has been specified (see Section 11.9.2 for

details of this). The variable ‘individual’ has been specified, because the input data set

structure is not the same for both procedures.

For GLM, the values of age are not specified, because they are given in the syntax of the

procedure:

individual sex y1 y2 y3 y4

1 F 100 115 130 145

2 M 110 130 150 170

. . .
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For the MIXED procedure:

individual sex y age

1 F 100 8

1 F 115 10

1 F 130 12

1 F 145 14

2 H 110 8

11.8 Classification by logistic regression

Although its roots lie in the early history of data analysis,51 logistic regression was introduced

into software more recently than linear discriminant analysis, possibly because of its greater

complexity of calculation, and has therefore only recently become a regularly used tool for

most statisticians. Because of its many qualities, logistic regression is now tending to take the

place of its rival in many classification problems, especially scoring. This development is

being aided by the continual improvement and generalization of logistic regression in the

context of the generalized linearmodel, which I will describe briefly. Daniel L.McFaddenwas

responsible for some of these enhancements, for which hewon the Nobel Prize for Economics

in 2000. Logistic regression is becoming universal, because it can handle dependent variables

with two values (without making such restrictive assumptions as those of discriminant

analysis), with k� 3 ordered values (which discriminant analysis cannot tackle), or with k� 3

nominal values, and the independent variables can be quantitative or qualitative.Moreover, its

results are highly explicit, especially in its logit version using the odds ratios which are very

popular in medicine and epidemiology. Finally, logistic regression is one of the most reliable

classification methods, and this reliability is easy to monitor using a number of statistical

indicators. Linear discriminant analysis continues to be very useful in the case of multinormal

and homoscedastic continuous independent variables, since it provides a direct solution,

whereas logistic regression only offers an approximation to this. However, the generality,

interpretability and robustness of logistic regression are three major strong points of this

fundamental technique. I might add that the logistic distribution and its S-shaped distribution

function are encountered inmany fields, including demographics, epidemiology (in relation to

the spread of an epidemic), psychology (progression of learning), technology (spread of a new

technology) and marketing (sales of a new product).

11.8.1 Principles of binary logistic regression

Binary logistic regression deals with one binary dependent (‘target’) variable Y¼ 0 or 1, and p

independent variables Xj which may be continuous, binary or qualitative (for which the

indicators lead to the case of a binary variable). In the following notation the p variables Xj are

grouped in a vectorX¼ (X1,X2, . . .,Xp). As wewill see below, qualitative dependent variables

51 In 1838, Pierre-François Verhulst wrote about a ‘logistic equation’, which he introduced to model the growth of

a human population while taking the available resources into account, following the ideas of Thomas Malthus. See

Verhulst, P.-F. (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance

Math�ematique et Physique, 10, 113–121.
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with k> 2 categories are treated with what is known as polytomous logistic regression, in

which the k categories can be ordered (ordinal logistic regression) or not (multinomial logistic

regression¼ nominal logistic regression). Here, if p¼ 1 the logistic regression is simple; if

p> 1, it is multiple.

In any regression problem, the aim is towrite the conditional expectation of the dependent

variable Y as a linear combination of regressors X. We consider the expectation because it is

only on average, as calculated for each p-tuplet of values of the p regressors, that the

dependent variable is linear with respect to the regressors: the dependent variable may

fluctuate about its mean. The aim of logistic regression is therefore the same as in all

regressions, namely to model the conditional expectation E(Y/X¼x). We wish to know the

mean of Y for any value of X. For a value Yequal to 0 or 1 (Bernoulli distribution), this mean is

the probability that Y¼ 1. Thus we have

EðY=X ¼ xÞ ¼ ProbðY ¼ 1=X ¼ xÞ:

In linear regression, we aim to draw a hyperplane through themiddle of the cloud of points

(x1, x2, . . ., xp, y), so that the set of the mean values of Y for all values of X is approximated by

this hyperplane, which has the equation

EðY=X ¼ xÞ ¼ b0 þ b1X1 þ b2X2 þ . . . þ bpXp:

Clearly, this approximation is not appropriate if Y¼ 0 or 1, since the term b0 þ b1X1 . . . þ
bpXp is then unbounded, whereas Prob(Y¼ 1/X¼ x) is bounded in the interval [0,1].
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Figure 11.88 Comparison of linear and logistic regression.
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In fact, in the favourable situation (in which we are interested) where X can discriminate

the values of Y, the behaviour of the cloud of points (x,y) is typically as shown in Figure 11.88

(where p¼ 1): when x is small, then y¼ 0 as a rule, and when x is large, y¼ 1 in most cases. To

simplify, this is a classic case of a multinormal homoscedastic variable x: x�N(0,1) over the

set of points such that y¼ 0, and x�N(1,1) over the set of points such that y¼ 1. We will

subsequently consider the extreme case of ‘complete separation’ where there is an x0 such that

y¼ 0 for every x� x0 and y¼ 1 for every x> x0: paradoxically, logistic regression cannot find

a solution to this apparently simple problem.

Let us return to the case of Figure 11.88: evidently, the values Prob(Y¼ 1/X¼ x) as x

varies follow the theoretical curve represented by the crosses ‘þ ’ in the diagram. It is an

S-shaped curve, not a straight line. More precisely, with the assumptions accepted here on

the distribution of x, the Bayes formula (see Section 11.6.4) shows that the curve of

the function x ! Prob(Y¼ 1/X¼ x) is given by fN(1,1)(x)/[fN(1,1)(x) þ fN(0,1)(x)], where fN

(m,s) is the density function of the distribution N(m,s). With the SAS software, this is found

by the syntax pdf(‘normal’,x,1,1)/(pdf(‘normal’,x,0,1) þ pdf(‘normal’,x,1,1)). Note that

S-shaped curves are common in medicine and biology, fields which saw the birth of

logistic regression.

In practice, if the points are highly dispersed, in other words if there are very few points for

a given value x of X, it will not be possible to calculate Prob(Y¼ 1/X¼ x) directly, and wewill

have to group the values of X in brackets to estimate the probability that Y¼ 1 given x by the

proportion of the Y¼ 1 given x. This is what is done in the classic example in Chapter 1 of the

well-known treatise by Hosmer and Lemeshow.52

Patient no. Age CHD

1 20 0

2 23 0

3 24 0

4 25 0

5 25 1

. . . . . . . . .

97 64 0

98 64 1

99 65 1

100 69 1

This example relates to coronary heart disease (CHD). Hosmer and Lemeshow studied 100

patients whose ages ranged from 20 to 69 years, and noted the occurrence (CHD¼ 1) or non-

occurrence (CHD¼ 0) of the disease in them.

Given the small number of cases, we cannot calculate p(x)¼ Prob(CHD¼ 1/age¼ x) and

we must create groupings by age classes:

52 Hosmer, D.W. and Lemeshow, S. (1989) Applied Logistic Regression. New York: JohnWiley& Sons, Inc.; 2nd

edn, 2000.
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Age class No. of

patients

CHD¼ 0 CHD¼ 1 Proportion of

CHD¼ 1

20–29 10 9 1 0.10

30–34 15 13 2 0.13

35–39 12 9 3 0.25

40–44 15 10 5 0.33

45–49 13 7 6 0.46

50–54 8 3 5 0.63

55–59 17 4 13 0.76

60–69 10 2 8 0.80

TOTAL 100 57 43 0.43

Note that this procedure of grouping in classes is very common in scoring. It enables us to

plot Figure 11.89: another S-curve! This shape of curve has already been encountered in

relation to neural networks: it is the sigmoid or logistic curve. Following the expression of this

curve, we can write p(x)¼ Prob(Y¼1/X¼x) in the form

pðxÞ ¼ e
b0 þ
P

j
bjxj

1þ e
b0 þ
P

j
bjxj

;

an equation equivalent to

log
pðxÞ

1� pðxÞ
� �

¼ b0 þ b1x1 þ . . . þ bpxp:

The function f(p)¼ log(p/(1–p)) is called the logit. It is a special case of the link functions

found in logistic regression and in the generalized linear models that I will discuss later. In this
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Figure 11.89 Proportion of CHD by age group.
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kind ofmodel, it is not the expectation p(x):¼E(Y/X¼x) that is written as a linear combination

of the independent variables, but f(p(x)), where f is the link function. In the most widespread

form of logistic regression, the logit of the conditional expectation is modelled as a linear

combination of the independent variables. This format is compatible with the Bayesian rule of

discriminant analysis and the calculation of the a posteriori probability based on this in the

case of a normal distribution of X/Y with equality of the variances and equality of the a priori

probabilities (see Section 11.6.4). But there are other S-curves as well.

11.8.2 Logit, probit and log-log logistic regressions

Although the logit variant of logistic regression appears to be the natural form, if only because

of its link with discriminant analysis (see Section 11.6.4), there are other variants, listed in

Table 11.1 together with their link and transfer functions (the inverse of the link).

The log-log (also called gombit with reference to Gompertz) has an S-curve which is not

symmetrical but very close to that of the logit when t is small and the probability is less than

0.1 (see Figure 11.90). It is widely used in epidemiology and toxicology, for example in the

calculation of the probability that a person will be infected as a function of his age, or that an

insect will be killed as a function of the dose of insecticide.

The log-log model is also found in survival analysis. Prentice and Gloeckler53 have shown

that if the survival data (collected for a set of individuals at discrete time intervals) follow the

Cox proportional hazards regression model (see Section A.2.14), then their likelihood is that

of a binary logistic model with a log-log link function, in which each individual i contributes

for ki terms which correspond to ki independent observations. In this case, the survival model

and the log-log logistic model are equivalent. We can carry out a logistic regression, treating

each time interval for each individual as an observation: for each observation, there is a binary

response indicatingwhether or not the individual has died (or, more generally, whether or not a

certain event has occurred) in this time interval.54

Because of its link with the normal distribution, the probit is sometimes called normit. It is

much less popular than the logit at present. Although its transfer function has an S-shaped plot

Table 11.1 Logistic regressions.

Model Link function Transfer function

Logit log (m/(1 – m))
et

1þ et

Probit (normit) Inverse function of the

distribution function of the

reduced centred normal

distribution

sðtÞ ¼ Ðt
�1

e� z2=2ffiffiffiffiffiffi
2p

p dz

Log-log

(complementary)

log [ – log(1 – m)] 1� e� et

53 Prentice, R.L. and Gloeckler, L.A. (1978). Regression analysis of grouped survival data with applications to

breast cancer data. Biometrics, 34, pp. 57–67.
54 For further details, see Nakache, J.-P. and Confais, J. (2003) Statistique Explicative Appliqu�ee. Paris: Technip.
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resembling that of the logit, the probit has fewer benefits that the logit, especially in the

interpretation of coefficients, as we shall see in due course. Moreover, if we compare the

curves, we will see that the probit curve falls faster towards probabilities close to 0, and rises

faster towards probabilities close to 1: the probit is therefore not recommended when

numerous cases have a high or low probability, in other words when the distribution is

long-tailed (as in a risk scorewith a high concentration of risk and a large population free from

risk). In reality, the logit corresponds to the behaviour of a larger number of physical and

chemical phenomena, which explains its popularity. In any case, the probit generally leads to

the same classification as the logit, because it supplies coefficients which are approximately

proportional to those of the logit:

coefficients ðlogitÞ � pffiffiffi
3

p coefficients ðprobitÞ:

Sowemay as well benefit from the flexibility and simplicity of calculation of the logit. It is

worth noting that, when the probabilities to be predicted are close to 0.5, a good estimate is

obtained by multiplying the probit coefficients not by 1.81 (the value shown above), but by

1.6, which is virtually the ratio of the probability densities in 0 of the standardized normal

distribution e� z2=2=
ffiffiffiffiffiffi
2p

p	 

and logistic distribution of parameter 1 ðez=ð1þ ezÞ2Þ.55 Why are

we introducing these probability densities? Because the two transfer functions can be

written as a distribution function. The probit transfer function is the distribution function of

the standardized normal distribution (see Table 11.1). The logit transfer function can be

written

et

1þ et
¼
ðt

�1

ez

ð1þ ezÞ2 dz:
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Figure 11.90 Comparison of S-curves.

55 Davidson, R. and McKinnon, J.G. (1993) Estimation and Inference in Econometrics. New York: Oxford

University Press.

442 CLASSIFICATION AND PREDICTION METHODS



Thus the logit transfer function takes the form of the distribution function of the logistic

distribution with parameter 1. You can see that the two transfer functions are similar. In fact,

the two distributions – normal and logistic – are themselves similar, with the same

symmetrical ‘bell curve’ shape; the logistic distribution is slightly more pointed than the

normal distribution, with a kurtosis of 4.2 instead of 3. The resemblance is more striking when

we consider the logistic distribution with parameter
ffiffiffiffiffiffiffiffiffiffi
3=p2

p
, which has a variance of 1 like the

reduced normal distribution, but is more pointed (Figure 11.91). The logistic distribution of

parameter 1 is more flattened than the reduced normal distribution, and consequently the logit

transfer function decreases more slowly than the probit function towards probabilities close to

0, and increases more slowly towards probabilities close to 1. However, it has a standard

deviation of p=
ffiffiffi
3

p
, which explains why the logit coefficients have this proportionality factor

with the probit coefficients (see above).

11.8.3 Odds ratios

The odds ratio of an independent variable measures the variation of the ratio of the

probabilities of the occurrence of the event Y¼ 1 against Y¼ 0 (like the ‘odds’ in gambling56)

when Xi changes from x to x þ 1. In this case, logit(p(x)) increases by the coefficient bi of Xi,

and the odds p(x)/[1 � p(x)] are multiplied by exp(bi). This is written

OR ¼ pðxþ 1Þ=½1� pðxþ 1Þ�
pðxÞ=½1� pðxÞ� ¼ ebi :

Watch out for a misleading (but sometimes deliberate) simplification: the odds ratio is

different from the relative risk p(x þ 1)/p(x), unless p(x) is small (as in the detection of a rare

phenomenon).

0

0.1

0.2

0.3

0.4

0.5

-5 -4
.2

-3
.4

-2
.6

-1
.8 -1 -0

.2 0.
6

1.
4

2.
2 3 3.

8
4.

6

P
ro

b
ab

ili
ty

 d
en

si
ty Standard normal

distribution
Logistic distribution
(parameter = 1)
Logistic distribution
(variance = 1)

Figure 11.91 Density functions of logistic and normal distributions.

56 If the probability of winning is 0.8, the odds are 0.8/0.2¼ 4, because there are four times as many chances of

winning as losing. If winning is certain, the odds are infinite.
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If Xi is binary 0/1, the odds ratio formula becomes

OR ¼ ProbðY ¼ 1=Xi ¼ 1Þ=ProbðY ¼ 0=Xi ¼ 1Þ
ProbðY ¼ 1=Xi ¼ 0Þ=ProbðY ¼ 0=Xi ¼ 0Þ ¼ ebi :

A binary variable X has only one odds ratio. If we are investigating the occurrence of a

disease (Y¼ 1 for an ill person), an odds ratio of 1.5 for the variable ‘sex’ (¼ 1 for a male

and 0 for a female) means that the ratio of ill to healthy persons is 1.5 times greater for men

than for women.

Continuing with the same example, but now considering the effect of age, an odds ratio

of 1.11 means that the ratio of the ill to the healthy is multiplied by 1.11 whenever the

age increases by a year. The ratio will be multiplied by 10 after 9 years. We can guess that it

is not always relevant to compare age 61 and 60, 60 and 59, etc., with the same odds ratio,

because the progress of morbidity is not necessarily the same over the whole of life. There

is also a risk of being derailed by a lack of robustness of the model, due to a lack of data

(see the CHD example above). The odds ratios of continuous variables therefore give rise to

two difficulties, namely the failure to take non-linearity into account and the lack of

robustness. When one of these problems threatens to arise, we can divide the continuous

variable into classes.

As for qualitative variables, these have a number of odds ratios equal to the number of

categories minus one, because one of the categories is used as a reference and its coefficient is

generally set to 0 (this is themost common and convenient arrangement, but this coefficient can

also be the opposite of the sum of all the other coefficients). Imagine that we are comparing the

probability p(x) of occurrence of the disease in cities, towns and the countryside. If we choose
‘countryside’ as the reference category, we might obtain the results shown in Table 11.2. This

table shows that, when we move from the reference category ‘countryside’ to the ‘town’

category, the proportionp(x)/[1–p(x)] of ill personswith respect to healthy persons ismultiplied

by the exponential 0.573 of the difference of the coefficients B associated with the ‘town’

category (B¼ � 0.557) and with the reference category (B¼ 0). In other words, the proportion

of ill persons is almost twice as small in a town as it is in the countryside.

In general terms, an odds ratio less than 1 (a B coefficient less than 0) indicates a negative

effect of the independent variable on the dependent variable, and an odds ratio of greater than

1 (a B coefficient greater than 0) indicates a positive effect.

Software packages often suggest the last category as the reference category by default, but

sometimes they offer the user a choice (see the example of SAS syntax below). In this case, we

Table 11.2 Example of odds ratios.

95% CI for

Exp(B)

B S.E. Wald DF Sig. Exp(B) Lower Upper

Country 36.671 2 0.000

Small town � 0.557 0.136 16.784 1 0.000 0.573 0.438 0.748

City 0.288 0.143 4.057 1 0.044 1.334 1.008 1.765

Constant � 1.256 0.236 28.363 1 0.000 0.285
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may choose the most frequent category for reference, but it may be preferable to choose a

reference category which is extreme with respect to the target (being weaker or more

hazardous, for example), to ensure that the B coefficients of the categories of the variable

all have the same sign. There may be a gain in readability, especially when the number of

categories exceeds three.

If all the independent variables are qualitative, the set of reference categories is

represented by the constant b0: a ‘mean’ individual whose categories are all reference

categories has a probability of p(x)¼ Prob(Y¼1/X¼x)¼ exp(b0)/[1 þ exp(b0)]. Clearly,

therefore, it will be useful to choose the most frequent category of all the variables for

reference: there is less risk of incompatibility of the various reference categories, and there

will be more chance of the existence of the ‘average’ individual.

11.8.4 Illustration of division into categories

To demonstrate the usefulness of dividing a continuous variable into classes in the construc-

tion of a predictive model, I have compared the performance of the models constructed where

the same four independent variables are:

. left in their initial continuous form;

. divided into classes and considered as ordinal variables;

. divided into classes and considered as nominal variables.

I have used the area under the ROC curve to compare the performances; I will show later that

this area is a good global performance indicator, and that the model becomes more precise as

the area approaches 1.

We can see (Figure 11.92) that the division into nominal categories gives the best

performance. This is because, instead of having a single odds ratio, which would assume that

the probabilities vary identically between 0 and 1, 1 and 2, 2 and 3, etc., there are asmany odds

ratios as there are categories, allowing us to take non-linear, and even non-monotonic,

responses into account. Division into ordinal categories means that we consider the number of

variables as a discrete variable 1, 2, and so on, with which a single odds ratio is associated.

Area Under the Curve

Asymptotic 95% Confidence 

Interval

Test Result Variable(s) Area Std. Errora Asymptotic Sig.b Lower Bound Upper Bound 

Ordinal variables ,834 ,008 ,000 ,818 ,850

Nominal variables ,836 ,008 ,000 ,820 ,852

Scale variables ,820 ,010 ,000 ,801 ,839

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 

Figure 11.92 Effect of the division of a continuous variable into classes.
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By comparison with division into nominal categories, we lose the modelling power of

multiple odds ratios, but we gain in robustness by comparison with the original continuous

variable, which explains the very acceptable performance of this model. However, we may

wonder whether the slightly better performance of nominal division as compared with ordinal

division justifies the complexity of the multiple odds ratios.

11.8.5 Estimating the parameters

The parameters to be estimated in a logit logistic model are the coefficients bi of the linear
combination expressing the logit of the probability Prob(Y¼1/X¼x). Logistic regression, and

more generally the generalized linear model, differs from the simple linear model in that the

parameters are estimated not by the least squares method, but by the maximum likelihood

method.57 We must examine this method more closely.

Invented by the leading statistician Sir Ronald Fisher, it involves estimating a parameter b
of the distribution of a random variable X in view of a certain number of independent

observations, by writing a likelihood function which is a function of b, of which themaximum

is to be found.

If the distribution is discrete, the likelihood function is written as follows, by definition:

Lðb; x1; x2; . . . ; xnÞ ¼ ProbbðX ¼ x1Þ � ProbbðX ¼ x2Þ � . . .� ProbbðX ¼ xnÞ:

If the distribution is continuous with a density fb, the likelihood function is written as

follows, by definition:

Lðb; x1; x2; . . . ; xnÞ ¼ fbðx1Þ � fbðx2Þ � . . .� fbðxnÞ:

The value of b which maximizes L(b,x1,x2, . . ., xn) is the value which maximizes the

probability of the observed results. The situation is the inverse of that in which the parameter

of the distribution of X is known and the probability of observing the results xi is calculated:

here, we have observed the xi and we look for the parameter that maximizes the probability of

observing them. L(b,x1,x2, . . ., xn) is a density function if we see it as a function of (x1,x2, . . .,
xn) and a likelihood function if we see it as a function of b. The observations must be

independent if we are to be able to write the likelihood in (x1,x2, . . ., xn) as the product of the
likelihoods of each observation xi. Note that this method can be generalized to the case of

truncated data, whose conditional likelihood is calculated by dividing the density function by

Prob(X > s), where s is the truncation threshold.

We can search for a maximum by searching for a value for which the first derivative is

cancelled and the second derivative is negative (assuming that these derivatives exist). Most

57 But it is also possible to estimate the coefficients by the maximum likelihoodmethod in linear regression. If the

residuals follow a uniform distribution, the maximum likelihood estimators are those which minimize the maximum

of the |ei|. If the residuals follow a normal distribution, the maximum likelihood estimators are those which minimize

the sum of squares of the ei. The estimators of the coefficients are then the same as those found by the least squares

method. This can seen if we know that the yi follow a normal distribution like the residuals, and that the mean of this

distribution is b0 þ xi1b1 þ xi2b2 þ . . . þ xipbp and its variance is s2, and write the density function of the yi.

However, the estimator of the variance of the residuals is not the same.

The log-likelihood of a linear model is � (n/2)log(ESS/n), where n is the number of observations. The AIC,

defined below for the logistic model, is therefore valid for the linear model: nlog(ESS/n) þ 2(p þ 1), where p is the

number of regressors in the model. The choice of model may be made in such a way as to minimize this quantity.
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frequently, we aim to maximize the logarithm of the likelihood, which is an equivalent

problem but simpler to solve, since the logarithm converts products into sums. This search

for a maximum is a problem of optimization which is handled by algorithms such as

Newton–Raphson.

The estimation of the maximum likelihood enables us to estimate the parameter l of a

Poisson distribution, the parameter a of an exponential distribution, the parameters m and s of

a normal distribution, etc. As a general rule, the maximum likelihood estimator may exist and

be unique, or may not be unique, or may not exist.

In a regression problem, the laws are not simple but conditional, and one of the following

functions must be maximized:

ProbbðY ¼ y1=X ¼ x1Þ � ProbbðY ¼ y2=X ¼ x2Þ � . . .� ProbbðY ¼ yn=X ¼ xnÞ

or

fbðy1=X ¼ x1Þ � fbðy2=X ¼ x2Þ � . . .� fbðyn=X ¼ xnÞ:

fb is a conditional density function.

In binary logistic regression, we observe the data [(x1,y1), (x2,y2), . . ., (xn,yn)] in which

every yi is 0 or 1, and xi is the vector of variables accounting for the ith observation. If yi¼ 1,

the probability of obtaining (xi,yi) will be, by definition, Prob(Y¼1/X¼xi)¼ p(xi), where p(xi)
is expressed using the same notation as in Section 11.8.1 but without, as yet, replacing p(xi)
with its value in the logistic model. If yi¼ 0, the probability of obtaining (xi,yi) will be

Prob(Y¼0/X¼xi)¼ 1–p(xi). We can combine these two cases by writing that the probability

of obtaining (xi,yi) is

pðxiÞyið1� pðxiÞÞ1� yi ;

for any value of yi. Now, in order to continue the calculation and apply the above formula, we

must introduce a fundamental assumption for logistic regression, namely that the observations

(xi,yi) are independent. This assumption can only be dispensed with in a generalization of

logistic regression introduced in Section 11.9.2, known as logistic regression with correlated

data. This assumption of independence enables us towrite the likelihood function as a product

of the probabilities:

P
n

i¼1
pðxiÞyið1� pðxiÞÞ1� yi :

If we now replace p(xi) with its expression in the logistic model, the likelihood function

appears as a function of the coefficient vectors (b0, b1, . . . , bp):

Yn
i¼1

e
b0 þ
P

j
bjx

i
j

1þ e
b0 þ
P

j
bjxij

 !yi

1� e
b0 þ
P

j
bjx

i
j

1þ e
b0 þ
P

j
bjxij

 !1� yi

:

It is this function L(b0, b1, ..., bp) of the coefficients bj that is to be maximized: we need to

find the coefficients such that L(b0, b1, ..., bp) is as close as possible to 1, as this will mean that
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themodel provides the best possible fit to the observed data. In fact, the likelihood cannot be 1,

and the model cannot perfectly fit to the observed data, except in a single case – when the

model contains as many coefficients as there are separate observations (xi,yi). Such a model

is said to be saturated. By way of analogy, a simple linear model is saturated when the cloud

of points is reduced to two points, and the straight line is a perfect fit to the cloud formed by

the two points.

The determination of the best logistic model is therefore based on a search for the

coefficients that maximize the likelihood. This is a problem which does not have an

analytical solution, that is to say a solution expressed directly from the initial data, like

the discriminant functions of discriminant analysis which are found by inverting the

covariance matrix. In this case, the optimal solution (b̂0; b̂1; :::; b̂p) will be found by an

iterative numerical method, the most widely used of which are the Newton–Raphson and

Fisher algorithms. This lack of an analytical solution may be the main drawback of logistic

regression, making it harder for a software developer to program, and requiring more

computing time than discriminant analysis, and may make it impossible to achieve a reliable

solution in some exceptional cases. The algorithm does not converge if the groups are

completely separated, whereas discriminant analysis is still effective in this case. Even in a

commonplace example such as that of Section 11.8.7, a single point can determine the

convergence of the algorithm.

(b̂0; b̂1; :::; b̂p) denotes the estimate of the coefficients by maximization of the likelihood,

leading to an estimate p̂ðxiÞof the conditional probability p̂ðxiÞ of having Y¼ 1 given that

x¼ xi. This is the value predicted by the logistic model. It is worth noting that

Xn
i¼1

yi ¼
Xn
i¼1

p̂ðxiÞ:

In other words, the sum of the observed values of Y is equal to the sum of the

predicted values.

As in linear regression, we never find the true coefficients bj (except for a saturated

model) and the estimators b̂j have a certain level of variance. An estimator will obviously

bemore reliable if its variance is lower, and the variablesXj forwhich this variance is lowwill

be preferred. More precisely, the Student test (see the Appendix, Section A.2.5) suggests

that we should specify an analogue of the squared Student’s t, which is called the Wald

statistic of a variable Xj, which is (b̂j/standard deviation (b̂j))
2. According to the null

hypothesis H0 that b̂j ¼ 0, the ratio (b̂j/standard deviation (b̂j))
2 follows a standard normal

distribution. The Wald statistic can be used to test the significance of the estimated

coefficient b̂j and the contribution of the variable Xj. This contribution is real only if the

Wald statistic is greater than 4, or more precisely if it is greater than 3.84 (¼ 1.962). In

fact, saying that (b̂j/standard deviation (b̂j))
2> 3.84 is equivalent to saying that

jb̂j/ standard deviation ðb̂jÞj >1:96 and is separated by more than 1.96 standard deviations

from the mean, because ðb̂j/standard deviation ðb̂jÞÞ follows a standard normal distribution.

This leads to a p-value of <5% associated with the null hypothesis H0, and

b̂j/standard deviation ðb̂jÞ is in the H0 rejection region at the 95% threshold. We therefore

deduce that b̂j is significantly different from 0. In this case, the confidence interval at 95% of

the odds ratio exp(b̂j) does not contain 1. This odds ratio must be significantly greater than 1

(positive effect of the variable) or significantly less than 1 (negative effect) for the estimator
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of the coefficient to be significantly different from zero. This is certainly the case in the

example given below for the variable AGE, whichmakes a real contribution to the prediction

of coronary heart disease in the Hosmer and Lemeshow example, because theWald indicator

is 21.254> 4 and the confidence interval of the odds ratio [1.066, 1.171] does not contain 1.

Care should be taken, because an odds ratio may be long way from 1 but may still have such a

wide confidence interval that it contains the value 1, meaning that the variable is not

particularly relevant. We will see that this happens when collinear variables are present,

and the absence of collinearity is an essential assumption that must be checked very carefully.

The Wald criterion can be used in stepwise regression.

11.8.6 Deviance and quality measurement in a model

Let n be the total number of individuals (or observations), k the number of degrees of freedom

of a given adjusted model (each quantitative variable counting for 1 and each qualitative

variablewithm categories counting form–1 in the calculation of k), L(bk) the likelihood of this
model, L(b0) the likelihood of the model reduced to the constant, and L(bmax) the likelihood of

the saturated model. L(bmax) is the maximum likelihood with which the likelihood L(bk) of
any model is compared. This leads to the concept of deviance:

DðbkÞ ¼ � 2½log LðbkÞ� log LðbmaxÞ� ¼ log½LðbmaxÞ=LðbkÞ�2:

This is similar to the residual sum of squares (RSS) in linear regression,58 and it is calculated

as a sum over the set of the n individuals. It is equal to the sum of squares of the residuals of the

individual deviances. In the common case of a dependent 0/1 variable, the likelihood of the

saturated model is 1, and therefore

DðbkÞ ¼ � 2 log ðlikelihood of the adjusted modelÞ;

Variables in the equation

95% CI for

Exp(B)

B S.E. Wald DF Sig. Exp(B) Lower Upper

AGE .111 .024 21.254 1 .000 1.117 1.066 1.171

Constant � 5.309 1.134 21.935 1 .000 .005

58 The deviance formula (11.4) applied to a linear regression, where y is the real value and p(x) is the conditional
expectation E(Y/X¼ x), shows that the deviance and the RSS are actually equal. In fact, since the likelihood is between

0 and 1, the value 1 corresponding to a perfect fit, we return to the scale of values of the sum of squares, ranging from 0

to þ 1 (infinity), the value 0 corresponding to a perfect fit, taking firstly the logarithm of likelihood (log(1)¼ 0), then

twice this logarithm, since the expression

2:log Lðb0; b1; . . . ; bpÞ ¼ log Lðb0;b1; . . . ;bpÞ2

leads to a square, finally changing the sign of the expression to produce a value of –2.log(likelihood) between 0

and þ 1.
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i.e., according to the likelihood formula described in the preceding section,

DðbkÞ ¼ � 2
Xn
i¼1

yj log ðpðxiÞÞþ ð1� yjÞ log ð1� pðxjÞÞ� 
: ð11:4Þ

This deviance can be seen in the SAS output shown in Figure 11.93, in the ‘intercept and

covariates’ column, where it is 4543.57 in the example.

The residual of the deviance of the ith observation is


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½yjlogðpðxiÞÞþ ð1� yjÞlogð1� pðxjÞÞ�

p
;

the sign of the expression being positive if the observed value yi is greater than the predicted

value p(xi), and negative otherwise. Note that, as in linear regression, it is useful to examine the

observations in which the residual of the deviance exceeds a certain threshold, around 2 in

absolute terms. To do this, as wewill see subsequently in our discussion of the syntax of logistic

regression, we can write the residual of the deviance of each individual in an output table.

The aim of logistic regression is to maximize the likelihood L(bk) of the adjusted model or

the log-likelihood log [L(bk)], which is equivalent to minimizing the deviance D(bk).
For a given set of variables with k degrees of freedom (number of quantitative variables or

categories of qualitative variables), we look for the coefficients which maximize the

likelihood L(bk), as indicated in the preceding section. When these k coefficients have been

found and if they are significantly different from 0 (those which are not significantly different

from 0 beeing removed), we need to know if we could improve the model by adding l degrees

of freedom. To do this, we calculate the difference between the deviances,

DðbkÞ�Dðbkþ lÞ ¼ � 2½logLðbkÞ� logLðbmaxÞ� þ 2½logLðbkþ lÞ� logLðbmaxÞ�
¼ � 2½logLðbkÞ� logLðbkþ lÞ�;

which is positive.We can thenmake use of a basic finding: on the hypothesisH0 of the nullity of

all the l new coefficients, the difference between the deviances follows a w2 distribution with l
degrees of freedom. Therefore we will not add the l new degrees of freedom (quantitative

Model Fit Statistics

Intercept and Covariates Intercept Only Criterion 

-2 log L 4543.570 6196.452 

Testing Global Null Hypothesis: BETA=0 

Pr > ChiSq DF Chi-Square Test 

Likelihood Ratio <.0001131652.8817

Score <.0001133497.7522

Wald <.0001131542.3349

Figure 11.93 The deviance criterion.
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variables or categories of qualitative variables) unless the difference between the deviances is

greater than the critical threshold of the w2with l degrees of freedom.Note that, even in this case,

some coefficientsmay be zero, so thatwegenerally prefer to add only onevariable at a time, thus

setting l ¼ 1 (quantitative variable) or l ¼ m� 1 (qualitative variable with m categories).

In particular, the null hypothesis that themodel fit the best to the data can be reformulated to

state that the p parameters of the model (including the constant) are all significantly different

from 0, and that the supplementary parameters pþ 1, pþ 2, . . . , n required to reach the number

of parameters of the saturatedmodel are all zero. Under this null hypothesis, the deviance of the

adjustedmodel follows a w2 distributionwith n– pdegrees of freedom.We should note that it is a

relative criterion and not an absolute criterion of goodness-of-fit which will be given by other

criteria we shall see later on (Hosmer-Lemeshow, AUC...)

The concept of likelihood is therefore essential for comparing a logistic regression model

with a sub-model, in other words for comparing two nested models. It is the most commonly

used concept and can be found in any stepwise regressionmethod, whether forward, backward

or mixed (see Section 3.13).

If we are uncertain about adding a quantitative variable to a model with k variables, a good

criterion for thedecision, before comparing the twomodelswith anROCcurve, is to compare the

valueD(bk) � D(bkþ 1)with the theoretical valueof thew
2with onedegreeof freedomat the5%

threshold: ifD(bk) � D(bkþ 1)> 3.84, we can add the variable. Similarly, a qualitative variable

with m categories should cause a decrease in deviance according to a w2 distribution with m–1
degreesoffreedom.Whatweneed toknow, therefore, isnotwhether the likelihoodhas increased

when a variablewas added – because it always increases – but whether it has increased enough.

As a special case of the above, the difference

Dðb0Þ�DðbkÞ ¼ � 2½logLðb0Þ� logLðbkÞ�
follows a w2 distribution with k degrees of freedom under the hypothesisH0 of the nullity of all

the coefficients b1, b2, . . ., bk. H0 is rejected if the difference D(b0) � D(bk) exceeds the
critical threshold of the w2 with k degrees of freedom. Thus, in Figure 11.93, we find that the

difference 6196.452 � 4543.570¼ 1652.882 is indeed greater than the critical threshold of

the w2 with 13 degrees of freedom.

As this difference increases, the model becomes better. In other words, we would like the

� 2 log [L(bk)] (equal to 4543.570 in this case) to be as small as possible.

This requirement is found in an equivalent form in two other well-established criteria:

. the Akaike information criterion (AIC), � 2 log [L(bk)] þ 2(k þ 1);

. the Bayesian information criterion (BIC), � 2 log [L(bk)] þ (k þ 1) log(n), often

called the Schwarz criterion.

The difference between these criteria is that BIC penalizes complex models more than AIC (if

n> exp(2)� 7.4). These two criteria enable us to compare two models, the better one being

that for which AIC and BIC are lower. In our example (Figure 11.94), we have

k ¼ 13; n ¼ 135 782;AIC ¼ 4543:570þ 28 ¼ 4571:570 and
BIC ¼ 4543:570þ 14:logð135 782Þ ¼ 4709:033:

When n is small, BICmay lead to the selection of an over-simple model, whereas AICwill

lead to a better compromise between precision and robustness (this is known as the

‘bias–variance’ dilemma). However, the BIC is preferable when n is large and we can show
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(see Section 19.4.1.3 of the book by Saporta, cited in Section 11.3.3 above) that the probability

that the BICwill choose the best model tends towards 1when n tends towards infinity, which is

false for the AIC. The concept of a ‘good’ model can be defined thus: when data have been

generatedusing amodel, the ‘good’model, out of all those tested, is theonewhichhas produced

the chosen data. In other words, the BIC identifies themodel which has the greatest probability

of having generated the observed data: the model which minimizes the BIC is the one that

maximizes theaposterioriprobability of themodel conditionally given the observeddata, thea

prioriprobabilitiesofall themodelsbeingconsideredequal (seeSection7.7of the2009bookby

Hastie et al., also cited in Section 11.3.3 above). It is this expression of the a posteriori

probability by means of the Bayes formula that gives the name ‘Bayesian’ to the BIC.

These two criteria are used to compare non-nested models for which it is not possible to

use the previous approach based on the difference D(bk) � D(bkþ l). We can also use these

criteria with nested models, in a stepwise variable selection process, representing the curve of

the AIC and BIC as a function of the number of selected variables. A minimum in these

curves, especially in the BIC curve if n is large, can indicate the correct number of variables to

retain. An example of the use of this method is given in Section 2.21.4 of my book Étude de

cas en statistique d�ecisionnelle.59

As demonstrated by some researchers, where the selection of variables is concerned, these

criteria, based on the concept of likelihood, appear preferable to the other common criterion

which is that of the Wald statistic (see the previous section), at least in two cases – when the

number of observations is small, or when certain coefficients bi are large. In the latter case,

Hauck and Donner,60 as well as Jennings61 (see Section 1.3 of the book by Hosmer and

Lemeshow cited in the References), have underlined the lack of power of theWald test, which

may thus fail to reject the hypothesisH0 of the nullity of the coefficient, even when the latter is

significantly different from zero.

If the Wald test is too conservative, this is because it has a weakness compared with the

likelihood tests: while these only apply to the estimation of the parameter itself according to

the maximum likelihood, theWald test also applies to an estimate of the standard deviation of

the estimator of the parameter.

It has a furtherweakness. It does not necessarily give the same result regardless ofwhether it

is applied to a variableV, to its logarithm log(V) or to another transformation ofV; this is because

there is no simple relation between the standard deviation of V and that of its transforms.

Model Fit Statistics

Intercept and Covariates Intercept Only Criterion 

AIC 4571.570 6198.452

SC 4709.033 6208.270

Figure 11.94 The AIC and BIC.

59 Tuff�ery, S. (2009) Étude de Cas en Statistique D�ecisionnelle. Paris: Technip.
60 Hauck, W.W. and Donner, A. (1977). ‘Wald’s Test as applied to hypotheses in logit analysis’, Journal of the

American Statistical Association, 72, 851–853.
61 Jennings, D.E. (1986). ‘Judging inference adequacy in logistic regression’, Journal of the American Statistical

Association, 81, 471–476.
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11.8.7 Complete separation in logistic regression

I have said that logistic regression does not converge when separation is complete. In the

second graph of Figure 11.95, a single point has changed its group and is sufficient to ensure

the absence of complete separation, owing to which the logistic regression will indeed

converge. The problem posed by complete separation will be understood if we remember that

the exponential of each coefficient b of the model is the ratio of the odds p(x)/(1 � p(x)) of the
corresponding variable. Now, separation means that p(x) is 1 for certain values of x, giving us
infinite odds p(x)/(1 � p(x)) and a coefficient b which should become infinite.

This problem of complete separation is less theoretical than it appears, and is not

uncommon in small populations or when a descending (‘backward’) stepwise regression

requires the manipulation of numerous variables in the first iterations. Suppose, for example,

that we wish to predict a variable Y based on an independent variable X which has three

categories a, b and c, their contingency table being as follows:

Y¼ 0 Y¼ 1 TOTAL

X¼ a 15 5 20

X¼ b 5 10 15

X¼ c 0 5 5

TOTAL 20 20 40

It seems easy to predict that Y¼ 0 if X¼ a, and Y¼ 1 otherwise. However, the logistic

regression does not converge in this case, because of the probability p(c)¼ 1!

A remedy for this kind of situation may be to regroup the categories of the independent

variable concerned.

With the SAS LOGISTIC procedure, we can also use the options CLPARM¼PL and

CLODDS¼PL. Used in cases of separation, where the Wald confidence intervals of the

coefficients and of their odds ratios are overwhelmingly large, these options enable us to
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Figure 11.95 Complete separation in logistic regression.
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obtain at least an upper or a lower bound for these intervals (CLPARM for the coefficients and

CLODDS for the odds ratios). If we cannot be certain of the value of a coefficient, we can at

least be sure of one of its bounds, which provides useful information in some cases. In the

above example, the estimated coefficients are not aberrant (Figure 11.96), because the chosen

reference category is a, and the coefficient of b is therefore positive and that of c is positive and

greater than that of b. This is entirely consistent with the proportions of values Y¼ 0 and Y¼ 1

(the modelled value of Y) observed for the values a, b and c of X, but the Wald confidence

interval of the coefficient of c is very large and, in particular, contains 0.

On the other hand, the CLPARM¼PL option provides the confidence interval estimates

shown in Figure 11.97, and, in particular, gives us a lower bound greater than 0 for the

coefficient of c.

I wish to thank Jean-Pierre Nakache for drawing my attention to this possibility.

11.8.8 Statistical tests in logistic regression

Without embarking on the description of the general tests on predictive models formed by the

confusion matrix, the ROC curve and the Gini index, which will be discussed later, we can list

the tests that are specific to logistic regression. The first four have already been presented:

. the w2 test on the Wald indicators, which must be greater than 3.84;

. the 95% confidence intervals of the odds ratios must not contain {1};

. the value of � 2 log L(bk) must be as small as possible, or a w2 test is carried out on

the modification of the � 2 log-likelihood when a coefficient bk is removed (null

hypothesis: bk¼ 0);

. the AIC and BIC must be as small as possible;

Wald confidence interval for parameters

Parameter Estimate 95% Confidence Limits 

Intercept -1.0986 -2.1107 -0.0865

X b 1.7918 0.3164 3.2672

X c 14.3015 -631.0 659.6

Figure 11.96 Confidence intervals in a case of complete separation.

Profile likelihood confidence interval for parameters 

Parameter Estimate 95% Confidence Limits

Intercept -1.0986 -2.2217 -0.1504

X b 1.7918 0.3732 3.3602

X c 14.3015 1.6679 .

Figure 11.97 Confidence intervals with the CLPARM¼PL option in a case of complete

separation.
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. the Cox–Snell R2 and Nagelkerke’s adjusted R2;

. the Hosmer–Lemeshow test on the comparison of the theoretical and the observed

proportions;

. the normalized deviance test and the normalized Pearson’s w2 test;

. concordance tests (related to the area under the ROC curve and the Gini index).

The Cox–Snell R2 is an equivalent of theR2 of linear regression, defined on the basis of the

likelihoods by

R2 ¼ 1� Lðb0Þ
LðbkÞ
� �2=n

;

which therefore may not exceed (for a saturated model)

R2
max ¼ 1� Lðb0Þ½ �2=n:

Nagelkerke’sR2 (‘max-rescaled R-square’) is the quotient R2=R2
max, which varies between

0 and 1.

R-Square 0.0121 Max-rescaled R-Square 0.2712

The equivalence of the Cox–Snell R2 with the R2¼ESS/TSS of linear regression is shown

as follows. It will be remembered (Section 11.8.5) that the log-likelihood log(L) of a linear

model is expressed as a function of the number n of observations and of the sum ESS of the

residual squares:

�ðn=2ÞlogðESS=nÞ:

For the model reduced to the constant,ESS¼ TSS, the total sum of squares. The result is found

by successive transformations:

R2 ¼ 1� L0

Lk

0
@

1
A

2=n

¼ 1� elogL0

elogLk

0
@

1
A

2=n

¼ 1� elogL0 � elogLk
� �2=n ¼ 1� e

� n
2log

TSS
n þ n

2log
ESS
n

 !2=n

¼ 1�
e

n
2

log
ESS

n
� log

TSS

n

0
@

1
A

 !2=n

¼ 1� e
log

ESS

TSS

0
@

1
A
¼ 1� ESS

TSS
¼ RSS

TSS
:

The Hosmer–Lemeshow test is an absolute criterion of goodness-of-fit carried out by

distributing the observations among g¼ 10 groups in increasing order of probability

(calculated according to the model), in other words in deciles of the a posteriori probability.

We calculate the w2 of the g� 2 table of the observed and expected frequencies for the
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modelled event (CHD ¼ 1 in this case), which is compared with the distribution of w2 with
g � 2 degrees of freedom. The loss of one degree of freedom, so that we have g � 2 instead of

g � 1, corresponds to the fact that the grouping into 10 groups is not specified in advance but

depends on the estimated parameters, which thus ‘consume’ one degree of freedom. The null

hypothesis to be tested is that the observed frequencies are the expected ones, these being

calculated by multiplying the calculated probabilities by the frequencies in each decile. If the

w2 is large (i.e. the associated probability is small), the null hypothesis must be rejected and we

must conclude that the model is not a good fit to the data. However, the model is a very good fit

to the data in the example of CHD (Figure 11.98). The Hosmer–Lemeshow test is intuitive and

easy to carry out and interpret. However, with small frequencies (a few tens or hundreds of

observations) this test lacks power, meaning that the null hypothesis may be false (the fit of the

model is poor) but not rejected (the calculated probability exceeds 0.05). In spite of all this,

when the observations are grouped this test limits the problems of sparse data mentioned

below, which can lead to poor estimation of the expected frequencies and a misleading

comparison with the observed frequencies. A second drawback of theHosmer–Lemeshow test

is its dependence on the way in which the observations are grouped, with the result that two

different software may yield rather different w2 probabilities and conclusions.

Before we discuss the next test, which is the normalized deviance and normalized Pearson

w2 test, we need to introduce a variant of the concept of deviance described above. Unlike that
deviance, which is calculated as a sum over the set of individuals, the variant which we will

now be talking about is the deviance D0 which is calculated as a sum over the set of m

Contingency table for Hosmer and Lemeshow test 

CHD = 0 CHD = 1

Observed Expected Observed Expected Total

 1Step 1 10 .78719.2139 

10 1.34318.6579 2 

10 1.90528.0958 3 

11 2.96338.0378 4 

11 4.05346.9477 5 

10 4.67855.3225 6 

10 5.80054.2005 7 

13 9.264103.7363 8 

10 7.86682.1342 9 

5 4.3394.6611 10 

Hosmer-Lemeshow test 

Step Chi square DF Signif.
.999 8 .890 1 

Figure 11.98 The Hosmer–Lemeshow test.
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sub-populations defined by the independent variables, whose numberm is equal to the number

of possible cross-tabulations of all the categories of the independent variables. This number is

less than or equal to the size n of the population, and the presence of continuous variables

evidently tends to reduce the difference between n and m.

As before, the null hypothesis that the model fits the best to the data can be

reformulated to state that the p parameters of the model (including the constant) are

sufficient for the fit, and that the supplementary parameters p þ 1, p þ 2, . . ., m required

to reach the number of parameters of the saturated model are all zero. In simple terms, the

number m of parameters of the saturated model in this form of deviance is not equal to the

number of individuals, but is equal to the number of sub-populations. Under this null

hypothesis, the deviance D0 of the adjusted model follows a w2 distribution with m – p

degrees of freedom. The deviance D0 is smaller than the deviance D as m is smaller than n,

but the number of degrees of freedom also decreases. It is only when n¼m that the two

deviances D and D0 are equal.

When m is large, as is the case when continuous independent variables are present, the m

sub-populations have small frequencies. In this case, D0, which approaches D, ceases to be

useful as a measure of fit, and the deviance D is preferred.

When m is small, because the independent variables are all qualitative and do not have

too many categories, the deviance D’ is small with respect to D, and is more useful than

the deviance D because the frequency n then largely exceeds the real number of

parameters of the saturated model, of which m is a much more accurate measurement.

Under the null hypothesis that a model with p parameters fits the best to the data, I have

said that the deviance D0 of the adjusted model follows a w2 distribution with m – p

degrees of freedom. If the associated probability (significance) is greater than 0.05, the

null hypothesis cannot be rejected at the 95% confidence level, and we can accept the

hypothesis that the model fits the best to the data. Figure 11.99 shows an example of this.

This is an output of the SAS/STAT PROC LOGISTIC, in which the calculation of the

deviance D0 is launched by the options AGGREGATE and SCALE¼NONE (see Sec-

tion 11.9.6 for more details).

In this example, where m¼ 207 and p¼ 10, the normalized deviance, which by definition

is equal to the deviance D0 ¼ 182.451 divided by 197, the number of degrees of freedom, is

close to 1, indicating that there is no overdispersion (see Section 11.9.6). Any overdispersion

would have no effect on the value of the model parameters, but their variances would

be underestimated and the Wald statistics would be overestimated, meaning that the fit of the

model might be less good than it appeared. To be absolutely precise, we should say that the

normalized deviance as an estimate of overdispersion improves as the frequencies of each sub-

population decrease; in other words, it is better whenm is smaller. In our example, the value of

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 182.451 197 0.9261 0.764

Pearson 183.147 197 0.9297 0.752

Figure 11.99 Deviance and Pearson’s w2.
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m is not very small, but its closeness to the normalized Pearson w2 which is equal to 183.147 is
a good sign of the quality of the estimate provided by the normalized deviance.

Tests of concordance are not a feature of logistic regression, but SAS has implemented

them in its LOGISTIC procedure. This is how they are calculated (Figure 11.100).We assume

that the dependent variable Y takes the values 0 and 1, and n1 (or n2 respectively) denotes the

number of observations in which Y¼ 0 (or Y¼ 1), and n¼ n1 þ n2 is the total number of

observations. We are interested in the t¼ n1n2 pairs formed by an observation in which Y¼ 1

and an observation in which Y¼ 0. In this case, t¼ 135 318� 464¼ 62 787 552. Concordance

is present among these t pairs if the estimated probability that Y¼ 1 is greater when Y¼ 1 than

when Y¼ 0. We then use nc to denote the number of concordant pairs (81.4% of the pairs in

this case), nd to denote the number of discordant pairs, and t � nc � nd to denote the number

of tied pairs. We then calculate:

. Somers’ D¼ (nc � nd)/t;

. gamma¼ (nc � nd)/(nc þ nd);

. tau-a¼ 2 (nc � nd)/n(n � 1);

. c¼ (nc þ 0.5[t � nc � nd])/t.

The closer these indices are to 1, the better the model is. Note that the quantity c is simply the

area under the ROC curvewhich will be discussed later on (Section 11.16.5), and Somers’D is

simply the Gini index.

11.8.9 Effect of division into categories and choice
of the reference category

For a qualitative or discretized variable, we sometimes find that one or two categories have a

weak effect on the model, with a Wald index that is too low (less than 3.84) and a confidence

interval of the odds ratio containing {1}. They may be worth retaining if the other categories

are useful. Note that the constant is almost always retained in the model, and no tests of

significance are applied to it. However, if theWald indicator of the constant shows that it is not

significant, the constant can be excluded, in which case the probability of Y¼ 1 for an

individual having all the reference categories is 0.5.

Association of Predicted Probabilities and Observed 
Responses

Percent Concordant 81.4 Somers' D 0.765

Percent Discordant 4.9 Gamma 0.885

Percent Tied 13.6 Tau-a 0.005

Pairs 62787552 c 0.882

Figure 11.100 Tests of concordance.
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To resolve this problem, we could try to group the categories in question with other

categories whose coefficients have the same sign. Another solution which may be effective is

to change the reference category. This solution shows that a Wald criterion greater than 3.84

should not always be taken at face value when judging the quality of a model. In fact, it is

strictly identical regardless of the reference category. The benefit of changing the reference

category, and thus reducing the standard deviations of the coefficients, is that we have more

significant odds ratios which can be analysed more legitimately.

To illustrate this subtle point concerning the odds ratios of qualitative variables, we will

take the example of two odds ratios OR(A v. C) and OR(B v. C) which are significant, while

OR(A v. B)¼OR(A v. C)/OR(B v. C) is not significant. We consider a variable X with three

categories A, B and C, for which logistic regression using B as the reference variable gives a

result in which OR(A v. B) and OR(C v. B) are significant:

OR Lower

boundary of CI

Upper

boundary of CI

Wald

X A v. B 0.804 0.650 0.994 4.0644

X C v. B 0.698 0.544 0.894 8.0934

Now let us change the reference variable: we will choose C. As we can see below, OR(A v.

C)¼OR(A v. B)/OR(C v. B)¼ 0.804/0.698¼ 1.152.

OR Lower

boundary of CI

Upper

boundary of CI

Wald

X A v. C 1.152 0.915 1.452 1.4501

X B v. C 1.434 1.119 1.837 8.0935

However, OR(A v. C) is not significant, because its confidence interval contains 1. This

example shows that a Wald criterion greater than 3.84 is not always enough in itself to draw a

conclusion as to the correct division of a variable into a number of categories or the necessity

of redividing it.

11.8.10 Effect of collinearity

Wewill now consider the damage that can be done to the predictive power of a variable VAR1,

which is initially satisfactory, by the introduction of a variable VAR2 which is closely

correlated with it (Pearson’s correlation coefficient¼ 0.89):

B S.E. Wald DF Sig. Exp(B) 95% CI for

Exp(B)

Lower Upper

Step 1a VAR1 .064 .010 43.988 1 .000 1.066 1.046 1.087

Constant � 3.537 .160 486.531 1 .000 .029

aVariable(s) entered on step 1: VAR1.
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Variables in the Equation

B S.E. Wald DF Sig. Exp(B) 95% CI for

Exp(B)

Lower Upper

Step 2b VAR1 � .034 .017 3.851 1 .050 .967 .934 1.000

VAR2 .111 .018 39.372 1 .000 1.118 1.079 1.157

Constant � 4.138 .220 352.609 1 .000 .016

bVariable(s) entered at step 2: VAR2.

We find that the confidence interval of the odds ratio of VAR1 contains {1} after the

introduction of VAR2, and that VAR1 can no longer be considered as correctly predictive: its

Wald indicator has been divided by more than 11 and the uncertainty about its coefficient

increases accordingly. If the variable VAR2were evenmore closely correlatedwith VAR1, the

decrease in the Wald indicator would be even greater.

We even find that the sign of the coefficient of VAR1 is reversed. This entirely destroys the

readability of the variable, and therefore of themodel, becausewe no longer know if a variable

has a positive or negative effect. The result is not necessarily completely false, and we can try

to explain it by the effect of the interaction between the variables, but this is not what is usually

meant by readability.

Finally, experience shows that the gain in the performance of the model due to the addition

of such a variable VAR2 is limited, even in the training sample. And if we measure the

discriminant power of the model on a validation sample, especially if this is taken from

another parent population (from observations made at another date, for example), the

discriminant power may be greatly decreased by the addition of a closely correlated variable.

We must therefore carry out the tests of collinearity mentioned in Section 3.14, and we

must be aware that, unless we have extremely numerous and complex data (to which a

preliminary automatic clustering should be applied in any case), it is rarely justifiable to have

more than 10 variables in a model.

11.8.11 The effect of sampling on logit regression

Logistic regression with the logit link function involves finding p(x)¼ Prob(Y¼1/X¼x) in

the form

log
pðxÞ

1� pðxÞ
� �

¼ b0 þ b1x1 þ . . . þ bpxp;

with coefficients maximizing the likelihood. If we carry out a sampling E independent of X,

we can show that the probability pE(x)¼ Prob(Y¼1/X¼x, X2E) meets this condition:

log
pEðxÞ

1� pEðxÞ
� �

¼ b00 þ b1x1 þ . . . þ bpxp;

where b00 ¼ b0 þ a constant equal to log(p1,E/p0,E) � log(p1/p0), with
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. pi¼ proportion of cases Y¼ i in the total population (a priori probability);

. pi,E¼ proportion of cases Y¼ i in the sample E.

Therefore, if E is independent of X, the same score function can be used to decide if Y¼ 1 in

E and in the whole population, by changing the decision threshold only. In particular, if p1,E/

p0,E¼ p1/p0, then b00 ¼ b0 and the threshold is unchanged.

This means that a score calculated on a sub-population E can be applied to a sub-

populationE0 if the distribution of the independent variables is the same inE andE0, even if the
event to be predicted is rarer (or more frequent) in E0. This attractive property is very useful in
scoring, but beware: it is only valid for the logit model, not the probit model.

If the calculation of Prob(Y¼1/X¼x, X2E) is applied to the X2E0 and the same

acceptance threshold Prob(Y¼1/X¼x, X2E) > s0 is specified, there will be the same

percentage of acceptances in E0 (because the probability is expressed as a function of the

independent variables X which have the same distributions in E and E0), but the frequency of
the event will be lower in the acceptances of E0 (where the event is assumed to be rarer),

because their probability Prob(Y¼1/X¼x, X2E0) is less than Prob(Y¼1/X¼x, X2E) (inde-

pendence of E and X). This is the reason for replacing b0 with b00.
IfE is dependent onX, such that some categories of the independent variables, and not only

of the dependent variable, are under- or overrepresented in E, there is no such simple result.

11.8.12 The syntax of logistic regression in SAS Software

The LOGISTIC procedure can be used to apply a logistic regression to a binary dependent

variable, even if this is polytomous (see below). This dependent variable is named immedi-

ately after the instruction MODEL, before the ‘¼’ sign, the independent variables being listed

after the ‘¼’ sign. The qualitative variables must be cited on the CLASS line, the keyword

REF being used to indicate the reference category for each qualitative variable, including the

dependent variable (although it is simpler to indicate the category modelled by the keyword

EVENT¼‘x’ for the latter). Otherwise, the last category is taken as the reference by default,

but it is also possible to specify that the reference category is to be the first, by entering

REF¼FIRST after the ‘/’.

The instruction PARAM¼REF indicates that the coefficient of the reference category is 0,

so that the coefficient b of another category represents the effect of this category with respect

to that of the reference category, and the corresponding odds ratio is exp(b–bref)¼ exp(b). If
nothing is specified, or if PARAM¼EFFECT is specified, the coefficient of the reference

category will be the opposite of the sum of the coefficients of the other categories, in such a

way that the coefficient b of another category would represent the effect of this category with

respect to the mean effect of all the categories, and the odds ratio of this category with respect

to the reference category will not be exp(b), but exp(b–bref)¼ exp(b þ P
coefficients of all

the categories 6¼ reference). We can see that the default setting PARAM¼EFFECT makes it

difficult to interpret exp(b), and the setting PARAM¼REF is generally preferred. It may also

be preferable to use the PARAM¼GLM setting which causes the explicit display of the

reference category and its null coefficient. By contrast with PARAM¼REF, the setting

PARAM¼GLM does not allow us to force the reference category, but we can then use a SAS

format to place the category that we want to be the reference category in the final position by

alphabetical order.
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The different values of the PARAM coding do not modify the value of the odds ratios,

which are displayed by SAS thus:

VARQUALIi MOD1 vs VARQUALIi MODREF o1

VARQUALIi MOD2 vs VARQUALIi MODREF o2

. . .

What does change is the link between the odds ratios o1, o2, . . . and the logistic

regression coefficients. Consider the example of a dependent variable ‘occurrence of a

disease¼ yes’ and an independent variable which is the age group, with three categories,

from the lowest group T1 to the highest group T3. We find that the risk of falling ill increases

with age, such that, with PARAM¼EFFECT, the coefficients associated with the age groups

are � 0.1098 (T1), � 0.0120 (T2), the last category T3 being the reference category and

having the coefficient 0.1098 þ 0.0120¼ 0.1218. With PARAM¼REF, we have the coeffi-

cients � 0.2315 and � 0.1337, the coefficient of T3 being zero. The odds ratio of T1 with

respect to T3 is exp(� 0.2315)¼ 0.7933, but if it is calculated from the coefficients

determined by the coding EFFECT, it is exp(� 0.1098 � 0.1098 � 0.0120)¼ 0.7933. In

this case, the coefficient � 0.1098 of T1 is less negative than in the first case, because it

represents the (beneficial) effect of the group T1, not with respect to the worst case (T3), but

with respect to the medium case.

Let us return to the syntax of the LOGISTIC procedure. We specify the type of stepwise

selection62 (SELECTION), the level of significance for the selection of a variable (SLE), and

the maximum number of iterations (MAXITER). We can use the keywords RSQUARE and

LACKFIT to specify that we wish to calculate the R2 or perform the Hosmer–Lemeshow test.

For the specification of interactions between the variables, see Section 3.12. The CTABLE

option, described more fully in Section 11.16.6, produces a classification table, in other words

a set of confusion matrices presented in lines for a whole set of possible thresholds for the

score function deduced from the a posteriori probability. The threshold is the probability

level above which the event is considered to be predicted, and below which the non-event

is considered to be predicted. The PPROB option following CTABLE sets the interval of

the threshold.

I have not mentioned the LINK¼<function> option, because the LINK¼LOGIT link

function is implemented by default, but it is also possible to specify LINK¼PROBIT,

LINK¼CLOGLOG or LINK¼GLOGIT for the generalized logit used when the dependent

variable is nominal with k> 2 categories (see below).

The input data are found in the DATA table, and the command P¼proba writes a

variable called ‘proba’, containing the predicted probability for the dependent category of

the dependent variable, to the output data set OUT. The command RESDEV¼deviance

writes a variable ‘deviance’ containing the residual of the deviance of each observation.

Optionally, the points on the ROC curve can be stored in a data set specified by OUTROC,

and the points are stored for the various steps _STEP_ of the regression in the case of

stepwise regression. There is a better option: from SAS 9 onward, the model itself can be

stored, in a special SAS format, in the OUTMODEL data set. This data set can be used at

the input of a procedure in which the recorded model is simply applied to a new DATA data

set, using the SCORE command.

62 In this procedure, the Wald test is used for the stepwise selection.
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Here is the SAS syntax:

PROC LOGISTIC DATA=mytable.toscore OUTMODEL=my.model;

/* determination of the model */

CLASS varquali1 (REF=’A1’) varquali2 (REF=’A2’) . . . /
PARAM=ref;

MODEL target (EVENT=’1’) = varquali1 varquali2 . . . varquanti1
var_quanti2 . . .
/ SELECTION=forward SLE=.05 MAXITER=25 OUTROC=roc RSQUARE

LACKFIT CTABLE PPROB=(0 TO 1 BY 0.1);

OUTPUT OUT=mytable.scored P=proba RESDEV=deviance;

RUN;

SYMBOL1 i=join v=none c=blue;

/* tracing of the ROC curve */

PROC GPLOT DATA=roc;

WHERE _step_ in (1 7);

TITLE ’ROC curve’;

PLOT _sensit_*_1mspec_=1 / VAXIS=0 to 1 by .1 CFRAME=ligr;

RUN;

PROC LOGISTIC INMODEL=my.model;

/* application of the model */

SCORE DATA=othertable.toscore;

RUN;

11.8.13 An example of modelling by logistic regression

Let us return to the unfortunate example of the Titanic which has already served to illustrate the

phenomena of interaction (in Section 3.12) and decision trees (in Section 11.4.2). We therefore

model the category ‘1’ (survival) of the dependent variable ‘survived’, which is specified in the

SASsyntaxby taking ‘0’ (drowned)as the referencecategoryof thedependent variable. In thisway

we obtain the basic model, with the three variables SEX, CLASS and AGE (see Section 3.12):

PROC LOGISTIC DATA=titanic;

MODEL survived (ref=’0’) = class age sex

/SELECTION=stepwise RSQUARE;

We find that the variables selected by the ‘stepwise’ process are, in sequence, SEX, CLASS

and then AGE. No variable is eliminated from the process.

Summary of the sequential selection

Step Effect DF Number

in

Chi 2 of

the score

Wald

chi 2

Pr>Chi 2

Entered Excluded

1 SEX 1 1 456.8742 <.0001

2 CLASS 1 2 41.9271 <.0001

3 AGE 1 3 17.0481 <.0001
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The adjusted R2 (‘Max-rescaled R-Square’) changes from 0.2502 to 0.2727 and then 0.2811.

The deviance � 2 log L changes from 2769.457 (model reduced to the constant) to 2334.988

(model with SEX), then 2291.456 (model with SEX andCLASS), and finally 2274.902 (model

with SEX, CLASS and AGE). The difference between two successive deviances is therefore

always greater than the threshold of 3.84 corresponding to w2 with 1 degree of freedom, even if

this difference between deviances decreases as the variables are entered.

Model fit statistics

Criterion Coordinate at the

origin only

Coordinate at the

origin and covariables

AIC 2771.457 2282.902

SC 2777.153 2305.689

� 2 log L 2769.457 2274.902

R-Square 0.2012 Max-rescaled R-Square 0.2811

Looking at the coefficients, we find that

. the coefficient of SEX is negative, because fewer males (SEX¼ 1) than females

(SEX¼ 0) survive the shipwreck;

. the coefficient of AGE is negative, because fewer adults (AGE¼ 1) than children

(AGE¼ 0) survive the shipwreck;

. the coefficient of CLASS is negative, because there is less survival in third class than in

second class, and less in second class than in first class.

Analysis of the estimates of maximum likelihood

Parameter DF Estimate Std. error Wald chi 2 Pr>Chi 2

Intercept 1 2.6096 0.2936 79.0083 <.0001

CLASS 1 � 0.3290 0.0465 50.0996 <.0001

AGE 1 � 1.0062 0.2456 16.7769 <.0001

SEX 1 � 2.6141 0.1333 384.6431 <.0001

Overall, these signs are consistent with the survival rates calculated by cross-tabulating each

independent variable with the dependent variable, using the FREQ procedure:

PROC FREQ DATA=titanic;

TABLES (class age sex)*survived;
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Table of CLASS by SURVIVED

CLASS SURVIVED

Frequency 0 1 Total

Percentage

Percent in row

Percent in col.

0 673 212 885

30.58 9.63 40.21

76.05 23.95

45.17 29.82

1 122 203 325

5.54 9.22 14.77

37.54 62.46

8.19 28.55

2 167 118 285

7.59 5.36 12.95

58.60 41.40

11.21 16.60

3 528 178 706

23.99 8.09 32.08

74.79 25.21

35.44 25.04

Total 1490 711 2201

67.70 32.30 100.00

Table of AGE by SURVIVED

AGE SURVIVED

Frequency 0 1 Total

Percentage

Percent in row

Percent in col.

0 52 57 109

2.36 2.59 4.95

47.71 52.29

3.49 8.02

1 1438 654 2092

65.33 29.71 95.05

68.74 31.26

96.51 91.98

Total 1490 711 2201

67.70 32.30 100.00
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Table of SEX by SURVIVED

SEX SURVIVED

Frequency 0 1 Total

Percentage

Percent in row

Percent in col.

0 126 344 470

5.72 15.63 21.35

26.81 73.19

8.46 48.38

1 1364 367 1731

61.97 16.67 78.65

78.80 21.20

91.54 51.62

Total 1490 711 2201

67.70 32.30 100.00

The model has just one fault: the risk of the crew (CLASS¼ 0) is not accounted for well,

because it is predicted by the model as being less than the risk of first class, whereas it is

actually at the risk level of third class. This is a case of a non-monotonic response as a function

of an input variable, which is ‘class’ in this example.

But theWald indicators of the variables are all greater than 4, although that of AGE, the last

variable entered into the model, is much lower than that of SEX, the first variable.

Theperformanceof themodel – its capacity to distinguish the survivors from thevictims – is

given by the indicator ‘c’ (this is the area under the ROC curve), which is equal to 0.742.

Association of the predicted probabilities and the observed responses

Percent Concordant 65.9 Somers0 D 0.483

Percent Discordant 17.5 Gamma 0.579

Percent Tied 16.6 Tau-a 0.212

Pairs 1059390 c 0.742

Therefore the model is satisfactory, but we may still ask if we should not allow for the risk to the

crew (CLASS¼ 0),which is higher than the level predicted by themodel, and ifwe should not also

allow for the interactions, such as the interaction between class and sexmentioned in Section 3.12.

The simplestway to examine thenature of thenon-monotonic risk as a functionofCLASS is to

consider the variable CLASS as qualitative (nominal) instead of quantitative (discrete). To do this,

we can simply add a row for CLASS (as chance would have it, the same name as the variable):

PROC LOGISTIC DATA=titanic;

CLASS class / PARAM = ref;

MODEL survived (ref=’0’) = class age sex

/SELECTION=stepwise RSQUARE;
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We find that the introduction of the variable CLASS into the model in nominal form causes an

increase in the adjusted R2 (from 0.2727 to 0.3042) and a decrease in the deviance (from

2291.456 to 2228.913), which ensures the better fit of the model. The complete model, with

the age, has an R2 of 0.3135 and a deviance of 2210.061, which are better than those of the

previous model.

Model fit statistics

Criterion Coordinate at the

origin only

Coordinate at the

origin and covariables

AIC 2771.457 2222.061

SC 2777.153 2256.241

� 2 Log L 2769.457 2210.061

R-Square 0.2244 Max-rescaled R-Square 0.3135

Type 3 analysis of effects

Effect DF Wald Chi 2 Pr > Chi 2

CLASS 3 108.2432 <.0001

AGE 1 18.9236 <.0001

SEX 1 297.0678 <.0001

The CLASS instruction, in other words the presence of qualitative variables, displays a table

showing the ‘type 3 analysis of effects’. This analysis is performed for each variable by

comparing the sub-model excluding the variable with the model including this variable and

the others, in order to test the null hypothesis that this variable has no effect in the model if the

other variables are included. This test can be based on the log-likelihood or on the Wald w2.
The type 3 analysis on the Wald w2 is calculated more rapidly than that on the log-likelihood,

but it is less reliable if the sample is small (see Section 11.8.6).

As shown by the ‘Analysis of the estimates’ table, for a binary variable, the Wald w2 of a
variable and the corresponding probability coincidewith those of the categorywhich is not the

reference category. In this case, testing the significance of the variable is equivalent to testing

the significance of the coefficient of the category which is not the reference category, the null

hypothesis then being that this coefficient is 0.

For qualitative variables which, like CLASS, have more than two categories, the sum of

the Wald w2 of the various categories is not necessarily equal to the Wald w2 of the variable; it
may be smaller or larger.
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Analysis of the estimates of maximum likelihood

Parameter DF Estimate Std. error Wald Chi 2 Pr>Chi 2

Intercept 1 1.3276 0.2480 28.6490 <.0001

CLASS 0 1 0.9201 0.1486 38.3441 <.0001

CLASS 1 1 1.7778 0.1716 107.3697 <.0001

CLASS 2 1 0.7597 0.1764 18.5558 <.0001

AGE 1 � 1.0615 0.2440 18.9236 <.0001

SEX 1 � 2.4201 0.1404 297.0678 <.0001

Let us look at the coefficients. For AGE and SEX, the comments are the same as previously.

As regards CLASS, we have three coefficients, corresponding to categories 0, 1 and 2 (the

default reference category is the last of these, which is third class). The coefficient of

category 2 is positive, and that of category 1 is even higher, corresponding to their higher

survival rates than those of third class passengers. However, the coefficient of category 0 is

inconsistent, because it is positive instead of being slightly negative, as it should be inview of

the slightly lower survival rate for the crew (23.95%) compared with third class (25.21%).

Moreover, the coefficient of category is greater than that of category 2, even though the

survival rate is higher in second class (41.40%). The coefficients of these two categoriesmust

be reconsidered.

Using the variable CLASS in the nominal form appears to be useful in terms of

performance, but at least one category of CLASS poses a problem which means that it

must be eliminated. How can we do this without returning to the initial discrete variable?

What we need to do is to create ‘indicator’ variables, as in the following syntax.

DATA titanic;

SET titanic;

class0 = (class = 0);

class1 = (class = 1);

class2 = (class = 2);

class3 = (class = 3);

RUN;

We then run the following syntax:

PROC LOGISTIC DATA=titanic;

MODEL survived (ref=’0’) = class0 class1 class2 class3 age sex /SELECTION=

stepwise RSQUARE;

This time, the variables enter the model in the following order: SEX, CLASS1, CLASS3 and

AGE. Age is still the least discriminating variable. The area under the ROC curve has

increased from 0.742 to 0.750.
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Association of the predicted probabilities and the observed responses

Percent Concordant 64.9 Somers0 D 0.500

Percent Discordant 14.8 Gamma 0.628

Percent Tied 20.3 Tau-a 0.219

Pairs 1059390 c 0.750

The coefficients all have Wald values greater than 4, and their signs are consistent: those of

SEX, AGE and CLASS3 are negative, and that of CLASS1 is positive, because the survival

rate is much higher in first class.

Analysis of the estimates of maximum likelihood

Parameter DF Estimate Std. error Wald Chi 2 Pr>Chi 2

Intercept 1 2.1448 0.2766 60.1435 <.0001

class1 1 0.9022 0.1498 36.2820 <.0001

class3 1 � 0.8634 0.1352 40.7638 <.0001

AGE 1 � 1.0315 0.2412 18.2893 <.0001

SEX 1 � 2.3813 0.1338 316.9023 <.0001

We have not yet considered the interactions between variables. We have seen in Section 3.12

that the survival rate decreasedwith the class number for females, whereas the survival rate for

males was slightly higher in third class than in second class. It was also pointed out that the

testing of all possible interactions by the LOGISTIC procedure is carried out by writing the

following syntax, with the vertical bars ‘|’.

PROC LOGISTIC DATA=titanic;

MODEL survived (ref=’0’) = class | age | sex

/SELECTION=stepwise RSQUARE;

With this syntax, we obtain the model described in Section 3.12, which has the advantage of

allowing for the interaction CLASS�SEX by assigning a positive coefficient to it, correspond-

ing to the slightly higher survival rate for males in third class. However, this model has the

drawback of not allowing for the special feature of class 0 (the crew) and the resulting non-

monotonic form for the survival rate as a function of the class number.

We must therefore run the following syntax:

PROC LOGISTIC DATA=titanic;

MODEL survived (ref=’0’) = class0 | class1 | class2 | class3 | age | sex

/SELECTION=stepwise RSQUARE;
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The variables are included in the model as follows:

Summary of the sequential selection

Effect

Step Entered Excluded DF Number

in

Chi 2 of the

score

Wald

Chi 2

Pr>Chi 2

1 SEX 1 1 456.8742 <.0001

2 class1 1 2 73.9363 <.0001

3 class3 1 3 34.0874 <.0001

4 class3�SEX 1 4 53.5742 <.0001

5 AGE 1 5 18.8664 <.0001

6 class3�AGE 1 6 25.1637 <.0001

7 class3�AGE 1 5 0.0048 0.9449

The specific interaction between third class and the male sex appears very precisely in the

form of the variable CLASS3�SEX. The coefficients of the model are as follows:

Analysis of the estimates of maximum likelihood

Parameter DF Estimate Std. error Wald Chi 2 Pr>Chi 2

Intercept 1 3.1208 0.3278 90.6106 <.0001

class1 1 0.7760 0.1632 22.6144 <.0001

class3 1 � 2.4654 0.2834 75.6842 <.0001

AGE 1 � 0.9709 0.2278 18.1663 <.0001

SEX 1 � 3.5167 0.2453 205.5231 <.0001

class3�SEX 1 2.1465 0.3088 48.3280 <.0001

We can see that the positive sign of the CLASS3�SEX interaction is compensated, to avoid

giving an excessively high survival rate to males in third class, by coefficients which are more

negative than previously for CLASS3 (� 2.4654 instead of � 0.8634) and SEX (� 3.5167

instead of � 2.3813).

Association of the predicted probabilities and the observed responses

Percent Concordant 65.0 Somers0 D 0.503

Percent Discordant 14.7 Gamma 0.631

Percent Tied 20.3 Tau-a 0.220

Pairs 1059390 c 0.752

The area under the ROC curve has now increased to 0.752.

We have thus obtained a model without deficiencies which performs better than the

previous ones. However, we may wonder if it would not be appropriate to include interactions

in the model without including the variables which make up the interaction. It might be

possible to reveal some interactions which do not appear at present because the variables are
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not sufficiently discriminating when taken in isolation (main effect). To enable a variable to be

manifested in an interactionwithout itself appearing directly, which is not the default option of

the LOGISTIC procedure, we must use the ‘HIERARCHY¼ none’ option:

PROC LOGISTIC DATA=titanic;

MODEL survived (ref=’0’) = class0 | class1 | class2 | class3 | age | sex

/ HIERARCHY = none /SELECTION=stepwise RSQUARE;

The area under the ROC curve leaps from 0.752 to 0.768, but one of the Wald indicators is

close to 4 and another is not very high either, and the interaction of order 3 which is included

in the model does not simplify it and may give rise to the problem of an excessively low

frequency at the intersection of three conditions.

Association of the predicted probabilities and the observed responses

Percent Concordant 68.4 Somers0 D 0.537

Percent Discordant 14.8 Gamma 0.645

Percent Tied 16.8 Tau-a 0.235

Pairs 1059390 c 0.768

Analysis of the estimates of maximum likelihood

Parameter DF Estimate Std. error Wald Chi 2 Pr>Chi 2

Intercept 1 2.9375 0.2940 99.8583 <.0001

class1 1 0.5393 0.1747 9.5325 0.0020

class3 1 � 3.1011 0.3270 89.9148 <.0001

class2�AGE 1 � 1.1329 0.2541 19.8720 <.0001

class3�SEX 1 � 0.8268 0.3550 5.4233 0.0199

AGE�SEX 1 � 4.1915 0.2867 213.6821 <.0001

class3�AGE�SEX 1 3.5410 0.4513 61.5748 <.0001

We therefore rerun the preceding syntax with the addition of the symbol @2, which specifies

that only the interactions of order 2 or below are tested.

PROC LOGISTIC DATA=titanic;

MODEL survived (ref=’0’) = class0 | class1 | class2 | class3 | age | sex @2

/ HIERARCHY = none /SELECTION=stepwise RSQUARE;

This gives us an area under the ROC curve as great as that of the preceding model, Wald

indicators which are all greater than 16, and a simpler model without a third-order interaction.

Association of the predicted probabilities and the observed responses

Percent Concordant 68.4 Somers0 D 0.535

Percent Discordant 14.8 Gamma 0.644

Percent Tied 16.8 Tau-a 0.234

Pairs 1059390 c 0.768
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Analysis of the estimates of maximum likelihood

Parameter DF Estimate Std. error Wald Chi 2 Pr>Chi 2

Intercept 1 3.4837 0.3014 133.6350 <.0001

class0 1 � 0.6878 0.1685 16.6631 <.0001

class3 1 � 3.6473 0.3337 119.4584 <.0001

class2�AGE 1 � 1.7510 0.2681 42.6509 <.0001

SEX 1 � 2.8045 0.3987 49.4888 <.0001

class3�SEX 1 2.4913 0.3485 51.1143 <.0001

AGE�SEX 1 � 1.2523 0.2793 20.1003 <.0001

In addition to the CLASS3�SEX interaction which was found previously, a second interaction

appears: this isCLASS2�AGE,corresponding to the fact that it isonly foradults that thesurvival
rate decreases in second class,whereas for children the survival rate in second class is 100%(24

out of 24 children saved), as shown by the contingency table produced by the following syntax.

Table 1 of CLASS by SURVIVED

Test for AGE¼0

CLASS SURVIVED

Frequency 0 1 Total

Percentage
Percent in row

Percent in col.

0 0 0 0

0.00 0.00 0.00

. .

0.00 0.00

1 0 6 6

0.00 5.50 5.50

0.00 100.00

0.00 10.53

2 0 24 24

0.00 22.02 22.02

0.00 100.00

0.00 42.11

3 52 27 79

47.71 24.77 72.48

65.82 34.18

100.00 47.37

Total 52 57 109

47.71 52.29 100.00

PROC FREQ DATA=titanic;

TABLES age*class*survived;
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Table 2 of CLASS by SURVIVED

Test for AGE¼1

CLASS SURVIVED

Frequency

Percentage
Percent in row

Percent in col. 0 1 Total

0 673 212 885

32.17 10.13 42.30

76.05 23.95

46.80 32.42

1 122 197 319

5.83 9.42 15.25

38.24 61.76

8.48 30.12

2 167 94 261

7.98 4.49 12.48

63.98 36.02

11.61 14.37

3 476 151 627

22.75 7.22 29.97

75.92 24.08

33.10 23.09

Total 1438 654 2092

68.74 31.26 100.00

The adjusted R2¼ 0.3582 is markedly higher than before, and the deviance¼ 2117.451 is

markedly lower, showing that the model is even better adjusted. In reality, in a situation like

this, the statistician will check with experts in the field to ensure that the rule he has discovered

(the survival rate of children is the same in first and second class) is plausible and can be

explained, and can therefore be legitimately modelled. Without this precaution, there would

be a risk of overfitting by modelling a special case which is not a general rule.

Model fit statistics

Criterion Coordinate at the

origin only

Coordinate at the

origin and covariables

AIC 2771.457 2131.451

SC 2777.153 2171.327

� 2 log L 2769.457 2117.451

R-Square 0.2564 Max-rescaled R-Square 0.3582
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We therefore consider that we have obtained amodel which fits well enough to the data, with a

robustness attested by the Wald indicators, and a better performance, as measured by the area

under the ROC curve, than that of the other models tested. Strictly speaking, we should

measure the area under the ROC curve on the test sample, rather than on the training sample,

but if we were to do this the conclusion would still be the same in this case.

This is how we make this more rigorous measurement. A variable TARGET is created in

the data set analysed, this variable being equal to the variable SURVIVED for two thirds of the

randomly chosen observations, and being missing for the other third of observations. We then

model TARGET, instead of SURVIVED as before. Thus, the observations for which TARGET

is missing will not be included in the construction of the logistic model, but the LOGISTIC

procedure can calculate the a posteriori probability of these at the output of the model,

provided that the independent variables of the model are not missing (which is always the case

here). This probability is written to an output data set which also contains the entered

independent variable, namely SURVIVED, and the area under the ROC curve is calculated for

this third of the observations. Thus these observations form a true test sample, which has not

been used for the training of the model but can be used to test it.

The SAS syntax is as follows.

DATA titanic;

SET titanic;

IF ranuni(0) < 0.66 THEN target = survived;

RUN;

PROC LOGISTIC DATA=titanic;

MODEL target (ref=’0’) = class0 | class1 | class2 | class3 | age

| sex @2

/ HIERARCHY = none /SELECTION=stepwise RSQUARE;

OUTPUT OUT=model PREDICTED=proba ;

RUN;

%AUC(model,survived,proba);

Themacro%AUCwhich is used to calculate the area under the ROC curve, which is applied to

the Mann–Whitney test, is the one described in Section 11.16.5, with the addition of a single

WHERE condition to avoid selecting the training sample:

PROC NPAR1WAY WILCOXON DATA=table CORRECT=no;

WHERE target = .;

CLASS &target;

VAR &score;

RUN;

11.8.14 Logistic regression with R

The results of the preceding section can also be obtained using the R software, especially the

glm function of the stats package which is automatically loaded when R is started. We

start by changing the default directory, before reading the ‘titanic.txt’ file, which is done

very simply because it is a text file with separators and without a header for the name of

the variables.
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> setwd("C:/Documents and Settings/tuffery/My Documents/Data Mining/

Data sets/Data for logistic regression/Titanic")

> titanic <- read.table("titanic.txt", header = FALSE, sep = ";",

quote="\"",dec=",",,col.names=c("class","age","sex","survived"))

We ‘attach’ the data frame ‘titanic’, enabling us to state the names of the variables

subsequently without specifying the data frame to which they belong.

> attach(titanic)

Several contingency tables can be produced, but this cannot be donewith a single command as

it can in the FREQ procedure of SAS or SPSS.

> table (class,survived)

survived

class 0 1

0 673 212

1 122 203

2 167 118

3 528 178

> prop.table(table(class,survived),1)

survived

class 0 1

0 0.7604520 0.2395480

1 0.3753846 0.6246154

2 0.5859649 0.4140351

3 0.7478754 0.2521246

The logistic regression (logit) is simply calculated by the glm function, in which the link

function ‘logit’ is specified as a parameter. If not specified otherwise, all the predictors are

considered to be quantitative variables. The summary function retrieves the results of the SAS

LOGISTIC procedure, with the coefficients, the deviance, and the AIC. The glm function

additionally displays the quartiles of the residual of the deviance; we note here that this hardly

ever exceeds 2 in absolute terms, in line with what is required.

> logit <-

glm(survived�class+age+sex,data=titanic,family=binomial(link =

"logit"))

> summary(logit)

Call:

glm(formula = survived � class + age + sex, family =

binomial(link = "logit"),

data = titanic)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8989 -0.7879 -0.5877 0.7022 2.0615
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.60985 0.29360 8.889 < 2e-16 ***

class -0.32904 0.04648 -7.079 1.45e-12 ***

age -1.00627 0.24565 -4.096 4.20e-05 ***

sex -2.61420 0.13329 -19.613 < 2e-16 ***

— — —

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom

Residual deviance: 2274.9 on 2197 degrees of freedom

AIC: 2282.9

Number of Fisher Scoring iterations: 4

If we wish to consider the predictors as qualitative variables as before, we can use the factor

function, applied to all the rows and each of columns 1 to 4. The effect of this function can be

seen by requesting a ‘summary’ of the file before and after:

> summary(titanic)

class age sex survived

Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:0.0000

Median :1.000 Median :1.0000 Median :1.0000 Median :0.0000

Mean :1.369 Mean :0.9505 Mean :0.7865 Mean :0.3230

3rd Qu.:3.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :3.000 Max. :1.0000 Max. :1.0000 Max. :1.0000

> for (i in 1:4) titanic[,i] <- factor(titanic[,i])

> summary(titanic)

class age sex survived

0:885 0: 109 0: 470 0:1490

1:325 1:2092 1:1731 1: 711

2:285

3:706

The glm function can be restarted without having anything else to specify. However, we will

find that it does not choose the same reference category as SAS for the CLASS variable,

because it chooses category 0. We can change this reference category in order to facilitate a

comparison with the SAS results. This is done outside the glm function, either on the

definition of the factors, by the levels option, or as follows (note that we must specify the file,

in spite of the previous ‘attach’):

> titanic$class <- relevel(titanic$class,ref="3")

>

summary(glm(survived�class+age+sex,data=titanic,family=binomial

(link = "logit")))
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Call:

glm(formula = survived � class + age + sex, family =

binomial(link = "logit"),

data = titanic)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0812 -0.7149 -0.6656 0.6858 2.1278

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3276 0.2480 5.352 8.67e-08 ***

class0 0.9201 0.1486 6.192 5.93e-10 ***

class1 1.7778 0.1716 10.362 < 2e-16 ***

class2 0.7597 0.1764 4.308 1.65e-05 ***

age1 -1.0615 0.2440 -4.350 1.36e-05 ***

sex1 -2.4201 0.1404 -17.236 < 2e-16 ***

— — —

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom

Residual deviance: 2210.1 on 2195 degrees of freedom

AIC: 2222.1

Number of Fisher Scoring iterations: 4

This gives us the same coefficients as those estimated previously by the SAS LOGISTIC

procedure.

11.8.15 Advantages of logistic regression

1. It can handle discrete, qualitative or continuous independent variables.

2. It can handle an ordinal or nominal dependent variable.

3. The conditions for using logistic regression are less restrictive than those of linear

discriminant analysis (no assumption of multinormality or homoscedasticity of the

independent variables).

4. It provides models that are often very accurate.

5. It generally works well with small samples, perhaps even better than linear discrimi-

nant analysis (and therefore quadratic discriminant analysis) which requires the

estimation of a larger number of parameters (the means of each group and the intra-

class covariance matrix).

6. The models that are produced are concise and easily programmed by IT personnel.
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7. It can handle non-monotonic responses.

8. It can allow for interactions between independent variables.

9. It directly models a probability.

10. It supplies confidence intervals for the results.

11. Many statistical tests, such as tests of significance of coefficients, are available. They

are asymptotic and even exact.

12. It allows stepwise selection of variables.

13. It detects global phenomena (whereas decision trees only detect local phenomena).

14. It is implemented in numerous software.

11.8.16 Advantages of the logit model compared with probit

1. The coefficients of the logit are easily interpreted in terms of odds ratios.

2. Independent sampling of the independent variables only changes the constant of the

logit (see Section 11.8.11).

11.8.17 Disadvantages of logistic regression

1. The explanatory variables must be linearly independent (non-collinearity).

2. It is a numeric approximation, with the following consequences:

a. It is an iterative calculation which is much slower than the direct calculation of

linear discriminant analysis.

b. It is less precise than discriminant analysis when the assumption of normality of the

latter is true (there is an asymptotic rise in the error rate of 30–50% in logistic

regression, as shown by Efron).63

c. Logistic regression does not always converge towards an optimal solution. In

particular, it does not work if the groups are completely separated.

3. It does not handle the missing values of continuous variables (unless they are divided

into classes and the missing values are grouped in a special class).

4. It is sensitive to extreme values of continuous variables (unless they are divided

into classes).

63 Efron, B. (1975) The efficiency of logistic regression compared to discriminant analysis. Journal of the

American Statistical Association, 70, 892–898.
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11.9 Developments in logistic regression

11.9.1 Logistic regression on individuals with different weights

Our whole description of logistic regression up to this point has been concerned with

individual data, where each observation, in other words each line in the data set, relates

to a different individual or object. This situation is by far the most common, especially in

scoring. However, it is unavoidable when at least one of the independent variables is

continuous, because it is most unlikely that two individuals will have the same value for

this variable. On the other hand, if all the independent variables are qualitative, it is possible

and even logical to group the individuals. Suppose that we wish to model the type of leisure

pursuit (outdoor or otherwise) followed by an individual as a function of his/her sex, age group

(five values) and rural or urban place of residence. There are only 20 possible intersections of

all the categories of the independent variables, and we can very easily replace the initial data

set, containing one line per individual, showing the type of leisure, with a data set of 20 lines,

showing the combination of the independent variables (all different), the number of

individuals for each combination, and among these the number of individuals who have

outdoor leisure pursuits. Therefore, instead of modelling a 0/1 Bernoulli variable, we must

model a binomial variable and its proportion yi/ni (the number of ‘tails’ found, out of the total

number of ‘heads’ and ‘tails’). Conventionally, we say that yi is the number of events and ni is

the number of trials. In this case, yi is the number of individuals in group i having outdoor

leisure pursuits, and ni is the total number of individuals in this group. Note that, in contrast to

the correlated data model described in the next section, the individuals of a single group are

independent, even if they have features in common. This situation can be dealt with by the

SAS/STAT LOGISTIC procedure, and by the GENMOD procedure for which a command in

the following form is shown (a more detailed example of this procedure is given below):

MODEL y/n = var1 var2 . . . vark / DIST=bin LINK=logit

The PROBIT procedure of the IBM SPSS Regression module can also carry out this

calculation, with the probit or logit link function.

11.9.2 Logistic regression with correlated data

Here, the situation is more or less the converse of that described above: instead of having one

observation covering a number of individuals, each individual is represented by a number of

observations. This happens if the individual is subjected to several different processes or is

observed on several occasions over time. Such data are known as ‘longitudinal’. A similar

situation arises where a single group is represented by a number of individuals having features

in common. In this case, unlike the situation in the previous section, the individuals in a single

group are not independent (but may have their own individual characteristics); this may

be useful, for example, in the epidemiological study of a contagious disease which may be

transmitted between members of a single family.

The common feature of these different situations is that the observations to be modelled

are not all independent, and therefore they negate a fundamental assumption of the basic

models, used in the calculation of likelihood: the non-correlation of the observations.
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I will now discuss the modelling of correlated data in the context of logistic regression and

the generalized estimating equations (GEE) method of Liang and Zeger64 for the analysis of

repeated measurements, bearing in mind that this approach is generalized to the case of a

discrete non-binary dependent variable (following a Poisson distribution, for example), and that

there are also other approaches based onmixedmodels which take into account random effects

which are specific to each individual. A discussion of these methods, illustrated by a specific

application, can be found in an article by Gu�eguen, Zins and Nakache.65 Mixed models are

recommendedwhen there are a largenumberof observations per individual. In thesemodels,we

simultaneously model the mean and the variance of the dependent variable, and wemust define

the variance–covariance matrix, whereas in the method which I will now describe we simply

have to define a working correlation matrix, as you will shortly see.

For example, the observations can be presented as follows:

ID (family) Individual Target Seniority Housing Income Age Height Weight . . .

1 1 1 5 house 2500 35 175 65

1 2 0 5 house 2500 8 130 32

1 3 1 5 house 2500 6 110 28

2 1 0 10 apartment 2500 55 165 55

. . . . . . . . . . . . . . . . . . . . . . . . . . .

We can see that the same family (same ‘ID’) can be present several times, with some of the

data being identical each time (seniority, income, housing) and some being different (age,

height, weight). SAS/STAT can model this kind of situation as follows:

PROC GENMOD DATA=my.table;

CLASS id individual;

MODEL target = seniority housing income age height weight

/ DIST=bin TYPE3 WALD;

REPEATED SUBJECT=id

/ WITHINSUBJECT=individual TYPE=exch COVB CORRW;

OUTPUT OUT=my.model PRED=proba ;

RUN;

The command SUBJECT¼id defines the variable ‘id’ (this could be a set of variables) as
the identifier of the observations of a single group, in which the values of the dependent

variable are intercorrelated, whereas these values are independent for the observations of two

separate groups. As a general rule, an ‘id’ can correspond to one individual observed n times,

or n individuals belonging to the same segment, the same establishment, the same family, etc.

TYPE indicates the structure of the correlation matrixMjk¼ [corr(yij,yik)]jk, a matrix in which

yij is the value of the dependent variable for the jth observation on the ith individual.

64 Liang K.-Y. and Zeger S.L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73,

13–22.
65 Gu�eguen, A. Zins, M. and Nakache, J.P. (2000),Utilisation des mod�eles marginaux et des mod�eles mixtes dans

l’analyse de donn�ees longitudinales concernant mariage et consommation d’alcool des femmes de la cohorte Gazel.

Revue de Statistique Appliqu�ee, XLVIII(3), 57–73.
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The TYPE is chosen according to the matrix structure which appears likely in view of the

problem in question. Here, we have chosen the ‘exchangeable’ type, which assumes that corr

(yij,yik)¼ a if j 6¼ k. The possible types are:

. ‘exchangeable’: corr(yij,yik)¼ a if j 6¼ k, denoted EXCH or CS;

. ‘independent’: corr(yij,yik)¼ 0 if j 6¼ k, denoted IND, the default type in GENMOD;

. ‘m-dependent’: corr(yij,yi,jþ t)¼ 0 if t>m and at if t is between 1 andm, denotedMDEP

(m);

. ‘unstructured’: corr(yij,yik)¼ ajk if j 6¼ k, denoted UNSTR;

. ‘autoregressive’: corr(yij,yi,jþ t)¼ at if t¼ 0, 1, . . ., ni � j, denoted AR;

. ‘fixed’: user-defined in the form

TYPE¼USER ( 1.0 0.4 0.6 0.7

0.4 1.0 0.9 0.5

0.6 0.9 1.0 0.3

0.7 0.5 0.3 1.0)

Clearly, in all cases corr(yij,yik)¼ 1 if j¼ k.

The WITHINSUBJECT¼individual command defines the variable ‘individual’ as

identifying the different observations (the repeated measurements) of a single group. A

group must not have two observations with the same value of the variable defined by

WITHINSUBJECT¼individual. It is this variable that defines the repetition of a group

several times (it is often a ‘time’ variable in medical trials, where the progress of a disease is

followed with allowance for the patient’s characteristics and the treatment given). Two

points are worth noting about this variable: first, it is not necessarily one of the independent

variables; and second, its categories are not necessarily sorted in the data set, and are not

necessarily all present for all the individuals (one patient may miss a medical examination,

for example).

If all the categories are present and well sorted, the WITHINSUBJECT¼individual
command is superfluous for the use of the correlation matrix, because the variables yij will be

in the same order for all i. Otherwise, this command is necessary; for example, if the second

measurement were missing for an individual i, the third measurement would be treated as the

second, and yi3 would be treated as yi2.

If the categories are correctly sorted but not all present, we add the ‘sorted’ option to the

WITHINSUBJECT¼individual command to stop GENMOD sorting the observations again.

TheGENMODprocedure calculates logistic regression coefficients for the set of variables

to the right of the ‘model target¼’ command, regardless of whether or not they are identical

for all the observations having the same ‘id’ (in some repeated measures models, all the

independent variables are identical for a given ‘id’). We use the logit link function if the

distribution of the dependent variable is binomial (‘dist¼bin’), but there are also other

functions. You should be aware that GENMOD is much slower than LOGISTIC, and the

computation times can be very long for large data volumes.
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11.9.3 Ordinal logistic regression

Herewe assume that the variable Y to be predicted takesm ordered values, denoted 1, 2, . . .,m.
The simplest and most widely used model, implemented in IBM SPSS Regression and in the

SAS LOGISTIC procedure for example, is the equal (or parallel) slopes model: it is assumed

that the logit of the cumulative probabilities is written

logitðProbðY � r=X ¼ xÞÞ ¼ ar þ
X
i

bixi; for l � r < m;

where only the constant is dependent on r. The probabilities are written

ProbðY � r=X ¼ xÞ ¼ exp ar þ
P

ibixi
� �

1þ exp ar þ
P

ibixi
� � ; r ¼ 1; . . . ;m� 1:

We speak of a ‘proportional odds model’, because the odds ratios for a fixed r are all

proportional with respect to each other, the ratio being independent of r:

ProbðY � r=X ¼ xÞ=ProbðY > r=X ¼ xÞ
ProbðY � r=X ¼ x0Þ=ProbðY > r=X ¼ x0Þ ¼

exp ar þ
P

ibixi
� �

exp ar þ
P

ibix0i
� � ¼ exp

X
i

biðxi � x0iÞ
 !

:

This model is often preferred to more complex models, which quickly become too

complex when there is an increase in the number of independent variables or the number of

categories of the dependent variable. In common applications, the dependent variable may be

a degree of seriousness of an illness or a customer satisfaction level.

In ordinal logistic regression, we can use the following link functions:

. logit;

. probit, whose coefficients are less easy to interpret than those of the logit;

. log-log, given by log[–log(1–m)] and used when high values of the dependent variable

are more likely (e.g., marks of 3 to 5 out of 5 in a satisfaction survey);

. cauchit, given by tan[p(m–0.5)] and used when the extreme values of the dependent

variable are more likely (e.g., a mark of 5/5 in a satisfaction survey).

The cauchit link function is not very widely used; it is available in IBM SPSS Regression and

R, but not in SAS.

11.9.4 Multinomial logistic regression

Here, we assume that the variable Y to be predicted takes m non-ordered values. In this case,

the logit function Prob(Y¼ 1/X¼ x) can be replaced with the generalized logit

log
ProbðY ¼ j=X ¼ xÞ
ProbðY ¼ m=X ¼ xÞ
� �

;
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calculated with respect to a reference category (Y¼m), and it is this expression, defined for

1� j�m, that is written as a linear combination of the independent variables, whose

coefficients (bij)i vary for each j. The probabilities are written:

ProbðY ¼ j=X ¼ xÞ ¼ exp aj þ
P

kbjkxk
� �

1þ Pm� 1
i¼1 exp ai þ

P
kbikxk

� � ; j ¼ 1; . . . ;m� 1;

ProbðY ¼ m=X ¼ xÞ ¼ 1

1þ Pm� 1
i¼1 exp ai þ

P
kbikxk

� � :
Here, we cannot reasonably assume that the coefficients bjk are independent of j. Since

Version 8.2, SAS/STAT has incorporated this algorithm in its LOGISTIC procedure, but a

more general algorithm, providing other functions as well as the generalized logit, is available

in CATMOD.

It may be helpful to summarize the treatment of logistic regression in different SAS

procedures.

Logistic regression LOGISTIC GENMOD CATMOD

dichotomous yes yes yes (avoid quantitative

Xi)

ordinal polytomous equal slopes model,

with cumulative

logit

yes, with cumulative

logit,

cumulative probit or

cumulative log-log

yes, with adjacent,

cumulated or ‘mean’

logit

nominal polytomous yes, with generalized

logit

no yes, with generalized

logit or ‘identity’

repeated measures no yes (GEE method) yes (WLS method)

conditional model yes (since SAS 9) no no

overdispersion control yes yes no

stepwise selection of the

variables

yes no no

exact tests of the
parameters

yes no no

ROC curve yes no no

11.9.5 PLS logistic regression

PLS logistic regressionwas developed from 2000 onwards byMichel Tenenhaus (see his book

cited in Section 11.7.10 above). The algorithm for finding the components is similar to that

of ordinary PLS regression (see Section 11.7.10), but there is a method offering the same

performance which is easier to apply: this is logistic regression on PLS components. We start

with a PLS regression of the indicator of Y (or the indicators of Y, if Y has more than two

categories) on the independent variables Xi and, if necessary, on their interactions Xi
�Xj. We

obtain k PLS components (k¼ 1, if appropriate), and then perform a logistic regression of Y

on these PLS components.

PLS logistic regression is useful when we wish to retain numerous closely correlated

independent variables in an analysis, possibly with missing values, as may be the case in
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sensory analysis and satisfaction surveys. In more common situations, this method does not

necessarily provide any significant benefit compared with ordinary logistic regression.

11.9.6 The generalized linear model

The generalized linear model incorporates in a wide-ranging generalization the general linear

model (linear regression, analysis of variance and analysis of covariance), logistic regression,

Poisson regression, the log-linear model, and other models. It was developed by John Nelder

and R. W. M. Wedderburn (1972).66 This type of model is widely used in non-life insurance

for modelling the frequencies (Poisson distribution) and annual costs of losses (gamma and

lognormal distribution; see Figures 11.101 and 11.102). These models are available in

Statistica, R, S-PLUS, SAS and IBM SPSS Statistics. In SAS/STAT, we use the GENMOD

procedure, in which we use DIST to specify the distribution of Y/X¼ x and LINK to specify

the link function. For example, given that a variable Y has a lognormal distribution if log(Y)

has a normal distribution, we model log(y) as a function of the xi with the parameters

DIST¼ normal and LINK¼ id. For a conventional logistic regression, the parameters are

DIST¼ binomial and LINK¼ logit.

By contrast with the general linear model, the variable Y to be predicted is not necessarily

continuous. Its mathematical expectation is expressed in the form

gðEðY=X ¼ xÞ ¼ b0 þ
X
i

biXi;

where g is a differentiable monotonic link function. In this case, the general linear model is

doubly generalized, because g 6¼ 1. The variables Xi can be initial variables of the model,

interactions Xk¼Xi
�Xj or powers (Xi)

P introduced to allow for non-linear effects.
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Figure 11.101 Density of the lognormal distribution.

66 Nelder, J.A and Wedderburn, R.W (1972) Generalized linear models. Journal of the Royal Statistical Society,

Series A, 135(3), 370–384.
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The main models are as follows:

Distribution of Y/X¼x Problem Link function (examples)

Normal (continuous) Regression g(m)¼ m

Gamma (continuous

positive)

Regression on asymmetric

quantitative dependent

variable (e.g. service life of

equipment, cost, amount of a

loss)

g(m)¼ � 1/m (or in some

cases g(m)¼ log(m))

Lognormal (continuous

positive)

Regression on asymmetric

quantitative variable

(preceding examples,

number of words in a

sentence)

g(m)¼ m

Bernoulli (discrete:

yes/no)

Logistic regression logit g(m)¼ log(m/1–m),
probit, log-log g(m)¼
log(–log(1–m))

Poisson (discrete:

counting)

Modelling a rare phenomenon

(number of losses in motor

insurance) or frequency of a

contingency table (log-linear

model)

g(m)¼ log(m)

Multinomial (categories

not ordered)

Logistic regression on nominal

dependent variable

Generalized logit

Multinomial (ordered

categories)

Logistic regression on ordinal

dependent variable

Cumulative, adjacent logit

The estimation of the model is carried out by the maximum likelihood method as for logistic

regression. It is evaluated by calculating the deviances of the log-likelihoods and by the w2 test.
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Figure 11.102 Density of the gamma distribution.
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For example, in the case of lognormal regression, Z¼ log(Y) has a normal distribution

whose density can therefore be calculated at zi¼ log(yi). As the expectation in X¼ xi of this

distribution is written
P

jbjx
i
j, we replace the parameter m by

P
jbjx

i
j in the expression for the

density which can thus be written as a function of the vector b¼ (bj):

Lðb; x1; x2; . . . ; xn; z1; z2; . . . ; znÞ ¼
Yn
i¼1

1ffiffiffiffiffiffiffiffi
2ps

p exp �
zi � b0 �

P
jbjx

i
j

	 
2
2s2

0
B@

1
CA:

We therefore need to find the bj that maximize this function.

The model can also handle the concept of an offset variable, which is a variable V used to

calibrate a model if the dependent variable is linearly dependent on V. For example, the

number of losses in an insurance company must be calibrated by the offset variable ‘number

of policies’.

Finally, the model can allow for overdispersion. What does this mean? Sometimes, for

example if there are repeated observations, the variance of the dependent variable, assumed to

be of the binomial or Poisson type, which is theoretically fixed by the model (V(m)¼ n�m(1–m)
and V(m)¼ m, respectively), is multiplied by a scale factor. If this parameter is greater

than 1, overdispersion is considered to be present. It may also be less than 1, in which case

we speak of underdispersion, but this is less common. Overdispersion indicates a poor fit

of the model to the data. The dispersion parameter is currently estimated by one of

two quantities:

. the scaled deviance, in other words the deviance calculated over the set of the m sub-

populations defined by the independent variables (see Section 11.8.8) and divided by its

degrees of freedom;

. the scaled Pearson’s w2, in other words the Pearson’s w2 of the model divided by its

degrees of freedom.

The number of degrees of freedom common to these two statistics ism(k–1) – p,where k is

the number of categories of the dependent variable, p is the number of parameters (continuous

variables or categories of qualitative variables, without omitting the constant), and m is the

number of sub-populations defined by the independent variables.

Like the Hosmer–Lemeshow test, these two statistics compare the observed frequencies

with those predicted by the model, and therefore measure the quality of fit of the model to the

data. They are also both estimators of the same parameter, and should therefore have similar

values. If this is not the case, it is generally because the frequencies of the m sub-populations

are too small, which may well occur when there are many variables, especially when there are

continuous variables or variables having many categories. In this case we speak of sparse

data. In this common case, Pearson’s w2 approachesm(k-1), the deviance depends less and less
on the observed frequencies, and the two estimates of the dispersion parameter are false and

may even suggest underdispersion; in any case they no longer depend on the quality of fit of

the model. The data will certainly be sparse for Pearson’s w2 if a large number of sub-

populations have less than five observations each.

Conversely, when the sub-populations are large enough, these two statistics follow a w2

distribution with m(k–1) – p degrees of freedom, and it is possible to test the null hypothesis
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that the model fits the data perfectly. An associated probability less than 0.05 will indicate the

presence of a dispersion problem, as in Figure 11.103.

The SAS GENMOD and LOGISTIC procedures, together with NOMREG in IBM SPSS

Statistics, calculate the deviance and scaled w2, carry out the associated test and therefore

enable any overdispersion to be detected. GENMOD calculates them automatically when the

dependent variable is of the ‘events/trials’ type as in Section 11.9.1, while LOGISTIC

calculates them when the SCALE¼NONE (or SCALE¼N) option is selected. If the

dependent variable is a 0/1 Bernoulli variable, SAS has to be prompted to determine

the sub-populations defined by the independent variables, which is done by adding

the AGGREGATE option (and, for GENMOD, by adding the list of independent variables,

which is unnecessary for LOGISTIC). Also, when SCALE¼DEVIANCE or SCA-

LE¼PEARSON is selected, these procedures estimate the overdispersion parameter using

the specified statistic, and divide the Wald statistics by this parameter (see the note on

Figure 11.103).

Overdispersion may be harmful. It has no effect on the value of the model coefficients, but

their variances will be underestimated and the Wald statistics will be overestimated, meaning

that the fit of the model may be less good than it appears. We must therefore be cautious,

especially if the Wald statistics are not much above 4, because the criterion may not really be

satisfied even if it appears to be.

If overdispersion occurs, wemay need to exclude any outliers, find amore appropriate link

function, transform the independent variables or add an important independent variablewhich

may have been omitted from the model.

11.9.7 Poisson regression

Poisson regression is used to model rare events such as the number of losses in motor

insurance. In this section, I will describe a small example of motor insurance claims (taken

from the SAS help data sets), enabling us to compare the treatment of Poisson regression in

SAS and IBM SPSS Statistics. For the basic functionality, the estimated parameters are

identical, but there are differences in the interpretation aids (the type 1 and 3 analyses offered

by SAS). Some advanced functions are present only in SAS, such as repeated measures

modelling or using the SCALE option to allow for overdispersion.

In the data sets below, the first column is the number of insured persons, the second is

the number of losses, the third is the type of car (three levels) and the fourth is age (two levels).

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 826.3152 392 2.1079 <.0001

Pearson 1102.9418 392 2.8136 <.0001

Number of unique profiles: 402

Note: The covariance matrix has been multiplied by the heterogeneity factor (Deviance / DF) 2.10795.

Figure 11.103 Overdispersion and deviance and Pearson’s w2.
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n nbloss car age

500 42 small 1

1200 37 medium 1

100 1 large 1

400 101 small 2

500 73 medium 2

300 14 large 2

We assume that the number of losses (nbloss) follows a Poisson distribution and that its mean

m/(age, car) is linked by the link function ‘log’ to:

. a linear combination of the ‘age’ and ‘car’ variables, for which the coefficients are to be

found;

. and an offset variable (in this case, the Napierian logarithm of the number ‘n’ of

policies) having a constant coefficient equal to 1.

We therefore have log(m)¼ linear predictor (age, car) þ log(n). This is a Poisson regression.

In SAS, the Poisson regression is obtained as follows:

LN = LOG(N) ;

PROC GENMOD DATA=sasuser.insurance ;

CLASS car age;

MODEL nbloss = car age / DIST = POISSON

LINK = LOG

OFFSET = LN

TYPE1 TYPE3;

OUTPUT OUT=output

RESRAW = RES RESCHI = ZRE STDRESCHI = ADJ

RESDEV = DEV PRED = PRE;

RUN;

GENMOD can be used to specify any distribution and any link function, provided that they

can be defined by programming. The offset variable is not ‘n’ itself but its Napierian logarithm

LN created by the syntax LN¼LOG(n). The MODEL instruction enables us to allow for

various effects, which are the same as those of the GLM procedure (see Section 10.7.7).

A certain number of results can be written to the output data set specified by OUTPUT

(Figure 11.108); I have onlymentioned the ones handled by IBMSPSS Statistics, but there are

others such as the linear predictor XBETA for which the inverse of the link function (i.e. the

exponential in this case) gives the predicted value RESRAW, or the lower bound LOWER and

the upper bound UPPER of the confidence interval of the predicted value.

The ‘SCALE’ row always appears in the parameters of the model (Figure 11.104), even if

there is no overdispersion and even if the scale factor is fixed at 1, as it is here. Note that the

‘scaled deviance’ is 1.41 in this case, and is therefore not drastically increased (Figure 11.105).

However, if we wanted to avoid it and thus avoid over-optimistic standard deviations on the

estimates, we could add the command SCALE¼DEVIANCE on theMODEL line in the SAS

code. The effect of this would be to estimate the scale factor SCALE by the square root of the

scaled deviance (the square root is replaced by the inverse function in gamma regression).
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We can also replace the scaled deviance with the scaled Pearson’s w2, using the SCALE¼
PEARSON command. This method of controlling overdispersion is not provided in IBM

SPSS Statistics.

SAS also supplies the likelihood deviances (type 1 and type 3) which are often used for

testing the contributions of the factors. In type 1 analysis (Figure 11.106), each value in

the ‘deviance’ column is the deviance of the model containing the variable of the line and of

the preceding ones. For example, themodel containing the constant, the type of car and the age

has a deviance of 2.8207, while the model containing only the constant and the type of car has

Analysis Of Parameter Estimates

Standard Estimate DF  Parameter 
Error

Wald 95% 
Confidence Limits 

Chi-
Square

Pr > 
ChiSq

Intercept <.0001 212.73 -1.1398 -1.4937 0.0903 -1.3168 1  

car large <.0001 41.96 -1.2304 -2.2981 0.2724 -1.7643 1 

car medium <.0001  29.18 -0.4414 -0.9441 0.1282 -0.6928 1 

car small   0.0000 0.0000 0.0000 0.0000 0 

age <.0001 94.34 -1.0536 -1.5863 0.1359 -1.3199 1 1 

age   0.0000 0.0000 0.0000   0.0000 0 2 

Scale    1.0000 1.0000 1.0000 0  

Figure 11.104 Parameters of a Poisson regression using the SAS GENMOD procedure.

Criteria For Assessing Goodness Of Fit 

Value/DF Value DF Criterion 

Deviance 1.4103 2.8207 2 

Scaled Deviance 1.4103 2.8207 2 

Pearson Chi-Square 1.4208 2.8416 2 

Scaled Pearson X2 1.4208 2.8416 2 

Log Likelihood 837.4533 

Figure 11.105 Deviance and Pearson’s w2 with the SAS GENMOD procedure.

LR Statistics For Type 1 Analysis

Pr > ChiSq Chi-Square   DF  Deviance Source 

Intercept 175.1536

car <.0001 67.692107.4620

age <.0001104.6412.8207

Figure 11.106 Type 1 analysis with the SAS GENMOD procedure.
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a deviance of 107.462, showing the significance of the contribution of the age variable, since

the difference between the deviances, which is compared to the distribution of the w2, is
104.64. In type 1 analysis, the order in which the variables enter the model is taken into

consideration. If we want to disregard this order, we use type 3 analysis. The w2 shown in

Figure 11.107 is the difference between the deviances of the models with and without the

variable considered on the line. The difference between the deviances of the models with (1)

the constant, the car type and the age, and (2) the constant and the age, is therefore 72.82,

showing the contribution of this variable regardless of the order in which it appears.

Where IBM SPSS Statistics is concerned, the first thing to note is that qualitative factors

cannot be introduced in the GENLOG procedure, and they must therefore be recoded as

numeric variables. The log-linear approach also means that we must use the dependent

variable (nbloss) to weight the cells defined by the factors. This is done using the WEIGHT

command. Note also that the qualitative variable ‘car’ is replaced with the numeric variable

‘carnum’ (this transformation is obligatory, as mentioned above). Additionally, the offset

variable, which is specified by the /CSTRUCTURE command, is ‘n’, instead of being its

logarithm as it would be in the SAS software.

WEIGHT BY nbloss.

GENLOG

age carnum /CSTRUCTURE = n

/MODEL = POISSON

/PRINT = ESTIM

/PLOT = NONE

/CRITERIA = CIN(95) ITERATE(20) CONVERGE(.001) DELTA(.5)

/DESIGN age carnum

/SAVE = RESID ZRESID ADJRESID DEV PRED.

WEIGHT OFF.

LR Statistics For Type 3 Analysis

Pr > ChiSq Chi-Square DF Source 

car <.0001 72.82 2 

age <.0001 104.64 1 

Figure 11.107 Type 3 analysis with the SAS GENMOD procedure.

Obs n nbloss car age pre low up zre dev Res adj

1 1.685476.20110 1.00847 1.0364246.35127.649035.7991 small 42 500 

2 -1.62471-5.97456 -0.93383 -0.9113855.04333.552042.9751 medium 37 1200 

3 -0.21572-0.22654 -0.21139 -0.204552.1520.69921.2271 large 1 100 

4 -1.68547-6.20110 -0.60484 -0.59892127.95189.8159107.2012 small 101 400 

5 1.624715.97456 0.71931 0.7297783.01054.118767.0252 medium 73 500 

6 0.215720.22654 0.06088 0.0610422.8578.299713.7732 large 14 300 

Figure 11.108 A data set output by the SAS GENMOD procedure.
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There are fewer outputs (Figure 11.109) than in the SAS software, and the absence of type

1 and type 3 analyses is regrettable. Of course, the results RESID ZRESID ADJRESID DEV

PRED are identical to those supplied by SAS.

11.9.8 The generalized additive model

The generalized additive model of Hastie and Tibshirani (1990)67 is even more general than

the generalized linear model, because in this case we write:

gðEðY=X ¼ xÞÞ ¼ b0 þ
X
i

fiðxÞ;

still using a link function g, but replacing the product of the coefficients bi with a general

function fi (such as a spline function). The model is called additive because of the summation

on the i. This modelling is powerful, but, as with neural networks, we must be careful about

Goodness of fit tests a,b

Value df Sig.

Likelihood ratio .244 22.821

Pearson Chi-
Square

.242 22.842

a  Model: Poisson 
b  Design: Constant + age + carnum

Parameter Estimate b,c

95% confidence interval

Parameter Estimate Std. error Z Sig. Lower bound Upper bound

Constant -1.1398-1.4937 .000-14.5854.0903-1.317 

[age = 1] -1.0536-1.5863 .000-9.7128.1359-1.320 

[age = 2] 0a

[carnum = 1] -1.230-2.298 .000-6.478.272-1.764 

[carnum = 2] -.441-.944 .000-5.402.128-.693 

[carnum = 3] 0a

a This parameter is set to zero because it is redundant.
b Model: Poisson 
c Design: Constant + age + carnum

Figure 11.109 Output of the GENLOG procedure in IBM SPSS Statistics.

67 Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. New York: Chapman & Hall.
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overfitting and the interpretability of the results. It is fully implemented in the R software (the

mgcv package) and in the SAS GAM procedure.

11.10 Bayesian methods

Bayes’ theorem is one of the most important results in probability theory. It concerns the

inversion of probabilities and relates, for two events A and B, the conditional probability of A

given B to the conditional probability of B given A:

PðA=BÞ ¼ PðB=AÞPðAÞ
PðBÞ :

Now, if {A1, A2, . . ., An} is a complete system of events, in other words such that the

intersection of two events is always empty and the set of events is equal to the whole universe

of possible outcomes (we say that the system is a partition of O), then we can write

PðBÞ ¼
Xn
k¼1

PðB=AkÞPðAkÞ;

and, for every i,

PðAi=BÞ ¼ PðB=AiÞ PðAiÞPn
k¼1 PðB=AkÞPðAkÞ :

This form, called Bayes’ second formula, is very widely used. This fundamental theorem

is true for both discrete and continuous probability distributions. In the latter case, the sum is

replaced by an integral.

Bayes’ theorem is the foundation of Bayesian statistics. In this context, we are concerned

with a probability model characterizing the behaviour of observations X1, . . ., Xn, condition-

ally on a parameter y, and the a posteriori probability of the parameter conditionally on

(‘updated by’) the observations, P(y |X1, . . ., Xn), is expressed as being proportional to the

product of the a priori probabilityP(y) of the parameter and of the likelihood fx(y)¼P(X1, . . .,
Xn |y) of y for the observations.

11.10.1 The naive Bayesian classifier

As its name suggests, this is a classification method developed from Bayes’ theorem. It

has already been used in Section 11.6.4 as an inversion formula for calculating the probability

P(Gi/x) of an individual’s belonging to a group Gi conditionally on its characteristics x based

on the probability P(x/Gi) of having these characteristics conditionally on its belonging to Gi.

We also need to know the a priori probability of Gi. According to Bayes’ theorem,

PðGi=xÞ ¼ PðGiÞPðx=GiÞP
jPðGjÞPðx=GjÞ ;
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where the denominator is equal to the probability P(x). We can reformulate this property in

terms normally used for classification problems. The binary variable to be explained is Y, we

attempt to explain Y¼ 1, and the explanatory variables are X1, . . ., Xn. Thus we have:

PðY ¼ 1=X1; . . . ;XpÞ ¼ PðX1; . . . ;Xp=Y ¼ 1ÞPðY ¼ 1Þ
PðX1; . . . ;XpÞ

¼ PðX1; . . . ;Xp=Y ¼ 1ÞPðY ¼ 1Þ
PðX1; . . . ;Xp=Y ¼ 1ÞPðY ¼ 1ÞþPðX1; . . . ;Xp=Y ¼ 0ÞPðY ¼ 0Þ :

Assuming ‘naively’ that the variables are independent (conditionally on Y), we

can write

PðX1; . . . ;Xp=Y ¼ kÞ ¼
Yp
i¼1

PðXi=Y ¼ kÞ; k ¼ 0; 1;

which leads to the formula used by the naive Bayesian classifier:

PðY ¼ 1=X1; . . . ;XpÞ ¼ PðY ¼ 1ÞQp
i¼1 PðXi=Y ¼ 1Þ

PðY ¼ 1ÞQp
i¼1 PðXi=Y ¼ 1ÞþPðY ¼ 0ÞQp

i¼1 PðXi=Y ¼ 0Þ

The desired probability P (Y¼ 1/X1,. . ., Xp) is therefore calculated simply on the basis of

the estimates of the probabilities P (Xi/Y¼ 1) supplied by the cross-tabulations of the

independent variables Xi with the dependent variable Y.

To illustrate the operation of this classifier, let us take the example of credit scoringwhich

will be describedmore fully at the end of Chapter 12.We have a first variable X1 to account for

the risk of default, which is the mean balance in a current account. If an individual has the

category ‘CA< 0 euros’, the table below shows that

. Prob(AC< 0 euros | Credit¼Bad)¼ 45%,

. Prob(AC< 0 euros | Credit¼Good)¼ 19.86%.

The table also shows that

. Prob(Credit¼Bad)¼ 30%,

. Prob(Credit¼Good)¼ 70%.

This information can be used to calculate the probability of default for a recipient of credit,

given characteristics such as the mean balance in his current account.
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Table of Accounts by Credit

Accounts Credit

FREQUENCY

Percent

Row Pct

Col Pct Good Bad Total

CA< 0 euros 139 135 274

13.90 13.50 27.40

50.73 49.27

19.86 45.00

CA [0-200 euros[ 164 105 269

16.40 10.50 26.90

60.97 39.03

23.43 35.00

CA>¼ 200 euros 49 14 63

4.90 1.40 6.30

77.78 22.22

7.00 4.67

No checking account 348 46 394

34.80 4.60 39.40

88.32 11.68

49.71 15.33

Total 700 300 1000

70.00 30.00 100.00

The naive Bayesian classifier is fairly simple to program. Here is an example, in the form of an

SAS macro. The parameters are:

. table, the name of the data set used to calculate the naive Bayesian classifier;

. appli, the name of the data set to which the naive Bayesian classifier is applied (it is

possible to have appli¼ table);

. variablesX, the list of independent variables;

. variableY, the dependent variable (binary);

. ref, the (reference) category to be predicted of the dependent variable;

. nref, the other category of the dependent variable.

%MACRO Bayes (table, appli, variablesX, variableY, ref, nref ) ;

We start by retrieving in an SQL procedure the mean value of the indicator (&variableY¼
&ref), i.e. the proportion of individuals such that (&variableY¼&ref), in other words

P(Y¼ ref).
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PROC SQL NOPRINT ;

SELECT MEAN(&variableY = &ref)

INTO : probaEvent

FROM &table ;

QUIT ;

%PUT Proba(&variableY = &ref) = &probaEvent ;

To display the list of independent variables in the SAS LOG window:

%PUT Variables : &variablesX ;

We must then count the number of words in the parameter ‘&variablesX’, that is to say the

number of independent variables:

%LET nb_var = %EVAL(%SYSFUNC(COUNTC(%SYSFUNC(COMPBL

(&variablesX)),’ ’)) + 1);

The number of variables is displayed in the LOG window:

%PUT Number of independent variables = &nb_var ;

A ‘loop’ is then created to process all the independent variables entered as parameters.

On each iteration of the loop, we obtain P(Xi/Y¼ ref) and P(Xi/Y¼ nref) at the output of a

FREQ procedure.

%DO i = 1 %TO &nb var ;

We start processing the ith variable and the%SCAN function is used to extract the ‘&i’th word

of &variablesX.

%LET varX = %SCAN(&variablesX,&i);

PROC FREQ DATA = &table ;

TABLES &varX * &variableY / OUTPCT OUT=pct&i (KEEP = pct_col

&varX &variableY) ;

RUN ;

PROC SORT DATA = pct&i ; BY &varX ; RUN ;

PROC TRANSPOSE DATA = pct&i OUT=pctr&i (DROP = _name_ _ _label_)

PREFIX=pct ;

BY &varX ; ID &variableY ; VAR pct_col ;

RUN ;

%IF &i = 1 %THEN %DO ;

DATA temp_table ;

SET &appli ;

probaref = 1 ; probnref = 1 ;

RUN ;

PROC SORT DATA=temp_table OUT=temp_table ; BY &varX ; RUN ;
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%END ;

%ELSE %DO ;

PROC SORT DATA=bayes%EVAL(&i-1) OUT=temp_table

(DROP = pct&ref pct&nref) ; BY &varX ; RUN ;

%END ;

We calculate
Qi

i¼1 PðXj=Y ¼ 1Þ recursively fromQi� 1
j¼1 PðXj=Y ¼ 1Þ and from PðXi=Y ¼ 1Þ,

the first term being contained in ‘temp_table’ and the second in ‘pctr&i’:

DATA bayes&i ;

MERGE temp_table (IN=a) pctr&i (IN=b);

BY &varX ;

probaref = (pct&ref / 100) * probaref ;

probnref = (pct&nref / 100) * probnref ;

RUN ;

We reach the end of the loop for the set of independent variables:

%END ;

DATA predic_bayes (DROP = pct&ref pct&nref) ;

SET bayes%EVAL(&i-1) ;

probacas = SUM ( probaref * &probaEvent , probnref * (1 – &probaEvent)) ;

probayes = (probaref * &probaEvent) / probacas ;

RUN ;

And this is the end of the macro:

%MEND Bayes ;

This macro is called in the following way in the credit scoring case described in Chapter 12. I

have used the same independent variables as those chosen for the logistic model. Category 2

(or 1) of the Credit (dependent) variable is ‘Bad’ (or ‘Good’), meaning that the applicant for

credit has defaulted in the past.

%Bayes (train_score, valid_score, Accounts Credit_history

Credit_duration Age Savings Guarantees Other_credits

Status_residence,

Credit, 2 , 1 ) ;

The output of the macro is a data set ‘predic_bayes’, calculated from the data set &appli

(‘valid_score’ in this case), in which the variable ‘probayes’ is the calculated probability

P(Credit¼Bad/X1,. . ., Xp).

In thisexample, in termsof theareaunder theROCcurve(seeSection11.16.5), theprediction

quality of theBayesian classifier is close to that of logistic regression.However, the division into

deciles of the probability calculated by the logistic model shows a regular progression of the

default rate, decile by decile, which is less marked in the ‘probayes’ probability.

This suggests that the naive Bayesian classifier requires a rather larger volume of data than

other methods, without which some of the probabilities P (Xi/Credit¼Bad) may be very small

andnon-significant, thus distorting themodel. If only one of the probabilitiesP(Xi/Credit¼Bad)

is zero, the final probability will also be zero. The problem here is that this probability
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P(Credit¼Bad/X1,. . .,Xp) is calculated as a product of probabilities. Thismakes it less robust. It

should still be noted that, if one of the probabilities P(X/Credit¼Bad) is zero, the logistic

regression (in contrast to linear discriminant analysis) will not be able to estimate the final

probability either: this is the phenomenon of complete separation (Section 11.8.7).

To sum up, the naive Bayesian classifier can be useful, if only for providing a reference

base for the performance of other models. In spite of the ‘naivety’ of its assumptions, it can

sometimes perform surprisingly well.

11.10.2 Bayesian networks

The use of Bayes’ theorem in classification methods is not restricted to the naive Bayesian

classifier. The example below shows another application, relating to a score for consumer

credit approval used on the Internet, which is detailed in Chapter 12 of Na€ım et al., R�eseaux
Bay�esiens (2007).68

We construct a Bayesian network, in other words a directed acyclic graph, relating the

dependent variable to the (discrete) independent variables.69,70 Such a network represents the

dependences (and independences) between the variables, where an arrow between a variableA

and a variable B (we say that A is the parent of B) indicates that the conditional probability

P(B|A) is different fromP(B).B depends onA. A Bayesian network is also defined by the set of

conditional probabilities. It therefore consists of two elements: a qualitative element which is

the representation of the dependences, and a quantitative element, which is the measurement

of these dependences.

In the naive Bayesian classifier, we calculate the probabilitiesP(Xi|Y¼1), and the dependent

variable is the parent of each of the independent variables, but an independent variable is never

the parent of another. This can be seen in the Bayesian network, where all the independent

variables are at the same level and are never interconnected by a link. There is a more general

Bayesian network, called the tree augmented naive Bayes classifier,71 in which each indepen-

dent variable can have a parent other than the dependent variable. An arc between an

independent variable X1 and an independent variable X2 (conditionally on the dependent

variable Y) signifies that the conditional probabilityP(X2|X1,Y) is different from the conditional

probability P(X2|Y): it depends on X1. The effect of Yon X2 depends on the value of X1. In the

same way, the probability P(X2|X1,Z) is different from the product of (X1|Z) and P(X2|Z). An

independent variable can thus have age or bank balance as its parent. This situation is more

complex than that of the naive Bayesian classifier, but it is common andmay bemore effective.

The advantage of Bayesian networks is that they enable knowledge to be represented in

graphic form (the expression ‘white box’ is sometimes used, as opposed to the ‘black box’ of

the neural network); they are easy to use and modify; and they can be used for drawing

inferences, in other words calculating the conditional probability of a set of variables of the

network after the other variables have been observed. The dependences between variables can

68 Na€ım, P., Wuillemin, P.-H., Leray, P., Pourret, O. and Becker, A. (2007) R�eseaux Bay�esiens, 3rd edn. Éditions

Eyrolles.
69 Gu�eguen, A., Zins, M. and Nakache, J.-P. (1996) Utilisation des r�eseaux probabilistes en analyse discriminante

sur variables qualitatives. Revue de Statistique Appliqu�ee, 44(1), 55–75.
70 Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann, 1988.
71 Friedman, N., Geiger, D. and Goldszmidt, M. (1997) Bayesian network classifiers.Machine Learning, 29(2–3),

131–163.

BAYESIAN METHODS 497



even be used to draw inferences when certain variables cannot be observed. A deduction can

be made from incomplete data, as in the example shown below. The first users of Bayesian

networks in scoring problems were a group of researchers at Fair and Isaac.72 Other examples

can be found in Chapter 12 of the book by Thomas, Edelman and Crook,73 and in an article by

Baesens et al.74

In our example, a tree augmented naive Bayesian network is constructed by creating links

between the dependent variable and a certain number of independent variables. The network

enables us to calculate the conditional probabilities of the variables with respect to each other.

If no category is specified for any independent variable, the network supplies the a priori

probability of each category of the dependent variable, such as the probability of defaulting in

the case of a credit risk score. We can decide that credit should be approved (or refused) if the

conditional probability of the category ‘good payer’ of the dependent variable is above (or

below) a certain score threshold s2 (or s1).

When the first question has been put to the customer applying for credit, his response

determines the category of one of the independent variables and supplies the conditional

probabilities of the categories of the dependent variable. The first variable is usually age,

which is the parent of several other variables which it influences – family status, number of

children, income, etc. We then calculate, for each of the categories Xij of each of the

independent variables Xi not yet used, the conditional probability of the corresponding ‘good

payer’ category, in other words the probability calculated conditionally on the response Q1 to

the first question and to the category Xij. We also calculate the probability P(Xij | Q1) of Xij

conditionally on Q1 (in fact, we estimate these probabilities by calculating their proportions).

We are interested in the categories Xij such that P(‘good payer’| Q1, Xij) is less than s1 or

greater than s2, because we assume that if this probability is less than s1 (or greater than s2) the

credit application can be interrupted and the application rejected (or accepted). The advantage

of a decision based on a partial questionnaire is its greater rapidity. The drawback is that

the probability calculated from a partial number of responses is not necessarily equal to the

probability calculated over all the responses: a very good response may ‘rescue’ an initially

poor file, and vice versa. However, the authors of the book cited above estimate that the error

rate due to the incomplete nature of the questionnaire is 5%, given that, in their study, 65% of

the questionnaires were incomplete (8.5 questions asked on average, out of a possible 14).

This is how the second question is chosen, given the response Q1 to the first question. For

each variable Xi, we calculate the sum Pi of the probabilities P(Xij|Q1) for the set of categories

Xij such that P(‘good payer’ | Q1, Xij) is less than s1 or greater than s2. The variable (and

therefore the question) that is chosen is the one that maximizes Pi, because it is the one that

maximizes the probability of being able to end the questionnaire. The choice of an nth

question given the responses to the preceding questions is made in the same way, and the

procedure is interrupted as soon as P(‘good payer’|Q1, Q2. . .) is less than s1 or greater than s2.
This scoring method, known as the adaptive questionnaire, is no more precise than a

conventional method, but it can be used to minimize the number of questions put to the

72 Chang, K.C., Fund, R., Lucas, A., Oliver, R. and Shikaloff, N. (2000) Bayesian networks applied to credit

scoring. IMA Journal of Management Mathematics, 11(1), 1–18.
73 Thomas, L.C., Edelman, D.B. and Crook, J.N. (2002) Credit Scoring and Its Applications. Philadelphia:

Society for Industrial and Applied Mathematics.
74 Baesens, B., Egmont-Petersen,M., Castelo, R. andVanthienen, J. (2002) Learning Bayesian network classifiers

for credit scoring using Markov chain Monte Carlo search. In The Sixteenth International Conference on Pattern

Recognition (ICPR ’02), Vol. 3, pp. 30049. Washington, DC: IEEE Computer Society.
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customer, which is important for a credit application on the Internet, where the customer may

very easily abandon his purchase if the process appears to be taking too long. At the same time,

it makes it harder for competitors to use trial and error methods to discover the scoring

algorithm that is used on-line. However, the presence of numerous incomplete questionnaires

in the scoring base can make it difficult to develop future scores.

11.11 Classification and prediction by neural networks

Supervised learning neural networks, especially the multilayer perceptron and the radial basis

function network, are used for both classification and prediction.

Classification can take place in two ways. We must bear in mind that the units of the

output layer can take continuous values between 0 and 1. We can create one unit for each

class to be predicted in the output layer, and assume that the class of an individual is the one

for which the unit outputs the highest value (closest to 1). We may decide to be more

restrictive: we could assign a class to an individual only if the corresponding unit outputs a

value above a given threshold of acceptance (e.g., 0.5), and if the other units all output values

below a given threshold of rejection (e.g., 0.5). If these conditions are not fulfilled

(e.g., if the values are 0.8 and 0.6), the class of the individual is considered to be

unpredictable. This type of network learns by associating each individual of the learning

set with unit output values of 1 for the unit corresponding to the (known) class of the

individual and 0 for the other units.

The second method can really only be used if there are two classes to be predicted. In this

case there is only one unit in the output layer, and the value of 0 for this unit corresponds to one

class and the value of 1 to the other class. During learning, the unit takes only the values 0 and

1, but in the application phase any of the values in the range from 0 to 1 can be taken. In the test

phase, using a sample which is different from the learning sample, we therefore choose a

threshold value which separates the classes. This can be done by looking on the ROC curve or

in the set of confusion matrices for a compromise between the sensitivity of the network (its

capacity to detect events) and its specificity (its capacity to avoid detecting false events).

11.11.1 Advantages of neural networks

Neural networks have certain special advantages. Firstly, they are good at allowing for non-

linear relations and complex interactions between variables, at least if the necessary

investment is made in terms of the number of units in the hidden layer(s). The downside

of this complexity and the possibly large number of units in the network is the risk of

overtraining and the fact that it is not easy to extract the subset of the most relevant variables

from the set of all the potential predictive variables.

A second advantage is that the neural networkmethod is non-parametric, meaning that the

independent variables are not assumed to follow any particular probability distributions.

There is also a third advantage. Some networks have a greater resistance to defective data

than other methods (the multilayer perceptron is better than the RBF in this respect). If an

input variable of a multilayer perceptron is too noisy, theweight of the corresponding unit will

fall to zero.

Finally, neural networks can model a wide range of problems, including clustering,

classification, prediction, time series (economic forecasting), optical character recognition
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(for signatures) and automatic reading of handwriting on envelopes (for postal sorting)75 and

cheques (seven-layer neural networks used by AT&T), linguistic analysis (text mining),

speech recognition and synthesis, face recognition, object recognition based on their shape or

their signal in military and industrial fields (scanners of video images at underground stations

to automatically detect overcrowding, detection of malfunctions in machines by vibration

analysis), automatic pilots in aircraft, machine control in an industrial production process,

signal processing in medicine (diagnosis of a cardiac signal, estimation of the size of a

tumour), weather forecasting, and chess (a neural network based learning module enabled the

Deep Blue computer to beat the world champion Garry Kasparov in 1997).

11.11.2 Disadvantages of neural networks

The use of neural networks has a number of serious drawbacks, already mentioned in my

discussion of neural clustering:

. Convergence towards the best global solution is not always certain.

. The considerable risk of overfitting, if the number of cases is too small with respect to

the number of units (see Section 8.4).

. The impossibility of handling an excessively large number of variables.

. The non-explicit nature of the results, which is unacceptable for some applications such

as medical diagnosis or automatic pilot systems (if there is a hidden layer, an a

posteriori analysis is required to discover the weights of the different variables used in

the score calculation).

. The difficulty of using the networks correctly, because the parameters (number of

hidden layers, number of units, learning rate, momentum, etc.) are numerous and hard to

control.

. Neural networks are only naturally applicable to continuous variables in the range [0,1],

and therefore the number of units has to be multiplied for qualitative variables.

As I have mentioned in Chapter 8 on neural networks, a network does not always converge

towards a correct solution, because it considers that it has found a correct solution when the

error function, which is to be minimized by the adjustment of theweights, reaches a minimum

and ceases to diminish with further adjustment of theweights. However, this minimummay be

only a local rather than a global one. We therefore need to prevent the network from being

‘trapped’ in a local minimum. To do this, we start the learning with a high weight adjustment

rate, and then decrease this rate during the learning, as the network approaches a correct

solution. We also control the momentum of the network in order to limit the oscillation of the

network about the solutions; the momentum is what impels the weights to continue to change

in the direction of their development.

75 Automatic recognition of handwritten post codes is one of the classic applications of neural networks, because

of its economic implications, the huge databases available (in the US Postal Service, for example) and the interesting

problems that it raises: before attempting to decipher each character, taking its size, orientation and style into account,

it is first necessary to separate them from each other, which is harder than it may appear.
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On the subject of non-explicit results, wemay recall (see Section 8.4) that a networkwith n

input units, a single hidden layer, m units in the hidden layer and one output unit has nm þ m

weights. Thus the number of parameters of a neural network can soon become large.

Furthermore, different sets of weights can lead to similar predictions. So the set of weights

of a network cannot be used to understand the results supplied by this network; this is quite

different from the case of decision trees and their leaves. However, most software packages

can classify the model variables in order of relevance.

By way of example (Figure 11.110), after learning, IBM SPSSModeler iterates on each of

the input variables and calculates the performance of the network in the absence of an input

signal on this variable. This calculation gives a weight to each variable and thus enables them

to be classified in decreasing order of effect on the accuracy.

To sum up, we only use neural networks if we have a large enough learning sample and if

conventional methods are found to be unsatisfactory, for example because of highly non-

linear relationships between the variables.

11.12 Classification by support vector machines

11.12.1 Introduction to SVMs

The separable case

Based on thework of Vladimir Vapnik from 1995 onwards, this recent classificationmethod is

mainly concerned with the case of linearly separated observations, in other words thosewhich

can be cut off from each other by a linear boundary. In this case, however, there are an infinite

Figure 11.110 Result of the learning of a neural network in IBM SPSS Modeler.
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number of possible boundaries, and Vapnik proposes to select as the optimal hyperplane the

one that maximizes the width of the margin between the observations. This hyperplane is

assumed to guarantee not only the fit of the model but also its robustness.

Finding this optimal hyperplane is a matter of finding a hyperplane with the equation

a�x þ b¼ 0 (a�x is the scalar product of a and x) which meets the following two conditions:

. it gives good separation of the groups A and B to be discriminated (goodness-of-fit of the

model), in the sense that the function defined by f(x)¼ a�x þ b is positive if and only if

x2A, and f(x)� 0 if and only if x2B;

. it is as distant as possible from all the observations (robustness of the model), given that

distance from an observation x to the hyperplane is |a�x þ b|/||a||.

The margin, which by definition is thewidth of the space between observations, is 2/||a|| and is

to be maximized. Because of this constraint, the term ‘wide-margin separator’ is used.

Figure 11.111, taken from a presentation by Tan, Steinbach, Kumar, and Eick,76 shows

how this second condition appears visually: the hyperplane B1 is better than hyperplane B2,

because it maximizes the margin. Both hyperplanes satisfy the first condition.

Given the points (xi,yi), where yi¼ 1 if xi is in A and yi¼ � 1 if xi is in B, finding the

optimal hyperplane a�x þ b¼ 0 is a matter of finding a pair (a,b) which meets two conditions:

. for every i, yi(a�xi þ b)� 1 (correct separation);

. 1/2 ||a||
2 is minimal (maximum margin).

This is a problem of optimization subject to constraints. We can see the analogy with

regularized regression (Section 11.7.2) inwhichwe also seek a solution subject to a constraint,

which in this case is that the margin is to be maximized. This criterion of a wide margin to

B1

B2

b11

b12

b21

b22

margin

Figure 11.111 Correct separation (B2) and optimal separation (B1).

76 http://www2.cs.uh.edu/�ceick/DM/dm_ibl.ppt#605,16,Support Vector Machines
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ensure correct generalization can be appreciated intuitively: in a sample other than the

learning sample, the points will not all fall outside the margin, and some of them

may therefore be incorrectly classified, but this risk evidently decreases as the width of the

margin increases.

The solution of this problem provides an expression

a ¼
X

i
aiyixi

and therefore

f ðxÞ ¼
X

i
aiyiðx � xiÞþ b; ai � 0;

in which the sign of f(x) indicates the class to which observation is to be assigned. What is

remarkable about this expression,whichhas the appearanceof anordinary score function, is that

we can show that the only non-zero coefficients ai are those which correspond to the points xi
that are exactly on the boundaries of the margin: these are the support points or support vectors

(Figure 11.112). In other words, the optimal hyperplane depends only on the support points,

namely the closest points. This is different from the situation in linear discriminant analysis,

where the remote points also have an effect on the solution. This is generally considered to be a

favourable aspect of support vector machines (SVMs) in terms of robustness, because remote

points may be aberrant or at any rate harmful to a good capacity for generalization. However,

this is not true in all cases, such as the heteroscedastic multinormal case where linear

discriminant analysis is the best method. This is because the points on the boundary of a

class are not necessarily the best representatives of this class for modelling.

Figure 11.112 Optimal hyperplane and support vectors of an SVM (source: Antoine

Cornu�ejols).
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Another interesting finding by Vapnik shows that the generalization capacity of an SVM

increases as the number of support points decreases.

The non-separable case

In practice, if the two populations to be discriminated are not perfectly separated but overlap, a

term measuring the classification error must be added to each of the two conditions shown

above, but this does not alter the principle of the optimization problem.

This term is defined for each observation xi on the wrong side of the boundary, by

measuring the distance separating it from the boundary of the margin on the side of its class.

This distance is then normalized by dividing it by the half-margin 1/||a||, giving a term i, called

the ‘slack variable’. An ‘error’ in the model is an observation for which xi> 1. The sum of all

the xi represents the set of classification errors. The previous two constraints for finding the

optimal hyperplane thus become:

. for every i, yi(a�xi þ b)� 1 � xi;

. 1/2 ||a||
2 þ dSixi is minimal.

If xi> 0, the condition yi(a�xi þ b)� 1 � xi is a relaxation of the initial condition

yi(a�xi þ b)� 1. This occurs not only for incorrectly classified observations (xi> 1), but

also for those within the margin (xi2 ]0, 1]).

The quantity d is a parameter which penalizes errors and controls the adaptation of the

model to the errors. As this increases and the sensitivity to errors rises, the adaptation also

becomes greater. We should therefore make a good choice of d to reach a good compromise

between fit and robustness, in other words the generalization capacity. This choice of d can be
carried out by cross-validation or by testing on another sample.

The solution of the above problem takes the same form as in the separable case:

f ðxÞ ¼
X

i
aiyiðx � xiÞþ b;

with the distinctive characteristic that all the coefficients ai are less then or equal to d. As in the
separable case, the support points are the points closest to the optimal hyperplane.

Another way of handling the non-separable case is to move to a space having a high

enough dimension for there to be a linear separation. We search for a non-linear transforma-

tion for moving from the original space to a higher-dimensional space, but one which has a

scalar product.

The example of the F transformation in Figure 11.113 shows how the change of space

enables the non-linearity to be allowed for. We have seen that the equation f(x) for the optimal

hyperplane is expressed as a function of scalar products x � x0. After the F transformation, it is

expressed as a function of scalar products F(x) �F(x0):
f ðxÞ ¼

X
i
aiyiðFðxÞ �FðxiÞÞþ b:

The quantity k(x,x0)¼F(x) �F(x0) is called the kernel. In the algorithm, it is the kernel k,

not F, that is chosen, and if we are careful we can calculate k(x,x0) without the appearance of
F. The great benefit of SVMs is that f(F(x)) can be expressed as a function of x without the

explicit intervention of F. In this way, the calculations are done in the original space, and are
therefore simpler and faster. This is why we speak of a ‘kernel machine’.
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Here are some examples of kernels:

. linear: k(x,x0)¼ x � x0;

. polynomial: k(x,x0)¼ (x � x0)d;

. Gaussian (RBF): k(x,x0)¼ exp x� x0k k2=2s2
	 


, one of the most widely used;

. sigmoid: k(x,x0)¼ tanh {k(x � x0) þ y}, where k is the gain and y is the threshold.

Taking the example of the second-degree polynomial kernel and the function

x ¼ ðx1; x2Þ!FðxÞ ¼ ðx21;
ffiffiffi
2

p
x1x2; x

2
2Þ;

we see that the scalar product FðxÞ �Fðx0Þ ¼ ðx1x01 þ x2x
0
2Þ2 ¼ ðx � x0Þ2 is expressed in the

arrival space without the appearance of F.
The computation time varies depending on the choice of kernel, but this choice also

enables us tomodel various problems with a quality of results which certainlymakes SVMs an

important technique for the future and one that is already in fashion today. After the SVMs for

classification (SVCs) introduced by Corinna Cortes and Vladimir Vapnik77 in 1995, a variant

appeared in 1996 for the case in which the independent variable is continuous, in the form of

the support vector regression (SVR) of Harris Drucker, Chris Burges, Linda Kaufman, Alex

Smola and Vladimir Vapnik.78

The Vapnik–Chervonenkis dimension of an SVM

As mentioned previously in the context of Vapnik’s learning theory (Section 11.3.3),

SVMs are one of the first types of model for which an explicit expression of the Vapnik–

Chervonenkis dimension has been found. Remember that this dimension measures the

complexity of the model and is used to evaluate the generalization capacity of the model

and its robustness, by limiting the difference between the (unknown) theoretical risk of the

model and the empirical risk calculated on the learning sample. The risk function can be the

error rate, for example.
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Figure 11.113 Example of transformation in an SVM.

77 Cortes, C. and Vapnik, V. (1995) Support-vector networks, Machine Learning, 20, 1–25.
78 Drucker, H., Burges, C., Kaufman, L., Smola, A. and Vapnik, V. (1997) Support vector regression machines. In

M.C.Mozer, M.I. Jordan and T. Petsche (eds), Advances in Neural Information Processing Systems 9, Proc. NIPS ’96,

pp. 155–161. Cambrige, MA: MIT Press.
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For an SVM with a margin of 2/||a|| in a space of dimension p where there is

linear separation (after F transformation if necessary), if there is a sphere of radius r
containing all the observations of the learning sample, the Vapnik–Chervonenkis dimension h

is thus bounded:

h � min whole part ak k2r2
	 


; p
h i

þ 1:

Note that this formula shows that h is not a majorant defined a priori, but actually depends

on the data configuration. However, we can see that the maximization of the margin entails the

minimization of the Vapnik–Chervonenkis dimension, and that the two criteria, the special

and the general, are consistent.We can also see that it is the casewhere the data are not linearly

separated in the original space, and where p may become large, that the maximization of the

margin plays a part in ensuring good generalization. In the case of linearly separable data,

good generalization is ensured by the term p.

11.12.2 Example

Very few commercial software packages implement SVMs, although IBM SPSS Modeler

contains this feature (Figure 11.114). However, there is also plenty of freeware: this includes

software dedicated to SVMs and also more comprehensive software packages including an

SVM function. Examples of this are Weka, which implements the standard sequential

minimal optimization algorithm, and R, whose kernlab package contains the ksvm function

which implements a number of SVM algorithms. Among the dedicated software, SVMlight is

Figure 11.114 SVM in IBM SPSS� Modeler.

506 CLASSIFICATION AND PREDICTION METHODS



one of the most popular, as it has an optimized algorithm allowing it to work with large

volumes. Its executable code is also available for Linux, Windows, Cygwin and Solaris, and

its Cþþ source is of course equally available. We can mention mySVM and SVMTorch. All

of these implement methods for clustering and regression, and the kernels mentioned above

(linear, polynomial, Gaussian and sigmoid). A much more comprehensive list can be found at

www.support-vector-machines.org/SVM_soft.html, a portal for SVM software and libraries

of routines.

By way of an example, this is how the Rattle graphic interface in R uses the ksvm function.

We can choose SVM from a list of modelling techniques in the ‘Model’ tab of Rattle

(Figure 11.115). After running the algorithm, we can select the resulting syntax from the Log

window (Figure 11.116), and then paste it into the R console. The command is sent and the

result shown in Figure 11.117 is obtained.

If wewish to evaluate the performance of the SVMmodel and compare it with that of other

models, we return to the Rattle interface and choose the Evaluate tab. Thus, in Figure 11.118,

we have ticked the three models to be evaluated: ‘Decision Tree’, ‘SVM’ and ‘Regression’,

the decision tree and the logistic regression having been constructed previously. We have also

ticked ‘ROC’ to obtain the ROC curve of these models (see Section 11.16.5). The ROC curves

of the three models are displayed in the graphic window of the R console (Figure 11.119). We

find that SVMs provide the best model, followed by logistic regression; the tree model (with

two nodes only) has the poorest performance.

Figure 11.115 SVM in the modelling window of Rattle.
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11.12.3 Advantages of SVMs

The advantages of SVMs are:

. their capacity to model non-linear phenomena, by the choice of an appropriate kernel;

. the precision of their predictions in some cases;

. the fact that the optimal hyperplane is determined only by the nearest points (the support

vectors), and not by those which are more distant, which may enhance the robustness in

some cases.

11.12.4 Disadvantages of SVMs

The disadvantages of SVMs are:

. the opacity of the models (we can try to explain themwith a decision tree, butmay suffer

a loss of precision – this is the same problem as for neural networks);

. the sensitivity to the choice of the kernel parameters (s for the RBF, the degree for the

polynomial kernel, etc.) and the difficulty of choosing them correctly, which may force

us to test many possible values;

. the computation time which is sometimes lengthy;

Figure 11.116 SVM syntax in the Log window of Rattle.
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Figure 11.117 Execution of the ksvm function in the R console.
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. the risk of overfitting, although this can be limited by maximizing the margin, which

also minimizes the Vapnik–Chervonenkis dimension;

. software packages implementing SVMs are still rare.

11.13 Prediction by genetic algorithms

According to the theory of evolution, natural selection allows those individuals best adapted to

their environment to transmit their genetic material to their descendants. Similarly, genetic

algorithms, developed by John Holland’s group from the early 1970s,79 enable the most

appropriate rules for the solutionof aproblem (predictionor classification) tobe selected so that

they transmit their ‘geneticmaterial’ (i.e. their variables and categories) to ‘child’ rules.What is

called a ‘rule’ is a set of categories of variables, for example ‘customer aged between 36 and 50,

havingfinancial assets of less thanD20 000 and amonthly income ofmore thanD2000’. A rule

is the equivalent of a branch of a decision tree. In this case it is analogous to a gene.

Thus genetic algorithms aim to reproduce the mechanisms of natural selection, by

selecting the rules best adapted to prediction (or classification) and by crossing and mutating

them until a sufficiently predictive model is obtained. Together with neural networks, they

form the second type of algorithm which mimics natural mechanisms to explain phenomena

which are not necessarily natural.

Figure 11.118 Model evaluation window of Rattle.

79 Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.
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The execution of a genetic algorithm includes three steps:

1. random generation of initial rules;

2. selection of the best rules;

3. generation of new rules by mutation or crossing, step 3 looping back to step 2 until the

execution of the algorithm stops.

11.13.1 Random generation of initial rules

The first rules are generated, the only constraint being that they must all be distinct. Each

rule contains a random number of variables, chosen at random, each having a randomly

chosen category.

Suppose that the variables are:

. age in years (categories: [18,35], [36,50], [51,65], more than 65);

. financial assets in thousands of euros (categories: less than 10, [10,20], [20,60], more

than 60);
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Figure 11.119 ROC curves of SVM, logit and CART models.
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. monthly income in thousands of euros (categories: less than 1, [1,2], [2,4], more than 4).

An initial rule may be:

. age in the [36,50] group and monthly income in the [2,4] group.

11.13.2 Selecting the best rules

The rules are evaluated in view of the objective, by what is called a ‘fitness’ function, to guide

the evolution towards the best rules. If the purchase of a product is to be predicted, and if we

wish to evaluate the preceding rule, we survey customers aged from 36 to 50, with monthly

income between 2 and 4, to discover what percentage has purchased the product. Here,

therefore, this percentage is the fitness function.

The best rules are those which maximize the fitness function, and these will be retained,

with a probability that increases as the rule improves. A supplementary condition is that the

rules that are retainedmust be satisfied by aminimum number of individuals. If a decision tree

were being used, we would say that the chosen leaves are those having the maximum purity

and frequencies above a fixed minimum.

Some rules will disappear, while others will be selected several times. In contrast to what

occurs in nature, the number of rules selected is the same from one generation to the next, so

that the population cannot disappear.

11.13.3 Generating new rules

The chosen rules will then be randomlymutated or crossed. Amutation is the replacement of a

variableor acategoryof theoriginal rulewith another.Mutation is analogous to the replacement

of one node of a tree. For example, if we take the following rule to generation n:

. age 2 [36,50] and monthly income 2 [2,4],

a mutation can give rise to the following rule (the ‘child’ rule) in generation n þ 1:

. age 2 [36,50] and financial assets 2 [10,20].

A crossing of two rules (which must be distinct from each other) is the exchange of some

of their variables or categories to produce two new rules. Crossing is analogous to

exchanging the places of two sub-trees. For example, if we take the following rules to

generation n:

. age >65 and financial assets >60,

. age 2 [18,35] and financial assets 2 [10,20] and monthly income 2 [2,4],

the crossing can produce the following ‘child’ rules in generation n þ 1:

. financial assets >60 and monthly income 2 [2,4],

. financial assets 2 [10,20] and monthly income 2 [2,4] and age > 65.

As in nature, crossing is much more common than mutation, which is accidental, and has

negative rather than positive consequences in most cases. In genetic algorithms, however,
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even if the mutations do not increase the value of the fitness function, it is better to have one

mutation in each generation, which makes it possible to reintroduce useful conditions which

disappeared by chance, and to avoid the premature convergence of the algorithm towards a

local optimum.

The ‘child’ rules that are retained for evaluation are those that are distinct from the ‘parent’

rules, distinct from each other and satisfied by a minimum number of individuals. After

evaluation, some of the ‘child’ rules are retained to become the new ‘parent’ rules and

continue the algorithm.

11.13.4 End of the algorithm

The algorithm ends when one of the following two conditions is met: either a previously

specified number of iterations has been reached, or, starting from a generation of rank n, the

rules of generations n, n � 1 and n � 2 are (almost) identical. The number of iterations varies

between several tens and several hundreds.

11.13.5 Applications of genetic algorithms

Genetic algorithms are used for solving optimization problems such as the travelling salesman

problem. They are also used to improve the performance of other prediction tools such as

neural networks. For the crucial question of calculating the weights of the nodes of a neural

network, genetic algorithms provide a solution. This is to represent all the weights of the

network with a gene, and then, starting from several possible sets of weights (i.e. genes), to

select, cross and mutate the best genes from generation to generation, until an optimal set of

weights is achieved. Genetic algorithms are also useful in situations in which many local

optima are present, using mutation to avoid premature convergence towards one of these.

Genetic algorithms, and more generally biomimetic algorithms, have also been used since

the mid-1990s in clustering problems, where they have several advantages: graphic visuali-

zation, the possibility of parallelizing the calculations, and the ease of combining them in

hybrid approaches with other methods, such as k-means. In these biomimetic algorithms, each

data element is represented by an artificial animal. A concept of similarity is defined between

the data, and we study the movement of the animals in a group (‘swarm intelligence’) given

that an animal has only a local perception but tends to move towards similar animals.80

Similarly, the movement and grouping of ants (‘artificial ants’) have been studied, as well as

the way in which they transport objects. The ants are more likely to collect the objects if they

are dissimilar to neighbouring objects; then they move at random, and deposit the object in an

area with a probability that increases with the number of similar objects already present in this

area. The first algorithm describing the carrying of objects by ants was proposed by Lumer and

Faieta.81 It was subsequently improved, notably by combining it with the k-means algorithm,

to profit from the best features of both algorithms:82 the ant algorithm provides an initial

80 These studies are used in the film industry to create realistic behaviour in synthetic images showing moving

animals.
81 Lumer, E.D. and Faieta, B. (1994) Diversity and adaptation in populations of clustering ants. In Proceedings of

the Third International Conference on Simulation of Adaptive Behaviour, pp. 501–508. Cambridge, MA: MIT Press.
82 Monmarch�e, N., Slimane, M. and Venturini, G. (1999) On improving clustering in numerical databases with

artificial ants. In 5th EuropeanConference on Artificial Life (ECAL’99), Lecture Notes in Artificial Intelligence, 1674,

pp. 626–635. Berlin: Springer-Verlag.
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classification, without the more or less arbitrary choice of the number of initial classes and

centres that is found in the k-means algorithm. The centres of this initial classification are then

used as the initial centres of the k-means algorithm, which reallocates some of the objects to

more appropriate classes. The ant algorithm is then used again, and so on. In this case the

contribution of the k-means method is useful because the ant algorithm does not always

manage to classify all the objects (when the algorithm stops, some of the ants are still carrying

objects), and it may take some time to reclassify an object that was incorrectly classified

before. The k-means algorithm accelerates the convergence of Lumer and Faieta’s artificial

ant algorithm.

Some of these biomimetic algorithms provide results as good as those of single-linkage

hierarchic ascendant classification, but with faster calculation and handling larger data

volumes.83 One advantage of these algorithms is that they can be run in parallel, thus

increasing their speed. The interested reader will find a survey of this research in H. Azzag

et al. (2004).84

11.13.6 Disadvantages of genetic algorithms

This type of algorithm is generally rather slow. Its complexity increases exponentially as a

function of the number of rules used, because each rule in each generationmust be evaluated,

and there may be several thousand rules. It can only be used on rather small volumes of

data. Furthermore, it is quite tricky to adjust. It is not yet widely included in software, with

the notable exception of Version 9 of SAS which incorporates it in its SAS/OR module (the

GA procedure).

11.14 Improving the performance of a predictive model

Even if the performance of a predictivemodel dependsmuchmore on the field studied (health,

insurance, banking, etc.), the problems encountered (studies of risk, propensity, etc.) and the

available data than on the method of modelling used, it is nearly always possible to build a

more precise, and especially a more robust model, either by partitioning models after pre-

segmentation, or by aggregating a number of models built by the same method applied to a

number of samples, or by combining a number of models built by different methods applied to

the same sample, or by combining these possibilities.

When pre-segmentation (or pre-clustering), mentioned in Section 2.5, is used, the

modelling step is preceded by a step of clustering the population, then building a specific

model for each of the clusters, before making a synthesis of these. Surprisingly, perhaps,

adding as many variables as possible does not improve a model, but usually detracts from it.

This makes it preferable to segment the population beforemodelling it, so as to be able towork

with homogenous groups which require fewer variables to describe them.

The aggregation of models, to be described in the next section, is a way of applying

the same method of modelling for a reasonably large number of times to slightly different

83 Azzag, N., Monmarch�e, N., Slimane, M., Venturini, G. and Guinot, C. (2003) Anttree: a new model for

clustering with artificial ants. In IEEE Congress on Evolutionary Computation, Canberra, Australia.
84 Azzag, H., Picarougne, F., Guinot, C. and Venturini, G. (2004): Un survol des algorithmes biomim�etiques pour

la classification. Revue des Nouvelles Technologies de l’Information, RNTI-C-1, pp. 13-24. C�epadu�es Éditions,

France.
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samples obtained from the same original population, before making a synthesis of the

resulting models.

The third technique, the combination of models, applies a number of different modelling

methods to the same population, for example a discriminant analysis and a decision tree,

before making a synthesis of these. The simplest method of making the synthesis is to

calculate for each individual the arithmetic or geometric mean of the scores resulting from the

different models, but we can also use the prediction obtained from a model as an independent

variable for the second model, or cross-tabulate the scores in a more complex way, for

example by assigning weightings to the models.

By calculating the mean of the scores obtained from two classification methods, we can

use the best parts of each method. This mean clearly has a meaning when the two initial scores

are closely correlated (if this is not the case, there is a problem). Of course, there are

differences, due for example to cases which are better detected by the decision tree than by

discriminant analysis, or cases of incorrect classification by the tree when it has been misled

by a threshold effect (when there is an individual at the limit of the splitting threshold of a

node). As it would be risky to interpret the mean of two completely opposing scores, it will be

preferable not to assign a final overall score to the individuals involved, but to give them a

mean score.

It can be seen why we can expect a better prediction quality from the synthesis of

two models: a customer having a maximum synthetic score is a customer who has

obtained the best score by two different methods, on variables which may also be

distinct. By taking the mean of a score found by a decision and one found by discriminant

analysis, we have stabilized the fluctuations and the prediction of these two models, and

obtained a better performing model, as is shown by the superimposition of the lift curves

(Figure 11.120).

We can represent the aggregation and combination of models in a table (see Table 11.3).
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Figure 11.120 Superimposition of the lift curves of different models.
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11.15 Bootstrapping and ensemble methods

Before describing model ensemble methods more commonly called ensemble methods, I

must recapitulate some aspects of resampling, which is the application of Monte Carlo

simulation methods to statistics, and which includes a number of methods, of which the

jackknife (used for cross-validation) and the bootstrap described below.

11.15.1 Bootstrapping

A classic problem encountered in statistics, and more generally in data mining, is that of the

estimation of a statistical parameter. Such a parameter is defined for a global population O,
and is a function of the statistical distribution F defined onO. This parameter can be the mean

of F. Now, the global population and the distribution F are generally unknown, especially as

the population (such as a set of customers) may be continually changing, or there may be

errors of measurement, input, etc. When we are working on a data set, therefore, it is nearly

always a sample S¼ {x1, x2, . . ., xn} taken from the unknown global population, and we try to

approximate the parameter with an estimator defined on the sample S, this estimator being

found by replacing the unknown distribution F with the ‘empirical’ distribution, which is the

discrete distribution yielding a probability of 1/n for each xi. This estimator is called a ‘plug-

in’ estimator and it depends on the sample S. Thus, n� 1
Pn

i¼1 xi is a plug-in estimator of the

mean. If the mean of the plug-in estimators is equal to the mean of F,we say that the estimator

is unbiased.

More generally, for a parameter other than the mean, the question arises of the precision

and robustness of the estimator, in other words its bias and its standard deviation, which are

not generally given by an explicit formula. To calculate the standard deviation of the

estimator, we would have to be able to determine the estimator over a large number of

samples S 0; S 00, . . .. However, we often only have a single sample S available; this is the case in

a survey, for example, but also in other areas. The aim of Bradley Efron (1979)85 in devising

the bootstrap was to reproduce the movement from the population O to the sample S under

examination, by making S¼ {x1, x2, . . ., xn} act as a new population and obtaining the desired

samples S0; S00,. . . by random drawing with replacement of the n individuals x1, x2, . . ., xn.
Such a sample, obtained by drawing with replacement of n out of n individuals, is called a

bootstrap sample. In a bootstrap sample, an individual xi may be drawn several times or may

Table 11.3 Methods of improving performance.

Use: On:

The same sample Different samples

What: The same method Single model Aggregation of models

Different methods Combination of models Mixture�

�This may be a sequence of bootstrap samples, as in bagging (see Section 11.15.2), to which a decision

tree and a neural network are applied each time.

85 Efron, B. (1979) Bootstrap methods: another look at the jackknife. Annals of Statistics, 7(1), 1–26.
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not be drawn at all. The probability that a given individual xiwill be drawn is 1 � (1 � 1/n)n,

which tends towards 0.632 as n tends towards þ1.

When a certain numberB (generally,B� 100) of bootstrap samples S� has been drawn and
the plug-in estimator Y� of the sample S� has been calculated for each of them, we obtain a

distribution of the bootstrap plug-in estimators Y�, from which we deduce a standard

deviation of the plug-in estimatorY of the sample S. We can also deduce confidence intervals

from the quantiles of the distribution: we specify a fairly large B, for example B¼ 1000 (the

minimum according to Efron) and examine the 25th weakest valueQ2.5 and the 25th strongest

valueQ97.5 of the bootstrap estimator in order to gain some idea of the 95% confidence interval

[Q2.5, Q97.5] of the estimator.

As for the bias, its bootstrap approximation is equal to the difference between the mean of

the bootstrap estimators Y� and the estimator Y calculated on S.

The principle of the bootstrap can be summarized as follows: the sample S is made to act as

the global populationO, and the bootstrap sample S� is made to act as the sample S, given that

the estimatorY� behaves with respect toY asYwith respect to the desired parameter over the

global population, and the knowledge of Y� (distribution, variance, bias) contributes to the

knowledge of Y.

In classification and scoring problems, the parameters to be estimated may be:

. the error rate (or correct classification rate) or other measure of the performance of the

score model (area under the ROC curve, Gini index, etc.);

. the coefficients of the score function;

. the predictions (a posteriori probabilities of belonging to each class to be predicted).

As the global population on which the model is to be built is unknown, the above

parameters can only be estimated. We start by constructing B bootstrap samples from the

initial sample, and then build a model on each bootstrap sample. We obtain B classification

models. The bootstrap on the error rate or the area under the ROC curve enables us to obtain

confidence intervals of these performance indicators of the model. This situation is

illustrated in Figure 11.121. Note that the mean error rate on the bootstrap samples is an

estimate biased by optimism, since these error rates are calculated by resubstitution on the

individuals which have been used for training the model. In a variant shown in Figure 11.122,

the errors are calculated only on the individuals not included in the bootstrap sample: we

speak of an out-of-bag estimate. Since this estimate is biased by pessimism, Efron and

Tibshirani have suggested that the optimistic bias of resubstitution estimation and the

pessimistic bias of out-of-bag estimation could be rectified simultaneously by the ‘magic

formula’ of the .632-bootstrap:

Estimate :632 ¼ 0:368� estimate ðresubstitutionÞþ 0:632� estimateðbootstrap-oobÞ:

This formula allows for the probability of 0.632 of the selection of each individual in one

of the various bootstrap samples (in other words, an individual belongs on average to 0.632B

bootstrap samples86), which causes the excessive fluctuation of the out-of-bag estimator. It

can be applied to a performance indicator such as the area under the ROC curve. As this

86 Conversely, a sample contains 0.632n different individuals on average.
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estimate is itself over-optimistic in some cases with a high level of overfitting, the same

authors proposed a more elaborate variant in 1997, called the ‘.632 þ bootstrap’.87

The bootstrap on the coefficients of the classification function is used, for example, with

linear discriminant analysis to find confidence intervals of the coefficients in order to assess

the actual contribution of each independent variable.

11.15.2 Bagging

Bootstrapping on predictions has been known since the work of Leo Breiman (1996) under

the name of bagging, or ‘BootstrapAGGregatING’.88 It involves the construction of a family

of models on m bootstrap samples, followed by the aggregation of the predictions of each

model. This aggregation is carried out by voting (classification) or averaging (regression).

Averaging can also be used with logistic regression, by calculating the averages of the a

posteriori probabilities supplied by the model; in this case, the average probabilities are
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Figure 11.121 Bootstrap and bagging resampling.

87 Efron, B. and Tibshirani, R. (1997) Improvements on cross-validation: The .632þ bootstrap method. Journal

of the American Statistical Association, 92, 548–560.
88 Breiman, L. (1996) Bagging predictors. Machine Learning, 26(2), 123–140.
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approximated by the probabilities supplied by the ‘average’model, in other words the model

whose coefficients are the average coefficients of the different models for each variable (or

for each category).

Bagging can reduce the variance, but not the bias, of a model, and it is particularly useful

for remedying the lack of robustness of unstable classifiers such as decision trees and neural

networks. In the case of trees, however, it should be pointed out that the aggregation of a

number of trees destroys the simple structure of the decision tree so that we lose the main

advantage of these trees, which is their readability. In linear discriminant analysis and

logistic regression, however, bagging does not increase the complexity of the model

compared with the base model, because the result is simply the ‘average’ model. However,

bagging is less useful for stable classifiers: the variance of the model may decrease, but to a

lesser degree. However, it is still helpful, because it improves the generalization of the

model, especially when there are only a small number of individuals to be modelled. This is

because, in the distribution of bootstrap estimators, models having a maximum ‘out-of-bag’

AUC (area), which are the natural candidates for good generalization, are often not those

whose area is maximal in a new sample which is independent of the initial sample (for

instance, a sample created at a later date). In other words, the out-of-bagAUCs and theAUCs

measured in an independent sample are weakly correlated (the correlation coefficient can be

less than 0.1). As for the aggregated model, in the examples that we have tested its AUC on
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Figure 11.122 Bootstrap resampling with out-of-bag estimation.
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the total initial sample is very close to the average of the ‘in-the-bag’ AUCs, and the AUC on

an independent test sample is located around the level of the limit of the first third of the

AUCs of the bootstrap models on this test sample (for example, approximately the 173rd of

500 bootstrap models). If we divide the bootstrap models into deciles according to their out-

of-bag AUCs and these deciles are classified according to their average AUC on the

independent test sample, we find that these deciles are not classified in sequence: the x

best models according to the out-of-bag AUC are not the x best models for the independent

sample. To sum up, the aggregated model does not have the best performance on an

independent test sample, but its performance is markedly better than the average, and

furthermore the best model cannot be predicted and in any case will not have the best

performance according to an in-the-bag or out-of-bag estimator. It is therefore worth using

the aggregated model, because, although the resulting gain in performance is not enormous,

it is far from negligible.

Some of the effectiveness of bagging may be due to the fact that any outliers of the initial

sample are only found in some bootstrap samples, and the averaging of these bootstrap

estimates reduces the nuisance caused by these outliers. Its effectiveness is also simply due to

the fact that, if we average two unbiased estimators of the same parameter which are

uncorrelated and have the same variance, we halve their variance.

The lesser contribution of ensemble methods to stable classifiers can be understood if we

consider a finding of Hansen and Salamon (1990),89 according to which the combination of p

classifiers, whose errors are independent and have a rate of less than 50%, results in an error

rate for the aggregated model which tends towards 0 when p tends towards infinity. Now, the

less stable a classifier is, the less correlation there will be between its errors on different

samples. The general principle of the ensemble methods is that of combining models which

disagree in their predictions; this is done by disrupting their learning, either by changing the

learning sample, which is the commonest method, or by keeping the same sample and varying

the learning parameters, which may be done with neural networks.

With this aim, Opitz andMaclin (1999)90 propose the combination of neural networks built

on the same sample, by varying only the parameters and the topology of each base network.

There is a special kind of bagging algorithm which is applied to decision trees with the

introduction of a different random selection of candidate independent variables, taken from

the set of all the independent variables, at each split of a node. At each split, therefore, what is

tested is not the set of independent variables, but simply a sample of variables, chosen at

random. This can be used to ensure that the same variables (the ones having the highest

individual discriminant power) do not appear every time; it also decreases the correlation

between the successive trees and thus decreases the variance of the aggregated model.

This random selection of variables was first suggested by Ho91 and Dietterich,92

independently of bagging. Breiman93 subsequently devised a way of combining this

89 Hansen, L. and Salamon, P. (1990) Neural network ensembles. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12, 993–1001.
90 Opitz, D. and Maclin, R. (1999) Popular ensemble methods: an empirical study. Journal of Artificial

Intelligence Research, 11, 169–198.
91 Ho, T. K. (1995) Random decision forests. In M. Kavanaugh and P. Storms (eds), Proc. Third International

Conference on Document Analysis and Recognition, Vol. 1, pp. 278–282. New York: IEEE Computer Society Press.
92 Dietterich, T. (2000) An experimental comparison of three methods for constructing ensembles of decision

trees: bagging, boosting and randomization. Machine Learning, 40(2), 139–157.
93 Breiman, L. (2001) Random forests. Machine Learning, 45, 5–32.
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randomization of the variable selection with the randomization of the learning sample. He

was responsible for developing this double randomization, known as the ‘random forests’

method. Random forests have since become extremely popular because of their benefits:

they provide performance often comparable to that of boosting (see below), but are simpler

to use, faster to calculate and more resistant to noise in the data (a weak point in boosting, as

we shall see). However, we should not let this apparent simplicity conceal a subtle feature of

the algorithm, namely that a new random sample of variables is taken at each node of each

tree, not simply once for each tree. There is a parameter that can be ‘tuned’ to obtain the best

results: this is the number of variables selected at each split (see Section 11.15.4). Of course,

the number of iterations must also be chosen. It will generally be lower than in boosting,

because the performance of random forests becomes stable in less time. On the other hand,

boosting sometimes achieves a better final level of performance.94

Unlike simple bagging, random forests can be used successfully on trees limited to two

leaves (‘stumps’), without causing the appearance of trees which use the same variables so

frequently that they become overcorrelated (see Section 11.15.4).

This double randomization mechanism is particularly beneficial for decision trees, but of

course it can be applied to other base classifiers. Breiman has also proposed (loc. cit.) the

application of this mechanism to boosting, in other words the combination of the learning

sampleweightingmechanism (see below) with the random variable selectionmechanism. The

initial results of this procedure showed that it could be beneficial for data sets of a certain size.

11.15.3 Boosting

A new approach to the combination of models came frommachine learning, in the form of the

boosting method devised in 1996 by Yoav Freund and Robert E. Schapire. The first

polynomial time algorithm was described by Schapire in 1989,95 and in 1990 Freund devised

an improved, but still imperfect, algorithm.96 Following research which commenced in 1995,

they published their founder paper in 1997,97 describing the AdaBoost.M1 algorithm,

subsequently renamed Discrete AdaBoost in a paper by Friedman et al.98 A later paper by

Schapire and Singer99 reformulated the Discrete AdaBoost algorithm and proposed the Real

AdaBoost algorithm (reformulated by Friedman et al.), in which the model does not predict a

class Y2 {� 1 ; þ 1}, but the probability P(Y¼ 1|x). The papers by Freund and Schapire, and

then Schapire and Singer, also proposed generalizations of AdaBoost to the case of a

dependent variable with more than two categories; the AdaBoost.MH algorithm of the latter

authors is worth mentioning.

In boosting, the same classification algorithm, such as a decision tree, is applied

successively to versions of the initial training sample which are modified at each step to

94 See Section 15.2 of Hastie et al., The Elements of Statistical Learning, cited in Section 11.3.3 above.
95 Schapire, R.E. (1990) The strength of weak learnability. Machine Learning, 5(2):197–227.
96 Freund, Y. (1995) Boosting a weak learning algorithm by majority. Information and Computation, 121

(2):256–285.
97 Freund, Y. and Schapire, R.E. (1997) A decision-theoretic generalization of online learning and an application

to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
98 Friedman, J., Hastie, T. and Tibshirani, R. (2000) Additive logistic regression: a statistical view of boosting

(with discussion), Annals of Statistics, 28, 337–407.
99 Schapire, R.E. and Singer, Y. (1999) Improved boosting algorithms using confidence rated predictions.

Machine Learning, 37(3), 297–336.
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allow for classification errors of the preceding step, and the classifiers (which may be weak)

constructed in this way are then combined to produce a stronger classifier.

The modifications made at each step are generally an overweighting of the observations

incorrectly classified at the preceding step and an underweighting of the others, but a variant

called ‘arcing’ (short for ‘adaptative resampling and combining’), also devised by Freund and

Schapire (initiallyunder thenameofboosting), introduces a randomfactor bydrawinga training

samplewith replacement in each iteration, in the initial training set, with a greater probability of

drawing for the observations which were incorrectly classified in the preceding iteration. This

is therefore a probability proportional to size (pps) sampling method. This random sampling

introduces greater diversity and greater independence into the resulting ensemble models. It

avoids thedeterminismwhichcauses thesamemodels (thesametrees, for example) to recurafter

a number of interval iterations. However, it reduces the percentage of observations contributing

to the training of each classifier, whichmay be less than 20%, as against the 63.2%whichwould

be drawn in a bootstrap with equal probabilities (Breiman 1996,100 Section 5.1).

This sampling resembles bagging in some ways, but bagging only reduces the variance of

the classifiers, whereas arcing, and boosting in general, reduces both the variance and the bias,

as is shown by the examples of application to trees with two leaves (‘stumps’) or other depth 1

trees as base classifiers (see below). These trees typically have a low variance but a high bias.

This reduction of the bias has been quantified in a theorem of Freund and Schapire

(1997),101 later generalized by Schapire and Singer (1999),102 which establishes a limit on the

training error rate of the boosted classifier.

If each classifier fm has an error rate e(fm) on the training sample (with a frequency N), this

error rate being weighted for each observation, so that we have

eðfmÞ ¼ 1

N

XN
i¼1

pi � 1½fmðxiÞ6¼yi�;

then the error rate of the boosted classifier F on the training sample decreases exponentially

with the number of steps M. More precisely, given that

eðFÞ ¼ 1

N

XN
i¼1

1½F ðxiÞ6¼yi�;

we find that

eðFÞ �
YM
m¼1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð fmÞð1� eð fmÞÞ

p
:

A good illustration of the boosting mechanism is provided by Schapire in his lecture

which can be found at http://videolectures.net/mlss05us_schapire_b/ and in the book

Boosting: Foundations and Algorithms, by Robert E. Schapire and Yoav Freund, to be

published by MIT Press.

100 Breiman, L. (1996) Bias, variance, and arcing classifiers. Internal report 460, Department of Statistics,

University of California, Berkeley.
101 See n. 95 above.
102 See n. 97 above.
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In step 1, all the observations have the same weight and a classifier h1 is determined:

In step 2, the observations incorrectly classified by h1 (circled in the diagram) are

overweighted and a classifier h2 is determined:

In step 3, the observations incorrectly classified by h2 are overweighted and a classifier h3
is determined:
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At the end of the process, a weighted sum of the classifiers h1, h2 and h3 is calculated to

provide the boosted classifier, the weighting of each intermediate classifier being a decreasing

function of its error rate (Figure 11.123).

More precisely, the Discrete AdaBoost algorithm is as follows:

1. Initialize the weights of the N observations of the training sample: pi¼ 1/N, i¼ 1,

2, . . ., N

2. Repeat for m¼ 1 to M (the number of iterations):

. Fit the classifier fm(x)2 {� 1,þ 1} to the training set weighted by the weight pi

. Calculate the weighted error rate em of fm(x) (allowing for the weight pi of each

incorrectly classified observation) and calculate am¼ log((1–em)/em)

. Multiply theweight pi of each incorrectly classified observation by exp(am) for i¼ 1,

2, . . ., N

. Normalize the weights pi so that their sum is 1

3. The boosted classifier is the sign of the sum Smamfm(x) (or the mean value of the

amfm(x)).

The form Smamfm(x) resembles the expression of g(E(Y/X¼x)) found in the generalized

additive model (Section 11.9.8): in fact, boosting is an additive model,103 like MARS

regression and various other models.

We note that the weights of all the incorrectly classified observations are multiplied by the

same value, by contrast with the arc-x4 described below, and that this multiplier decreases as

the error rate increases. Thus we prevent a model which is a poor fit in one iteration from

having an inappropriate importance in the development of the weightings.

103 See Section 10.2 of Hastie et al., The Elements of Statistical Learning, cited in Section 11.3.3 above.
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The arcing algorithm is similar, except for the pps random sampling:

1. Initialize the weights of the N observations of the training sample: pi¼ 1/N, i¼ 1,

2, . . ., N

2. Repeat for m¼ 1 to M:

. In the training sample, draw N observations with replacement, each according to the

probability pi

. Fit the classifier fm(x)2 {� 1,þ 1} to the bootstrap sample drawn in this way

. On the initial training sample:

. Calculate the weighted error rate em of fm(x) and calculate am¼ log((1 � em)/em)

. Multiply the weight pi of each incorrectly classified observation by exp(am) for
i¼ 1, 2, . . ., N

. Normalize the weights pi so that their sum is 1

3. The boosted classifier is the sign of the sum Smamfm(x) (or the mean value of the

amfm(x)).

In his previously cited paper of 1996, Breiman made an improvement to this algorithm.When

the error rate em reaches a value of at least 0.5 in an iteration, the weights pi¼ 1/N are

reinitialized, instead of the algorithm being stopped as Freund and Schapire had originally

proposed. They are also reinitialized when em¼ 0 and log((1 � em)/em) is therefore undefined.
This device is not applicable to the algorithm for boosting by reweighting, since in this case,

with no resampling, the reinitialization of the weights would cause the same model to recur

every time.

Figure 11.123 Illustration of the boosting mechanism.
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In this paper, Breiman also devised a variant of arcing which he named arc-x4, in which:

. on each iteration, the weighting of each observation does not depend on the

global weighted error rate, but is equal (subject to normalization) to 1 þ m(i)4,

where m(i) is the number of errors of classification of this ith observation in all the

preceding iterations;

. there is no final weighting of the classifiers.

Breiman devised the arc-x4 in order to compare it with the arcing method of Freund and

Schapire (referred to by him as arc-fs), and to show that its effectiveness was due not to its

specific device for weighting the observations but to its general principle of adaptive

resampling. He also tested the weightings 1 þ m(i) and 1 þ m(i)2 which gave less satisfac-

tory results, but did not test 1 þ m(i)n for n> 4. In arc-x4, the fact that all the preceding

iterations are taken into account creates a greater inertia in the changes of weight, and the

classifiers change more gradually than in the conventional arc-fs method. Breiman also found

that the percentage of observations contributing to the learning of each classifier was greater

for arc-x4 than for arc-fs.

Here is now the Real AdaBoost algorithm:

1. Initialize the weights of the N observations:

. pi¼ 1/N, i ¼1, 2, . . ., N

2. Repeat for m¼ 1 to M

. Calculate the probability pm(x)¼P(Y¼ 1|x) on the training sample weighted by the

weights pi

. Calculate fm(x)¼ 1/2 log(pm(x)/(1 � pm(x))

. Multiply the weight pi of each observation (xi,yi) by exp(–yi.fm(xi)) for i¼ 1, 2, . . ., N

. Normalize the weights pi so that their sum is 1

3. The boosted classifier is the sign of the sum Smfm(x).

Bagging and boosting are both ensemble algorithms, the essential difference being that

bagging is a purely random process while boosting is an adaptive process. This alsomeans that

a bagging algorithm can be parallelized, but a boosting algorithm cannot. In addition to this

computational aspect, it is generally accepted that the convergence of boosting towards an

optimal performance (minimum error rate or maximum AUC) tends to be slower than in

bagging. This phenomenon is particularly marked when the boundary between the classes to

be predicted is poorly delimited, and Adaboost loses time by reweighting the classification

errors of observations which are close to the boundary.

The paper by Friedman et al. cited above proposes a simple idea for significantly

reducing the amount of computation and the time required. The authors find that, in the

course of the iterations, an increasingly large proportion of the training sample is correctly

classified and is therefore given very low weights. If we decide to carry out the training
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process on each iteration only on observations representing 90–99% of the total weight, the

number of observations used in the training will decrease considerably and the computation

will be faster. Of course, the adjusted model is then applied to all of the training sample in

order to recalculate theweights of all the observations and in order to include them in the rest

of the iterations.

The main characteristic of boosting is therefore that it concentrates its action on

individuals that are difficult to model and that behave in ways that are harder to predict.

Consequently, an iteration in which the outliers are poorly classified is followed by an

iteration which classifies them well but does not classify the rest of the population so well.

The next iteration re-establishes the balance, but in turn it will classify some of the outliers

poorly. Thus balancing takes place during the iterations, in which, in contrast to bagging, the

models are only locally optimal (for certain observations), instead of being globally optimal.

It is their aggregation that is globally optimal, as is clearly shown in the example provided by

Schapire (above).

However, this mechanism can have drawbacks in certain circumstances. Firstly, the

variance of the boosted model can increase if the base classifier is stable (e.g. linear

discriminant analysis, logistic regression on specified variables, etc.). This is because the

same observations are often poorly classified in this case, even with a modified sample.

The weight of these observations will increase rapidly, together with the error rate in

training.

The variance can also increase with noisy data. Where noise is present, the error of the

boosted model increases with the number of aggregated models. The sensitivity of boosting to

noise is due to the adaptive devicewhich puts the emphasis on observations that are difficult to

classify (by weighting them more or by choosing them more often), which by their nature are

more likely to be noisy observations or outliers. The sensitivity of AdaBoost to noise has been

pointed out by Opitz and Maclin (1999) and Dietterich (2000), both cited in Section 11.15.2.

As this sensitivity is due to an exponential weighting of the errors, this has led some

researchers to propose other weighting formulae. Examples are the Friedman paper cited at

the beginning of this section, with Gentle AdaBoost, and Freund (1999) with BrownBoost.104

In Gentle AdaBoost, the function fm(x)¼ 1/2 log(pm(x)/(1–pm(x)) of Real AdaBoost is replaced

with a bounded function. The results of Gentle AdaBoost with noisy data are generally much

better than those of Discrete AdaBoost or Real AdaBoost.

Thus, although boosting generally exhibits better performance than bagging, with good

resistance to overfitting, it may be less effective in some cases. Note the generally beneficial

effect of the weighting of each base classifier by am in the final aggregation: the weight of

each classifier decreases as its error rate rises, and therefore this weighting limits the risk of

overfitting. In practice, we have found that the gain to be expected fromweighting in the final

aggregation is limited, especially if there is a sufficient number of observations in each leaf to

ensure the robustness of the trees and reduce the risk of overfitting.

Boosting is currently used when the base model is a decision tree, although it can be

applied to other base models, at least those that are unstable. It frequently improves the

robustness of the models (by decreasing their variance), which also occurs with bagging, but,

unlike bagging, it can also improve their precision (by reducing their bias).

104 Freund Y. (1999). An adaptive version of the boost by majority algorithm. In Proceedings of the Workshop on

Computational Learning Theory. Morgan Kaufmann.
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The performance of boosting appears to be improved when the trees obtained in the

successive iterations are as independent as possible. This can be done, as in arcing, by

replacing the weighting mechanism by random sampling with replacement (pps). Another

principle, similar to that used in random forests, is that of increasing the choice of

variables (in random forests, a random element is added to the choice of variables): the

initial selection of the most discriminating variables would therefore not necessarily be

beneficial. For the same reason, a non-binary tree such as CHAID may provide a small

gain by comparison with CART, even though this is the tree that is nevertheless most

commonly used in boosting, ahead of C4.5.

There are certain criteria that must be specified for the implementation of a

boosting method:

. the use of bootstrap samples or of the complete initial sample;

. themethod of calculation of the adaptation error (how dowe calculate an error ratewhen

the classifier outputs a continuous prediction?);

. the method of calculating the weightings (should they be bounded?);

. the method of final aggregation of the base models.

With a tree, non-trivial results can be obtained even with a base tree having only a stump,

although better results are clearly achieved with a more complex tree and if the recom-

mended number of leaves of the base tree is in the range from 4 to 8, or equal to the square

root of the number of independent variables. The book by Hastie, Tibshirani and Friedman

(2009, section 10.1) gives the example of a stump used on a simulated test set (based on

Gaussian sums), for which the test error rate is 46% (hardly better than a random prediction)

but decreases to 12.2% after 400 boosting iterations, whereas a conventional decision tree

has an error rate of 26% in this case. Like random forests, and unlike simple bagging,

boosting is effective on stumps. This is another difference between these two ensemble

methods. The difference in performance between boosting and bagging is naturally maximal

for depth 1 trees, because with bagging it is often the same variable, or at least a very small

number of variables, that is chosen for the single split of the .tree (with a variable division if

necessary). Boosting, especially in its arcing variant, introduces a greater variety of

selection. In this configuration, the difference in performance between boosting and random

forests on one hand, and bagging on the other hand can be very great.

Many algorithms based on the boosting principle have been published, including Discrete

AdaBoost, Arcing, Real AdaBoost and Gentle AdaBoost which I have already mentioned,

LogitBoost (see the Friedman et al. paper cited at the beginning of this section), and more

recently Friedman’s gradient boosting105 and many others. They do not always differ much in

performance on real data, as opposed to simulated data sets: see, for example, Section 11.7

of Friedman et al. Themain feature of all these studies is the remarkable resistance of boosting

to overfitting.

11.15.4 Some applications

Other researchers than those mentioned above have compared the performance of these

methods on real or simulated data sets. Opitz and Maclin tested the bagging and boosting of

105 Friedman, J. (2002) Stochastic gradient boosting. Computational Statistics & Data Analysis, 38, 367–378.
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neural networks and decision trees on 23 data sets.106 Their paper is interesting in several

ways, particularly because neural networks are mentioned less frequently in the literature on

ensemble methods. There are at least two reasons for this: firstly, the longer processing times

of neural networks are a disadvantage when working on multiple samples; secondly, the

performance of neural networks is rather sensitive to parameters which are not always easy to

choose (from this point of view, CART is ideal). However, neural networks are useful because

of their wide range of application and their performance which may be better than that of

decision trees.

As for the number of models to be aggregated, these authors consider that it depends on

the method:

. about 10 are sufficient for neural network bagging and boosting and decision

tree bagging;

. for decision tree boosting, 25 models are required to achieve the greater part of the error

reduction.

These numbers are smaller than those mentioned by Hastie et al., but have been determined

using real data sets instead of simulated ones. For their part, Bauer and Kohavimade a detailed

study, on 12 data sets, of bagging and boosting with decision trees, but not with neural

networks.107 They also investigated the naive Bayesian classifier, which is very stable, and

found that bagging or boosting could not be expected to really reduce the variance of this

classifier (although boosting decreased its bias).

As a general rule, I have said that these ensemble methods are not particularly beneficial

for stable classifiers. As well as the naive Bayesian classifier, there is always the logit model.

This is particularly true for boosting and even arcing, because of their unwelcome tendency to

overweight the same observations in a stable model at all times (see above). Conversely,

random forests and their double randomization introduce a beneficial variability into models.

Bagging lies between these groups, with a fast performance (less than twenty iterations)

resulting in improved performance by comparison with the base model, although the

improvement is not so great as that provided by random forests. We can see this in the tests

conducted on the data set put on line by The Insurance Company (TIC) Benchmark108 and

currently used in competitions or benchmarking109. With this data set, a propensity score for

taking out a caravan insurance policy was modelled. The models were constructed on a

training sample of 5822 customers and the areas under the ROC curve were measured on a

validation sample of 4000 customers. Figure 11.124 compares the area under the ROC curve

(AUC) ofmodels produced by bagging, arcing and random forests, as a function of the number

of bootstrap samples. The base classifier is a logit model produced by stepwise selection (at

the 1% threshold) on a set of 17 variables (preselected from a larger set of 59 variables). If we

had used a base model without selection of variables, the aggregated models would have been

so similar that the overall performance would not have improved. The performance curve for

arcing on CART trees is also shown for comparison (see the diagram below).

106 Opitz, D. and Maclin, R. (1999) Popular ensemble methods: an empirical study. Journal of Artificial

Intelligence Research, 11, 169–198.
107 Bauer, E. and R. Kohavi (1999) An empirical comparison of voting classification algorithms: Bagging,

boosting, and variants. Machine Learning 36 (1–2), 105–139.
108 http://www.liacs.nl/~putten/library/cc2000/
109 See S. Tuff�ery (2009), Étude de cas en statistique d�ecisionnelle, Édition Technip, Section 2.23.
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The values of AUC shown in this diagram and the next one are the mean values found for

each model over thirty simulations.

We can see that logistic regression does not benefit from arcing at all, but it clearly does

benefit from an aggregation of random forests produced by drawing a new random sample

from 8 independent variables on each iteration (the reason for the number 8 is given below). In

this case, each model is produced by stepwise selection from a set of 8 variables chosen from

the 17 possible variables. This introduces variability into the variables used in each of the

aggregated models, resulting in variability in the logit models and better performance by the

aggregation. However, we can see in the diagram that, although the arcing of CHAID trees

converges more slowly, it finally provides a slightly better performance than that achieved by

aggregation of logistic models. The diagram below shows that, more generally, a weak

classifier such as a decision tree gains more from bagging and boosting than a stable classifier,

and this gain may be considerable. However, the initial performance of the decision tree is

poorer, and the aggregation of models does not take it far above or take it even below the level

of logistic regression. In this case, the areas under the ROC curve are approximately 0.680 for

the initial decision tree, 0.714 for the initial logit model, 0.728 for random forests of logit

models and arcing of CART trees, and 0.734 for the arcing of CHAID trees. From 0.714 to

0.734, the gain is 2.8%: not negligible, but not very large either.

In the credit scoring data set (“German credit data”) used in Section 12.7, the areas under

the ROC curve for the test sample are approximately 0.695 for the initial decision tree, 0.762

for the initial logit model (see Section 12.8), and 0.768 for random forests of logit models, but

only 0.745 for arcing with CART or CHAID trees.

We should note the interesting performance of random forests on logit models, especially

since the coefficients resulting aggregated model are the mean coefficients of the elementary

logitmodels,making itasconcise, readableandeasilyunderstoodandusedasany logisticmodel.
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Figure 11.124 AUC of models obtained by bagging, arcing and random forests of logit base

classifier, as a function of the number of bootstrap samples.
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Figure 11.125 shows the area under the ROC curve for models created from the same

(TIC) insurance data set by bagging and arcing of a base classifier which is a CHAID or a

CART tree. In all cases, the trees constructed on each iteration have no more than 15 leaves,

each with at least 100 individuals, and the depth of the tree is limited to 3 for CHAID and 6 for

CART. The CART trees are binary and the CHAID trees have a maximum of five children at

each node. These values were chosen because they led to good results.

The noise level of the data is sufficiently low, and the population is sufficiently large, to

avoid the introduction of fluctuations or supplementary noise. This case is therefore

favourable to arcing, and we find that the performance with this method is better than with

bagging. However, the convergence is slower, and takes place after about fifty iterations for

arcing, compared with thirty for bagging with CHAID or forty for bagging with CART. We

also find that bagging with CHAID is better than bagging with CART; this was also the case

with some other data sets (such as the “German credit data”) but notwith all. I have not shown

them in this diagram, but the performance of arcing without final weighting of the classifiers

is worse than that of conventional arcing with weighting, but by only a small amount (4/1000

of the area under the ROC curve). This is also a common finding. Another general

phenomenon is the convergence of the performance of arcing towards a level which has

little dependence on the base CART or CHAID tree, by contrast with bagging.

We can say that arcing is superior to bagging here, but this may not be the case with less

numerous or noisier data. Starting with a classifier (CART or CHAID) for which the area

under the ROC curve is about 0.680, we find that arcing gives us an AUC of about 0.730, a gain

of 7.3%. The gain provided by bagging is 6.3% for CHAID and 5.4% for CART.

I have also tested arcing with two-leaf CART trees (“stumps”) which, as mentioned above,

provides very satisfactory results despite the simplicity of the base classifier. In fact, the per-

formance in this case is very similar to that of bagging with CART trees with (a maximum of)
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Figure 11.125 AUC ofmodels obtained by bagging, arcing and random forests as a function

of the number of bootstrap samples.
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15 leaves. This is not always the case, but, more generally, the performance of this arcing of

stumps is often quite similar to that of random forests of “stumps”. Indeed, we can see in the

diagram that random forests of “stumps” provide a surprisingly good performance, consid-

ering the weakness of the base classifier. This has a lower AUC (0.576) than that of the two-

leaf CART tree with arcing (0.642), because in the first case the variable used for splitting is

chosen from a random subset of the set of variables, while in the second case the variable is the

optimal member of the available set of variables. With random forests of “stumps”, we obtain

an area under the ROC curve equivalent to that of a bagging based on a much more complex

CART base tree. I have constructed a CART treewith two leaves on each iteration, with a split

on a variable chosen from a sample of 8 variables out of the set of 59 variables. This sample of

8 variables is obtained by simple random sampling on each iteration (and even at each node of

the tree on each iteration). Only the size of the sample is fixed, and this is chosen to be close to

the square root of the total number N of variables ð ffiffiffiffiffi
59

p � 7:68Þ, according to recommenda-

tions found in the literature.110 I have also achieved good results (not shown in the diagram)

with the two values found in Breiman’s original paper of 2001 (cited in Section 11.15.2

above): the integer part of (log(N)þ 1), and the value 1. Concerning the latter value, it is worth

noting that, if we restrict ourselves to a single, randomly chosen, tested variable at each split,

the discriminant power of each treewill always be lower; however, the correlation between the

trees decreases markedly, which is advantageous for the final ensemble model whose variance

decreases, as observed by Breiman. Breiman also proposed a method for limiting the number

of variables selected at each nodewithout unduly decreasing the performance of each tree: this

was to take linear combinations of these variables (the coefficients of these combinations

were, of course, random). He carried out conclusive tests with three variables selected each

time and with 2 to 8 linear combinations of these three variables. Note, however, that it is

important not to use an excessively small number of variables if the proportion of truly

discriminant variables is low. This is because there would be a low probability of selecting a

discriminant variable in such a case, and the performance would inevitably be poor, despite

the weak correlation between the trees.

In our data, random forests with random drawing of a single variable provides truly

amazing performance levels (not shown in the diagram), since we start with an AUC of 0.540

and reach 0.680 in about a hundred iterations, i.e. a gain of 26%! With other data, we can

achieve even greater gains (although their practical usefulness is limited). In our example,

with a choice among eight variables, we only need about twenty iterations to make the

performance of random forests of CART trees with two leaves match that of bagging

with more complex CART trees. This provides a demonstration of the claims made in

Section 11.15.2. For these random forests, I have shown only the results found with a CART

tree, because it appears to be more suited to simple binary splitting than the CHAID tree.

However, I have also obtained satisfactory results with CHAID.

11.15.5 Conclusion

Whatever method is chosen - bagging, random forests or boosting - these ensemble methods

can often make a marked improvement in the quality of predictions, especially in terms of

robustness. The other side of the coin is the loss of readability of the decision trees, in certain

cases (for decision trees and neural networks), the need to store all the models so that they can

be combined and, in general, the large amount of computation time required, which may

110 See Section 15.3 of Hastie et al., The Elements of Statistical Learning, cited in Section 11.3.3 above.
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become troublesome when the number of iterations exceeds several hundred. However, it

should be noted that the loss of readability does not affect models such as discriminant

analysis or logistic regression models, because in these cases the coefficients of the final

aggregated model are the mean coefficients of the elementary models. In cases where the

aggregation of models improves the discriminating capacity of the basic model, as in certain

cases of random forests of logit models (see above), aggregation can therefore be of

considerable interest. More generally, the benefits of model aggregation are such that these

techniques have been the subject of many theoretical studies, and are beginning to appear in

commercial software, while also being available in the R software. The latter software

Table 11.4 Comparison of bagging and boosting.

BAGGING BOOSTING

Characteristics

Bagging is a random mechanism Boosting is an adaptive mechanism and is

generally deterministic (except for arcing)

Oneachiteration,learningtakesplace

on a different bootstrap sample

Generally (except in arcing), learning takes place

on the whole initial sample on each iteration

On each iteration, the resulting

model must perform well over all

the observations

On each iteration, the resulting model must

perform well on certain observations; a model

performing well on certain outliers will

perform less well on other observations

In the final aggregation, all the

models have the same weight

In the final aggregation, the models are generally

weighted according to their error rate

Advantages and disadvantages

A method for reducing variance by

averaging models

Can reduce the variance and bias of the base

classifier

But the variance can increase with a stable base

classifier

Loss of readability if the base

classifier is a decision tree

Loss of readability if the base classifier is a

decision tree

Ineffective on stumps (unless

double randomization is provided

as in random forests)

Effective on stumps

Faster convergence Slower convergence

The algorithm can be parallelized A sequential algorithm, which cannot be

parallelized

No overfitting: better than boosting

in the presence of noise

Risk of overfitting, but better than bagging

overall on non-noisy data (arcing is less

sensitive to noise)

Bagging is effective more often than

boosting. . .
. . . but when boosting is effective, it is better

than bagging
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provides the boosting functions adaboost and logitboost in the boost package, adaboost.M1 in

the adabag package, and the ada package which implements Discrete AdaBoost, Real

AdaBoost, LogitBoost and Gentle AdaBoost. Gradient boosting is available in the gbm and

mboost packages. For CART tree bagging, R offers the bagging function of the ipred

(improved predictive models) and adabag packages, which is used with the rpart function

that implements CART. Finally, Breiman’s random forests are provided in the randomForest

function of the package with the same name.

The main characteristics of bagging and boosting are summarized and compared in

Table 11.4.

11.16 Using classification and prediction methods

11.16.1 Choosing the modelling methods

In view of what has already been said in this chapter on modelling methods, we must keep

these facts in mind when making a choice:

1. Linear regression deals with continuous variables, discriminant analysis deals with

nominal dependent variables and continuous independent variables, DISQUAL dis-

criminant analysis deals with nominal dependent variables and qualitative independent

variables, logistic regression deals with qualitative dependent variables (nominal or

ordinal) and continuous or qualitative independent variables, neural networks dealwith

continuous variables on [0,1] (and transform the rest), some decision trees (CHAID)

natively handle discrete qualitative variables (and transform the rest), other trees

(CART, C5.0) can also handle continuous variables, and MARS deals with binary or

continuous dependent variables and all types of independent variable.

2. If wewant a precisemodel, wewill prefer linear regression, discriminant analysis and

logistic regression, possibly MARS, and perhaps SVMs and neural networks, taking

care to avoid overfitting (by making sure that there is no more than one hidden layer,

and not having too many units in the hidden layer).

3. For robustness, we should avoid decision trees and be wary of neural networks, and

prefer a robust regression to least squares regression if necessary.

4. For conciseness of the model, we should prefer linear regression, discriminant

analysis and logistic regression, and to a certain extent MARS and decision trees,

provided that the trees do not have too many leaves.

5. For readability of the rules, we should prefer decision trees and avoid neural networks

and SVMs. Logistic regression, DISQUAL discriminant analysis, linear regression

and MARS also provide easily interpreted models.

6. If there are few data, avoid decision trees and neural networks.

7. If we have data withmissing values, we can try using a tree,MARS, PLS regression or

logistic regression, coding the missing values as a special class.

8. Extreme values (outliers) of continuous variables do not affect decision trees and are

not too much of a problem for MARS, logistic regression and DISQUAL if the
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continuous variables are divided into classes and the extremes are placed in one or

two classes.

9. If the independent variables are very numerous or highly correlated, decision trees,

PLS regression and regularized regression (ridge, lasso) are appropriate.

10. If we have large data volumes, it is best to avoid neural networks, SVMs, and to a

lesser extent logistic regression, if we wish to reduce the computation time.

11. Neural networks are more useful when the structure of the data is not clear. When the

structure is evident, it is best to make use of this with other types of model.

12. The choice of method may also be guided by the topography of the classes to

be discriminated. This is because inductive classification methods divide the inde-

pendent variable space into regions, each associated with one of the classes to be

predicted. Any new individual who falls into one of these regions is classified

accordingly. The shape of these regions depends on the method used. For example, if

there are linear structures in the data, they will not be detected by decision trees. The

behaviour of the regions delimited by some classification methods are shown in

Figures 11.126–11.128, together with their effect on the classification of an individual

denoted ‘?’.

13. If we are seeking amethod for direct application to the data, without having to prepare

them (by normalization, discretization, transformation or selection of variables), to

homogenize them (when they are of different types), or to adjust fine parameters – in

other words, if we are looking for an ‘off the shelf’ method – we should consider

decision trees, MARS, bagging and boosting.

? is classed in ‘1’
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0       0   1       0  1
      0              1

        0      0
   1  1 ?   0
 1       1       0      1

Figure 11.126 Regions in a discriminant analysis.
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Figure 11.127 Regions in a neural network.
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The table below summarizes the advantages and disadvantages of each classification method

according to the main evaluation criteria. The symbol ‘¼’ denotes a generally acceptable

behaviour of the method or a behaviour which may be good or bad depending on the

circumstances; thus, in the context of neural networks, the perceptron is not as badly affected

as the RBF network by the presence of correlated variables. The robustness of an SVM

depends on its parameter setting. Boosting is generally robust, but not with noisy data.

Table 11.5 Advantages ans disadvantages of classification methods.
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Regularized

regression

þ þ þ þ þ � � þ þ �

Linear

discriminant

analysis

þ þ þ þ þ � � � þ �

DISQUAL

analysis

þ þ þ þ þ ¼ ¼ þ þ �

Logistic

regression

þ þ þ þ þ ¼ ¼ � ¼ �

Decision trees ¼ – ¼ þ � þ þ þ þ þ
Neural networks þ � � � � � ¼ ¼ � �
SVM þ ¼ � � � � ¼ ¼ � �
Bagging (of trees) þ ¼ � � � þ þ þ � þ
Boosting (of trees) þ ¼ � � � þ þ þ � þ
MARS þ ¼ þ þ � þ ¼ þ ¼ þ

? is classed in ‘0’
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Figure 11.128 Regions in a decision tree.
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11.16.2 The training phase of a model

The learning phase begins with the construction of the learning sample. This is a sample taken

from the population under study, from which the predictive model is built. It must therefore

contain enough individuals to provide a statistically reliable support for the discovery of rules

and the building of a model (see Section 11.3.2). It must also be sufficiently representative for

the model built from this sample to be generalized successfully to the whole population, with

predictions that remain reliable.

This does notmean that this sample is necessarily an exact reproduction, on a smaller scale,

of thewhole population, in other words the result of simple random sampling. On the one hand,

this situation cannot always be achieved, because there may be selection biases in propensity

studies (see below) just as there are in risk studies (see Section 11.16.3). On the other hand, the

learning sample may sometimes be deliberately biased, to facilitate learning, especially in a

neural network or a decision tree, so that it contains the same proportion of each of the classes to

be predicted, even if this is not the case with the whole population. If we wish to classify

individuals into two categories, ‘yes’ and ‘no’, the samplewill contain 50% ‘yes’ and 50% ‘no’:

the sample is stratified on the dependent variable. The need for such an adjustment of the sample

is evident in the case of a CART decision tree (see Section 11.4.7). If we analyse the results of a

directmarketing campaign inwhich the rate of return is 3%, then obviouslywe cannot construct

a CART tree capable of classifying 3%of purchasers and 97%of non-purchasers. Since this tree

uses a division criterion based on purity, division may well become impossible from the root of

the tree onwards: how can we divide a node which is already 97% pure? The tree will say that

there are no purchasers, with a quite acceptable error rate of 3%.

This sample adjustment may also be recommended in the case of a linear discriminant

analysis carried out with independent variables which do not have the same variance in the

different classes to be discriminated: the heteroscedasticity is considered to be less serious

when the frequencies are of the same size. For logistic regression, the question of sample

adjustment is debated by statisticians, but does not appear to be essential.

Now let us consider how we define the class of each individual – in other words, how we

define the dependent variable. This definition is crucial and decisive for the results. There are

three ways of tackling this problem, which I will illustrate with the example of a propensity

score for predicting customer response to a marketing campaign for a product which is not

new and has been marketed before. If it were a new product, we would have to carry out a

preliminary propensity survey on a panel of customers, or use some known results for a similar

product, or purchase a ready-made model from a scoring specialist.

The first approach is simplest, most obvious, and least satisfactory. The ‘good’ (i.e.

‘receptive’) customers are defined as thosewho have bought the product (and not returned it to

the vendor), and the ‘bad’ (i.e. ‘resistant’) customers are those who have not purchased it. The

drawback of this approach is that it makes the results entirely dependent on the marketing

campaigns and targeting carried out previously for this product. The model is completely

dependent on the past, and can only reproduce the targeting rules of earlier campaigns. If

customers aged over 50 have been omitted, out of prejudice, then some of these may have

bought the product from a more enterprising competitor. However, the model will insist that

customers aged over 50 have a low propensity to buy. This may well be false: the over-50s

might have been the keenest purchasers of the product, if it had been offered to them.

The second approach is the opposite of the first. It defines ‘good’ and ‘bad’ customers only

among those who were targeted in a previous marketing campaign. This neutralizes the
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targeting bias. In our example, the condition ‘aged over 50’ will no longer be discriminating

for separating the ‘good’ from the ‘bad’, because all the individuals in the sample will be aged

under 50. However, this approach also has some deficiencies. First of all, we have to be able to

identify the previously targeted customers, but the IT system may not allow this (if this is the

case, the system needs to be adapted for this purpose). Then the previous campaigns must be

recent enough for the data on the customers at the time of these campaigns to be still available:

we need to know what the customer’s equipment was and how he used it at the time of the

campaign, not at the present time. The campaigns must have been on a large enough scale to

enable us to construct a learning sample: if fewer than 500 products were sold, we cannot do

anything. The conditions in which the previous campaigns were carried out must be

comparable to those of future campaigns. The results will be distorted if a previous campaign

was accompanied by an exceptional promotion, especially if some customers benefited more

than others: these customers will obviously distort the model if we cannot detect and isolate

them. Finally, the previous campaigns must have covered a substantial proportion of the

customer base. In our example, the propensity score for customers over 50 years of age will

not be artificially low, but it may not be very reliable, if these customers have never been

targeted. Thus there may be risks involved in training a model on previously targeted

customers only.

We may consider that the situation relating to propensity is not symmetrical: a non-

targeted non-purchasing customer does not necessarily have a low propensity, while a non-

targeted purchaser has a high propensity (even higher than a targeted purchaser, we may

be tempted to think). It is therefore tempting to keep all the purchasers, even if non-targeted,

in the sample of customers with propensity. This also has the advantage of enlarging and

diversifying the sample. However, this extension to non-targeted purchasers may introduce

a significant bias. Suppose that the targeted customers are mostly home-owners: if we add

non-targeted purchasers to the ‘with propensity’ sample, we will add tenants to the sample

and this may give the erroneous impression that tenants have a greater propensity than

owner-occupiers.

The third method of constructing the learning sample lies between the first two. We can

use it if we are unwilling or unable to use the history of earlier targeted campaigns, while not

resorting to the simplistic ‘good’ and ‘bad’ definitions. In this approach, we define the ‘bad’

customers as the ones, out of those who have not purchased the product, who meet another

criterion. This criterion is not the fact of having been targeted and having had the product

offered to them, but a criterion determined by common sense (constraints due to legislation,

age, etc.), by marketing intuition, or by segmenting the population and finding the dominant

criteria in the segments (not too small) which only contain customers who do not have the

product. We can assume that the customers who meet this criterion will be resistant to the

product. Although this approach avoids the drawbacks of the first two, it suffers from other

disadvantages. In the first place, if we fix a ‘criterion’ for ‘bad’ in a more or less arbitrary way,

we cannot use the variables relating to this criterion in the predictive model, as this would

evidently lead to overfitting. There is also a risk that the criterion of ‘bad’ will have a small

membership, in other words only the customers meeting this criterion will resemble them. In

the phase of application to the whole population, the model will be unable to classify the

customers without propensity, if they do not resemble the ‘bad’ customers artificially defined

in the learning phase.

So which of these methods should we choose? If we have sufficiently complete,

comprehensive and representative records of marketing campaigns similar to the one for
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which propensity is to be modelled, the second method is preferable. Otherwise, the third is

better, but we must recognize that many users simply opt for the first method.

11.16.3 Reject inference

The question that arises in the propensity score example in the previous section is that of

the learning of a model based on a non-random sample. This also arises in the medical

and insurance fields. It is posed here because marketing policies and targeting are such

that some customers always receive fewer offers than the rest. Therefore they will take

out fewer contracts and bias the propensity models. This problem of selection bias arises

in a more radical way in the development of risk models, especially in credit scoring,

because the customer may be refused credit, which is much worse than not having it

offered.

The process of taking rejected files into account in credit scoring (reject inference) poses a

problem because the lending organization does not allow them to exist and reveal themselves

as ‘good’ or ‘bad’, so that the dependent variable is not known. Now, these customers have not

been rejected by chance. Consequently, it is incorrect to apply a model built on a population of

accepted applicants to this population. Furthermore, the files classed as ‘no action’ because of

rejection by customers, whomay for example have found better offers among the competition,

must be added to those rejected by the organization: this is another source of bias. At the

present time, despite numerous attempts,111 no fully satisfactory statistical solution has been

found for the problem of reject inference. This is evidently more crucial where the proportion

of rejections is higher: it depends on the type of credit, the type of borrower and the type of

lender. For example, it is a greater problem for personal credit to individuals from specialist

establishments than for property lending by retail banks.

Various different approaches can be tried. The first three of these are rather elementary and

the next two are statistical.

First method: ignore the existence of the ‘rejects’ and simplymodel those ‘accepted’. This

is a fairly commonplace approach in the field of risk, but less so in propensity studies (it is the

second approach described in the previous section).

Second method: treat all the rejected files as ‘bad’. This is a similar stance to that of

considering every non-purchaser as ‘bad’ in terms of propensity, regardless of whether or not

he has received a marketing offer (this is the first approach described in the previous section).

Third method: assume that the ‘rejects’ have been rejected randomly and assign them at

random to the ‘good’ or ‘bad’ category while keeping the same proportion of these two

categories as in the ‘accepted’ population.

To explain the fourth method (‘augmentation’, Hsia, 1978),112 one of the most widely

used, we must break down the probability P(b|x) of a file having a profile x being ‘good’, by

writing it as follows:

Pðb xÞ ¼ Pðb x; aÞPða xÞþPðb x; rÞPðr xÞ;jjjjj

111 See, for example, Crook, J. and Banasik, J. (2002) Does reject inference really improve the performance of

application scoring models? Working Paper 02/3, Credit Research Centre, University of Edinburgh.
112 Hsia, D. C. (1978) Credit scoring and the Equal Credit Opportunity Act. Hastings Law Journal, 30, 371–448.
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where P(r|x) (P(a|x)) is the probability that a file with features xwill be rejected (accepted). In

this method, we assume that the unknown probability P(b|x,r) conforms to the equality

Pðb x; rÞ ¼ Pðb x; aÞ:jj

This equality means that the risk of a file depends only on its own characteristics and not on

whether it has been accepted or rejected.We could therefore carry out the score training on the

accepted files to which the rejected files would be added, after classifying each rejected

individual as ‘good’ or ‘bad’ according to the accepted files which resemble him, using for

example the k-nearest neighbours (see Section 11.2) to bring him towards the nearest

neighbouring profile. We can see that an isolated accepted file among rejected files will

have a large weight in the inferred model, because all these rejected files will be given the

value of the dependent variable of the accepted file. More precisely, each accepted file is

entered into the model with aweight inversely proportional to the probability P(a|x) that it had

of being accepted. The augmentation method is therefore normally applied in two stages: first

we determine an acceptance model to calculate the probability P(a|x) of each file, and then we

weight each accepted file by 1/P(a|x) and build the final model on the accepted files which

have been weighted in this way. This weighting enables us to ‘compensate’ to some degree for

the absence of the rejected individuals.

Fifth method (‘iterative reclassification’, Joanes, 1994):113 the score training initially takes

place on ‘good’ and ‘bad’ accepted files. The resulting score is then applied to the ‘rejects’ to

classify them as ‘good’ or ‘bad’. A score is then recalculated by adding the rejected files

predicted as ‘good’ (‘bad’) by the preceding model to the ‘good’ (‘bad’) accepted files. This

new score is then applied to the ‘rejects’ to classify them as ‘good’ or ‘bad’, and the reiteration

continues until the resulting scores become stable.

Sixth method: define a priori criteria based on the available data, such that we can assert

that a rejected file is good or bad. For example, we can say that not all the non-targeted non-

purchasing customers have a low propensity, but only those who meet certain supplementary

conditions (e.g. age, income, etc.)

Seventh method (if allowed by the subject and the law): complete the knowledge of the

‘rejects’ using external data (e.g. credit bureaus), taking care to ensure that the internal and

external definitions of the dependent variable match.

Eighth method (the most reliable): accept some of the files which should have been

rejected. Very few establishments will risk this, but the resulting losses might be less than the

benefit gained from a more reliable score.

11.16.4 The test phase of a model

However well constructed the training sample may be, it obviously cannot tell us about the

model’s capacity to be generalized to the whole population. One cannot be both referee and

player; the same sample cannot be used for both the development and the validation of a

model, because the result of using a sample to validate a model built on the same sample is

always too optimistic. We must therefore have a separate sample for testing each model and

selecting the best of the models built during the training phase.

113 Joanes, D.N. (1993–4) Reject inference applied to logistic regression for credit scoring. IMA Journal of

Mathematics Applied in Business and Industry, 5, 35–43.
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This sample is also taken by drawing at random, which is not necessarily simple but may

require stratification on the dependent variable. The test sample is generally half the size of the

training sample. If it is really impossible to take a test sample, because of an insufficient

number of individuals in each class (less than 500), we can perform a cross-validation (see

Section 11.3.2). It is sometimes considered that cross-validation is sufficient to decide

between a number of models belonging to the same family, whereas a choice between

models of different types must be made with a test sample.

The following indicators are clearly a better measure of the quality of the model when they

are calculated on a test sample than when they are calculated on the training sample.

For a prediction model, the quality is evaluated by the statistical indicators described

previously in the context of linear regression (Section 11.7), particularly the coefficient of

determination R2 and the mean square error RMSE.

For a classification model, the performance can be stated in a confusion matrix of the

following form:

Observed

Predicted Yes No Total

Yes 250 150 400

No 50 550 600

Total 300 700 1000

This enables us to measure the error rate, or incorrect classification rate, which in our

example is (50 þ 150)/1000¼ 20%. In this case, a random classification would result in the

following table:

Observed

Predicted Yes No Total

Yes 90 210 300

No 210 490 700

Total 300 700 1000

with a correct classification rate of (90 þ 490)/1000¼ 58%, as compared with the 80% of the

example. Rather than perform a random classification, it is even better to assign all the

individuals to the largest class, in other words the one with 700 individuals, which yields a

correct classification rate of 70%.

In this example, if we send a mailing to the predicted purchasers only, we send only 400,

instead of 1000, and we only lose 50 purchasers out of 300. We can thus make considerable

savings in our mailshots. Some of the 150 non-purchasers who are predicted to be purchasers

are score errors, and some are prospects who should be followed up because of their

‘purchaser’ profile. In this example, we find that there are far fewer purchasers predicted as

non-purchasers (50 out of 600) than non-purchasers predicted as purchasers (150 out of 400).

Such an asymmetry is not unusual. In the present case, the score is rather optimistic, and this

USING CLASSIFICATION AND PREDICTION METHODS 541



is preferable in a marketing development context where it is better to send a mailing with no

result than to lose business. In the field of risk (financial, and especially medical), it is

generally preferable to be over-pessimistic, and to class an individual as ‘at risk’ even where

he is not, rather than to fail to detect an individual who really is at risk.

To repeat: the confusion matrix calculated on the test data supplies an error rate that is a

better measure of the quality of the model than the error rate in training. As mentioned in

Section 11.3.4, the error rate in training decreases constantly with the complexity of the

model, while the error rate in testing eventually increases if the complexity of the model

increases. The increase in the complexity of the model must be halted at this point. What is

important is to have the lowest error rate in testing, not in training.

Thus the test phase enables us to select the best model out of all those considered

during the training phase. But this is not all: In completely explicit models such as decision

trees, this phase can be used not only to adjust the complexity, in other words the depth of

the tree, to the correct level globally, but also to check the validity of each rule one by one,

ensuring that the prediction made in training (for each leaf of the tree) is confirmed

during testing.

To evaluate the performance of scoremodels, we shall now look at some indicators that are

more elaborate and useful than the error rate: these are the ROC curve, the lift curve, and the

measurements of area associated with them.

11.16.5 The ROC curve, the lift curve and the Gini index

Faced with the multiplicity of modelling methods, each with its own statistical quality

indicators (such as the Wilks lambda for discriminant analysis and the log-likelihood for

logistic regression), statisticians have attempted to find universal criteria for the performance

of a model. The best-developed and most widely used criteria are described below. They are

applied tomodels for classification into two classes. For three ormore classes, there appears to

be no simple generalization of the curves described here.

ROC curve

The discriminating power of a score model can be visualized with a curve called the receiver

operating characteristic (ROC) curve, a term that originated in signal processing. It represents

(on the Y axis) the proportion of events (such as the appearance of a risk) detected as

such because their score is greater than s, as a function (on the X axis) of the proportion of

false events, in other words non-events detected as events because their score is greater than s

(e.g. ‘not at risk’ detected as ‘at risk’), when the score separation threshold s is varied. More

specifically, two functions of s are defined:

. the sensitivity a(s), the probability of correctly detecting an event at the

threshold s¼ Prob(score(x)� s | x¼ event),

. the specificity b(s), the probability of correctly detecting a non-event at the

threshold s¼ Prob(score(x)< s | x¼ non-event),

and we can say that the proportion of false events among the non-events is 1 � b(s)¼
Prob(score(x)� s | x¼ non-event). Therefore the ROC shows a(s) as a function of 1 � b(s),
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for values of s ranging from the maximum (where all individuals are considered to be

non-events, and thus a(s)¼ 1 � b(s)¼ 0) to the minimum (where all individuals are

considered to be events, and thus a(s)¼ 1 � b(s)¼ 1).

If this curve coincides with the diagonal, the model performs no better than a random

model, as is the case with the density curves shown in Figure 3.14, when the variable Z is

replaced with the score. The more closely the ROC approaches the top left-hand corner of the

square in Figure 11.129, the better the model is, because it captures the largest possible

number of true events with the fewest possible false events. The ROC curve of a perfect model

is composed of the two segments linking the points (0, 0) to (0, 1) and (0, 1) to (1, 1). This case

corresponds to completely separate density curves in Figure 3.12. The model is improved by

having large values on the vertical axis associated with small values on the horizontal axis, in

other words a large area between the ROC curve and the horizontal axis. The convexity of this

curve is equivalent to the property of the increase of the probability of the event conditionally

on the score, as a function of this score function. The ROC curve is invariant for any increasing

monotonic transformation of the score function, an interesting property when we realize that

the score function is frequently normalized, for example in order to bring its values into the

range from 0 to 100.

For example, the ROC of a logistic regression in Figure 11.129 passes through the point

x¼ 0.3 and y¼ 0.9. This point corresponds to a threshold s which is such that, if we consider

all individuals having a score greater than s as ‘events’, then 30% of the non-events have been

detected incorrectly (30% of the non-events have a score greater than s) and 90% of the true

events have been correctly detected (90% of the events have a score greater than s). Warning:

0.3 does not correspond to 30% of the total population, and the ROC curve must not be

confused with the lift curve defined below.

Figure 11.129 ROC curve.
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Another example will make it easier to understand the construction of the ROC curve (see

Table 11.6). This is a score applied to 20 individuals, of which 10 are positive (‘events’) and 10

are negative (‘non-events’). The score must be higher for the positives. If we set a threshold at

0.9, such that every individual with a score of at least 0.9 is considered positive, we have 10%

of true positives (1 in 10) and 0% of false positives (see Figure 11.130). Similarly, if we set a

threshold at 0.8, such that every individual with a score of at least 0.8 is considered positive,

we have 20% of true positives and 0% of false positives. Now, if we set a threshold at 0.7, such

that every individual with a score of at least 0.7 is considered positive, we still have 20% of

true positives but also 10% of false positives, because the third individual is negative and has a

score of 0.7. And so on.

Each point on the ROC curve corresponds to the confusion matrix defined by a certain

threshold value. To plot the ROC curve, therefore, we must examine the set of confusion

matrices defined for the set of possible values of the threshold.

The link between the confusion matrix and the ROC curve is illustrated in Figure 11.131

with the example of heart disease discussed in Section 10.8.1 on logistic regression. At the

threshold of 0.5, the sensitivity of the model is 27/43 and its specificity is 45/57.

Classification tablea

Predicted

CHD

Percentage correctObserved 0 1

CHD 0 45 12 78.9

1 16 27 62.8

Global percentage 72.0

a The cut-off value is .500

Table 11.6 Example of the determination of an ROC curve.

# Class Score # Class Score

1 P 0.90 11 P 0.40

2 P 0.80 12 N 0.39

3 N 0.70 13 P 0.38

4 P 0.65 14 N 0.37

5 P 0.60 15 N 0.35

6 P 0.55 16 N 0.30

7 P 0.50 17 N 0.25

8 N 0.45 18 P 0.20

9 N 0.44 19 N 0.15

10 N 0.42 20 N 0.10
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Figure 11.131 The link between the confusion matrix and the ROC curve.
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Figure 11.132 shows how to read the ROC curve of a model. The ROC curve enables us to

compare models:

. of different types (even when their performance indicators are not directly comparable);

. globally and locally (one model may be globally superior to another, even if its

performance is less good on the most at-risk individuals, for example).

In local terms, we can see in the example of Figure 11.129 that discriminant analysis is

better at some points and worse at others than the decision tree, while logistic regression is

always better than the other two models.

Globally, we can compare the performance of two models by comparing the areas A under

their respective ROC curves. From what we have seen of the ROC curve, it is clear that the

performance of a model improves, in terms of separating true events from false ones, as its

area under the ROC curve approaches 1. The performance of a model declines as its area

approaches 0, and a model for which the area is 0.5 provides a classification which is no better

than random. More precisely, each area A is the probability that the score of an individual x

will be greater than that of an individual y if x is drawn at random from the n1 ‘events’ (the

group to be predicted) and y is drawn from the n0 ‘non-events’. If A¼ 1, the scores of all the

‘events’ are greater than the scores of all the ‘non-events’: the score discriminates perfectly

between the populations.

Recalling the Mann–Whitney U statistic (see Section 3.8.3), we will see that this is equal

to (1–A)n1n0 (or An1n0, if A< 0.5), when it is calculated for the qualitative variable ‘target’

and the quantitative variable ‘score’. Let R1 be the sum of the ranks of the scores of the n1
‘events’; then, in the normal case where A� 0.5, we can deduce that

A ¼ R1 � 1
2
n1ðn1 þ 1Þ
n1n0

:
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In fact, ifA� 0.5, the score of an individual in the group to be predicted ismore likely to be

greater than the score of an individual in the other group than vice versa. Therefore, U1<U0

(in the notation of Section 3.8.3) and U¼min(U0,U1)¼U1. Now,

U1 ¼ n1n0 þ n1ðn1 þ 1Þ
2

�R1;

and therefore
U

n1n0
¼ 1þ 1

n1n0

n1ðn1 þ 1Þ
2

�R1

� �
and

A ¼ 1� U

n1n0

takes the value mentioned above.

SAS provides a simple method of programming this calculation of the area under the ROC

curve. The syntax below creates a macro with the name AUC, for which the code starts with

‘%macro AUC’ and ends with ‘%mend AUC’. Its parameters are the scored data set DATA,

the dependent variable TARGET and the score SCORE. As with every SAS macro, these

parameters are preceded by the symbol ‘&’ in the code. When it reads this symbol, the SAS

macro compiler knows that it has to replace the parameter with the value specified when the

macro was called. This call is made, as many times as required, by the instruction containing

the name of the macro (preceded by %) and the values of the parameters, which can vary with

each call of the macro:

%AUC(model,survived,proba);

When it finds this instruction, SAS calls the macro and replaces ‘&data’ with ‘model’,

‘&target’ with ‘survived’ and ‘&score’ with ‘proba’ in the macro code. Thus the macro is

transformed into a program which can be analysed and executed by the ordinary SAS

compiler, instead of the macro language compiler.

In this macro, the NPAR1WAY procedure calculates the rank sums R0 and R1, and the

following DATA step calculates the Mann–Whitney statistic according to the formula shown

in Section 3.8.3 and reproduced above, before using this to deduce the area under the AUC,

displayed by the PRINT procedure. As in Section 3.8.4, we can use the SAS ODS instruction,

which, when placed before the NPAR1WAY procedure, causes the results (the rank sums) to

be sent to the specified data set (wilcoxon).

%macro AUC(data,target,score);

ODS OUTPUT WilcoxonScores = wilcoxon;

PROC NPAR1WAY WILCOXON DATA=&data CORRECT=no;

CLASS &target;

VAR &score;

RUN;

DATA auc;

SET wilcoxon;

n0 = N; R0 = SumOfScores ;

n1 = lag(N); R1 = lag(SumOfScores) ;
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U1 = (n1*n0) + (n1*(n1+1)/2) - R1;

U0 = (n1*n0) + (n0*(n0+1)/2) - R0;

U = min(U1,U0);

AUC = 1- (U/(n1*n0));

RUN;

PROC PRINT DATA=auc (KEEP = AUC) NOOBS;

TITLE "Area under the ROC curve";

WHERE AUC > .;

RUN;

%mend AUC;

To make the syntax clearer, let us look at the content of the AUC data set:

Obs Class N SumOfScores n0 R0 n1 R1 U1 U0 U AUC

1 1 711 1038858.0 711 1038858 . . . . . .

2 0 1490 1384443.0 1490 1384443 711 1038858 273648 785742 273648 0.74169

We can calculate the confidence interval of A, and a test can be used to reject the null

hypothesis that A¼ 0.5. In the preceding example we see that the three models perform

significantly better than a random classification (Figure 11.133), and that discriminant

analysis is globally slightly better than the decision tree, which was not easily visible in

Figure 11.129.

Lift curve

A variant of the ROC curve is the lift curve, which has long been used in marketing. It is

also used in econometrics, under the name of the Lorenz curve or power curve. It

represents the proportion a(s) of events detected (the sensitivity) as a function of the

proportion of the individuals selected (those with a score greater than s). We can see that

the lift curve has the same ordinate a(s) as the ROC curve, but a different abscissa. Since

Asymptotic 95% Confidence 
Interval

Test Result Variable(s) Area Std. errora Asymptotic sig.b Lower bound Upper bound

discriminant analysis .904.873 .000.008.889 

logistic regression .921.892 .000.007.906 

decision trees .902.872 .000.008.887 

a. Under the nonparametric hypothesis
b. Null hypothesis: true area = 0.5 

Figure 11.133 Area under the ROC curve.
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a(s)> 1 � b(s), this abscissa will be greater than the abscissa 1 � b(s) of the ROC curve,

because it is the proportion of all the individuals having a score greater than s, instead of

the proportion of all the ‘non-event’ individuals having a score greater than s. Since the lift

curve generally has a larger abscissa than the ROC curve for a given ordinate, the lift curve

lies below the ROC curve.

This abscissa, the proportion of individuals having a score greater than s, is composed of

the sum of two terms:

. the proportion of ‘event’ individuals with a score greater than s, given by

Probðx ¼ eventÞ � ProbðscoreðxÞ > s=x ¼ eventÞ ¼ paðsÞ;

. the proportion of ‘non-event’ individuals with a score of greater than s, given by

Probðx ¼ non-eventÞ � ProbðscoreðxÞ > s=x ¼ non-eventÞ ¼ ð1� pÞð1� bðsÞÞ:

Here p denotes the a priori probability of the event in the whole population (corresponding,

for example, to the proportion of purchasers or at-risk customers), a(s) is the sensitivity at the
threshold s and b(s) is the specificity as defined above.

We therefore deduce that the area under the lift curve is:

AUL ¼ Ð ordinate dfabscissag
¼ Ð adfp � aþð1� pÞð1� bg ¼ pfÐ adagþ ð1� pÞfÐ adð1� bÞg
¼ p=2þð1� pÞðarea under the ROC curveÞ:

We can conclude again that the area under the ROC curve (AUC) is always greater than the

area under the lift curve (AUL), provided that AUC> 0.5, in other words that the ROC curve is

above the diagonal. We find that:

AUC�AUL ¼ AUC� p=2�ð1� pÞAUC ¼ p �AUC� p=2 ¼ pðAUC� 0:5Þ:
This formula also shows that:

. if AUC¼ 1 (score providing perfect separation), then AUL¼ p/2 þ (1 � p)¼ 1 � p/2

(as shown by the plot of the lift curve in Figure 11.134);

. if AUC¼ 0.5 (random prediction), then AUL¼ p/2 þ 1/2 � p/2¼ 0.5;

. if the probability p is very small, the areas under the two curves are very similar;

. in all cases, measuring the area under the lift curve is equivalent to measuring the area

under the ROC curve for the purposes of deciding whether one model is better than

another.

Sowhy should we prefer the area under the ROC as the universal measure of performance?

There are three reasons for this:

. the area under the ROC curve can be simply interpreted as a probability;

. it can be deduced directly from the Mann–Whitney statistic and is suitable for non-

parametric statistical testing;
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. as a performance indicator of a model, it has an absolute significance, which, unlike the

area under the lift curve, does not depend on the a priori probability of the event (even

the shape of the lift curve depends on this probability).

The lift curve is plotted by classifying the individuals in decreasing order of score,

grouping them into percentiles for example, determining the percentage of events in each

percentile, then plotting the cumulative curve of these percentages, so that a point with

coordinates (n,m) on the curve signifies that the n% of individuals having the highest score

contain m% of the events. The lift curve of a random model is the straight line with the

equation y¼ x, because n% of the events are attained by targeting n% of the individuals.

Conversely, a perfect model would be one in which all the events were selected first of all. The

corresponding lift curve is shown in Figure 11.134: this is a straight line touching the ordinate

of 100% at an abscissa equal to the global percentage p of events, extended by a horizontal line

with the equation y¼ 100. The area under this ideal lift curve is 1 � p/2. The model improves

as its lift curve approaches the ideal curve.

The example in this figure shows that we reach 30% of the events (purchasers, for

example) by targeting 10% of the individuals. This means that we have been able to find a

threshold s such that 10% of the individuals have a score greater than s and 30% of the events

have a score greater than s.

By definition, the lift at n% is the ratio m/n such that (n,m) is on the lift curve; in other

words, such that n% of the individuals contain m% of the events. Thus, in the example above,

we have a lift of 3 at 10%. This corresponds to a response rate multiplied by 3 with respect to a

random model.

Lift = 30/10 = 3
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Figure 11.134 Lift curve.
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Note that some authors call the lift curve the ‘response curve’, and reserve the term ‘lift

curve’ for the curve which has the same abscissa and has an ordinate which is no longer the

percentage of purchasers but is directly the lift. In our example, the abscissa 10 corresponds to

the ordinate 3 (a lift of 30/10 at 10%) and the abscissa 50 corresponds to the ordinate 1.7 (a lift

of 85/50 at 50%). This is a decreasing curve.

In the field of propensity to apply for consumer credit, it is sometimes considered that a

good scoremodel will find 60% of purchasers with 30% of the customers, and that a very good

scoremodel will find 90% of purchasers with 30% of the customers (giving a lift at 30% of 2 to

3). In a study of churn (in mobile telephone systems), a good score model will find 35–50% of

churners among 10% of the customers (lift at 10% between 3.5 and 5).

The Gini index

We have seen that the area under the lift curve has no absolute significance, because it

depends on the probability p of the event. However, we know that this curve must tend

towards the ideal lift curve. This suggest another measure of the performance of a predictive

model: the ratio

surface between the real lift curve and the diagonal

surface between the ideal lift curve and the diagonal

which must obviously be as close as possible to 1. Given that the numerator is AUL � 0.5

¼ p/2 þ (1 � p)AUC � 1/2 and that the denominator is 1 � p/2 � 1/2¼ (1 � p)/2, we

can easily deduce that this ratio is equal to

2:AUC� 1

and that it therefore has the useful property, like the AUC, of being independent of the

probability p. It is called the Gini index or coefficient (or ‘accuracy ratio’), and is identical to

Somers’ D statistic. This index is twice the area between the ROC curve and the diagonal.

11.16.6 The classification table of a model

The classification table of a model is the series of confusion matrices obtained for a whole set

of possible thresholds of the score function. The threshold is the value of the score function

above which the event is considered to be predicted, and below which the non-event is

considered to be predicted.

For a logistic model, the score function is given by the a posteriori probability at the output

of the model. The SAS LOGISTIC procedure has a useful option called CTABLE (see

Section 11.8.12), which produces a classification table in which the series of confusion

matrices is shown in rows, with one row for each possible threshold. The PPROB option

following CTABLE sets the interval of the threshold.

The example used to illustrate the operation of CTABLE is the coronary heart disease

(CHD) study of Hosmer and Lemeshow which we have examined previously. The event to be

predicted is the onset of CHD, corresponding to category 1 of the dependent variable. Setting a

threshold at 0.5 means that we consider any individual whose probability exceeds 0.5 to be ill.

The coefficients of the confusion matrix at the 0.5 threshold can be read on the row associated

with the probability level of 0.5 (in bold type in Figure 11.135). We find 27 and 45 in the
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‘Correct’ columns: these are the numbers of correctly predicted individuals, which are on the

diagonal of the confusion matrix. The 12 individuals who are not ill but are predicted to be ill

are in the ‘Incorrect’ column (because they are incorrectly predicted) and in the ‘Event’

column (because the illness, which is the event, has been predicted). The same applies to the

16 individuals who are ill but were predicted not to be. The confusion matrix at the 0.5

threshold is therefore

Predicted ! 0 1 Total

Observed #
0 45 12 57

1 16 27 43

total 61 39 100

The meaning of the classification table columns under the ‘Percentage’ heading is as follows:

T The ‘Correct’ column contains the percentage of correct predictions, in this case

(45 þ 27)/100¼ 72%.

T The ‘Sensitivity’ column (defined in the previous section) contains the percentage of

events predicted as such; in this case it is 27 (predicted events) divided by 43 (observed

events), i.e. 62.8%.

T The ‘Specificity’ column (see the previous section) contains the percentage of non-

events predicted as such; in this case it is 45 (predicted non-events) divided by 57

(observed non-events), i.e. 78.9%.

T Symmetrically, the ‘False POS’ column contains the proportion of incorrectly predicted

events (wrongly predicted as ill) within the set of predicted events. In this case, 12

Classification table

Correct Incorrect PercentageProb.
level Event Non-

event
Event Non-

event
Correct Sensi-

tivity
Speci-
ficity

False
POS

False
NEG

0.000 .57.0 0.0 100.043.0 0570 43 

0.100 14.354.8 10.5 97.748.01516 42 

0.200 14.345.8 42.1 90.763.043324 39 

0.300 17.941.0 56.1 83.768.072532 36 

0.400 21.233.3 71.9 74.473.0111641 32 

26.230.8 78.9 62.872.0161245 27 0.500 

0.600 26.521.9 87.7 58.175.018750 25 

0.700 32.024.0 89.5 44.270.024651 19 

0.800 39.622.2 96.5 16.362.036255 7 

0.900 42.40.0 100.0 2.3 58.042057 1 

1.000 43.0. 100.0 0.057.043057 0 

Figure 11.135 Classification table.
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individuals were wrongly predicted to be ill, out of 39 individuals predicted to be ill.

Hence the percentage is 12/39¼ 30.8%.

T Finally, the ‘False NEG’ column contains the proportion of incorrectly predicted non-

events (wrongly predicted as healthy) within the set of predicted non-events. In this

case, 16 individuals were wrongly predicted to be healthy, out of 61 individuals

predicted to be healthy. Hence the percentage is 16/61¼ 26.2%.

This classification table can be useful for setting a score threshold, which can be chosen so

as to minimize the global error rate, or the proportion of false positives or false negatives,

depending on the aim of the study.

11.16.7 The validation phase of a model

Because each of the tested models is optimized on a test sample, it is useful, for the

comparison of different optimized models, to have a third sample to enable us to decide

between the models with the lowest possible bias. This phase enables us to confirm the test

results and to predict the results that will be obtained for the population as awhole. However, it

can be omitted if the total frequency in each class is not large enough to allow three samples to

be taken. If some observations (e.g. outliers) have been excluded from the training sample,

they will be reincorporated in the validation sample to check that the behaviour of the model is

consistent in all cases. If possible, it is advisable to validate the models on an ‘out-of-time’

sample, in other words a picture of the modelled population taken on a different date from the

training and test samples.

11.16.8 The application phase of a model

Unlike the previous three phases, which are only executed during the building or revision of a

model, the application of a finished model to the population takes place:

. either automatically, on the scale of the whole population, whenever new values of the

independent variables enable us to predict, using the model, a new estimate of the

dependent variable (often once per month or once per quarter);

. or manually, for a given individual, when his file is under examination (e.g. a customer

whose risk score is calculated before he is sold a piece of furniture on credit).
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12

An application of data mining:

scoring

To provide a specific illustration of the contribution made by the application of data mining

methods in the business world, this chapter will describe the use of an important branch of data

mining in the finance industry – the calculation of scores. It is based on the business

application of the classification techniques examined in the last chapter. What is it that banks

and financial institutions wish to predict? This is the first thing to be considered. Because of

its many years of use and universal application, scoring can be seen as the archetypal business

application of data mining. Our examination of this topic will also add depth to the knowledge

imparted in Chapter 1, on the use of data mining, and in Chapter 2, on ways of implementing a

data mining project. The end of this chapter will be a practical example of credit scoring using

two of the main classification methods described in Chapter 11, namely logistic regression

and the DISQUAL version of linear discriminant analysis.

12.1 The different types of score

The main types of score used in banking are:

. propensity scores;

. risk (behaviour) scores;

. application scores;

. recovery scores;

. attrition scores.

These are defined as follows.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



A propensity score measures the probability that a customer will be interested in a given

product or service. It is calculated for an individual or a household that has been a bank

customer for several months, based on data describing the operation of their accounts and

banking products during this period, as well as their sociodemographic characteristics.

A risk (behaviour) scoremeasures the probability that a customer with a current account,

bank card, arranged overdraft or credit agreement will be involved in a payment or repayment

problem. It is calculated for an individual who has been a bank customer for several months,

based on his sociodemographic characteristics and data describing the operation of his

accounts and banking products during this period. It is therefore a behavioural risk score.

Cross-tabulating these first two scores gives what is sometimes called a pre-acceptance

score, as it provides a credit customer base with pre-accepted credit offers: if the customer

responds favourably, and subject to legal checks (to ensure that he is not recorded in the

incident files), the credit is granted. This score is illustrated by the diagram below, in which we

can see that quadrant I will be targeted.

þ I III

Propensity � II IV

� þ
Risk

An application score (or acceptance score) is a risk score calculated for a new customer or

one who has had few interactions with the bank. There are no historical data (or not enough of

them) for this new customer, and the risk is calculated in (virtually) real time, at the moment of

the customer’s application to the bank, based on declarative data (such as socio-occupational

data) supplied by the customer, matched with geodemographic data describing the standard of

living and consumption habits in the district where the customer lives. A granting score can

also be calculated for a known customer, if elements specific to the application are

incorporated in the calculation.

A recovery score is an evaluation of the amount that can be recovered on an account or

loan in dispute, and can suggest the most effective action for recovery, while avoiding

disproportionate action in respect of loyal, profitable customers who do not pose any real risk.

An attrition score measures the probability that a customer will leave the bank. It is

calculated for an individual who has been a bank customer for several months at least, based

on data describing the operation of his accounts and banking products during this period, his

relations with the bank, and his sociodemographic characteristics. Attrition is harder to

calculate for a customer than for a product, for two reasons. The first is that there are several

ways of ending the relationship: the customer might reduce his holdings, or might retain his

holdings but decrease his cash flows. The second reason is that the score is less reliable when

used to detect the departure of the customer far enough in advance, and it often only becomes

very reliable at a moment so close to the customer’s departure that there is no way of

forestalling this.

12.2 Using propensity scores and risk scores

By using propensity scores it is possible to improve the rate of return on marketing campaigns

(mailshots, telesales, etc.) – in other words, we can:
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. reach more receptive customers without increasing the number of customers contacted, or

. reach the same number of receptive customers while decreasing the number of

customers contacted,

. ensure that customers are not pestered with poorly targeted campaigns.

Using propensity scores enables sales staff to make more sales with fewer appointments.

By using risk scores in the field of credit, we can improve:

. the efficiency of the examination of credit applications (by rapidly processing files with

high or low scores, and concentrating on the medium scoring files);

. the possibilities of delegation (more feasible for high-scoring files), particularly the use

of young sales staff, who can be authorized to sell credit on the basis of the score in some

cases, which was previously not always possible;

. the feeling of security among sales staff, at least for the less experienced ones;

. the satisfaction of customers, who can receive a quicker response to their applications

for credit;

. the distribution circuit (pre-accepted credit can be distributed by direct marketing);

. the uniformity of decisions among different distribution channels (bank branches, call

centres, etc.);

. the uniformity of the decisions of an individual operator (without an objective tool to

assist in decision making, the analysis of a credit file can vary according to whether the

previous file was very good or very bad);

. the adaptation of pricing to the risk incurred;

. the allocation of assets, according to the recommendations of the Basel Committee

which has substituted the McDonough ratio1 (or Basel II ratio) for the Cooke ratio.

Even among the ‘medium’ files, the score provides a detailed view that facilitates decision

making; the single shade of grey is transformed into a whole spectrum of different tones. By

way of example, in scores used in housing finance, the differences in risk between the highest

and lowest scoring files may range from 1 to 50,2 whereas the differences in debt ratios of

2 Michel, B. (1998) Les vertus du score. Banque & Strat�egie, no. 154.

1 Since the early 1990s, every bank has been required to have capital assets equal to not less than 8% of its

weighted risks. This 8% ratio is called the solvency ratio. In the Cooke version of the solvency ratio (1988), the risks

correspond to the amount of credit (market risks were to be added in 1996), which must be weighted according to the

quality of the debtor. This weighting is very approximate, as the 8% applies to thewhole amount of credit advanced to

a business, 20% in the case of a bank, and 0% in the case of a government, regardless of the nature of the business, the

bank and the government. The reform undertaken in 2004 by the Basel Committee did not alter the solvency ratio,

rechristened the McDonough ratio, but increased the range of risks taken into account (including operational risks)

and refined the method of weighting the risk, particularly by allowing the use of systems (‘internal ratings’) for

classifying borrowers on the basis of the probability of default predicted in the various types of portfolio of each bank,

including sovereign, bank, corporate, retail bank (for private and business customers), equity, securitization, and

others. Amove towards Basel III started in 2010 with a strengthening of the capital requirements planned by the Basel

Committee for the period from 2013 to 2019.
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the files examined vary from 1 to 2, and the differences in rates of personal contribution vary

from 1 to 5.

Other benefits of the use of risk scores include:

. a reduction in arrears (in spite of the increased efficiency);

. the limitation of the risk of over-indebtedness;

. the winning of a cohort of low-risk customers previously excluded from targeted sales

because of their riskiness, and for whom scoring has enabled the cost of credit (allowing

for interest rates and management costs) to be precisely adapted, or guarantees

specified, according to the risk incurred;

. quantification, for control purposes, of the risk of the operation in future years;

. and, more generally, the fine adjustment of the business’s policy.

Indeed, by adjusting the acceptance threshold on the score scale, we can emphasize either

an increase in sales or the reduction of risk: we can increase the acceptance ratewith a constant

non-payment rate, or decrease the non-payment rate while keeping the acceptance rate

constant. These results can be achieved by accepting low-risk customers who are currently

rejected, and by rejecting high-risk customers who are currently accepted.

In the area of methods of payment, scoring can be used to automate payment decisions

relating to banking transactions (cheques issued, direct debits paid, etc.) which reduce the

funds in a customer’s current account beyond the threshold of his authorized credit limit: we

can decidewhether to allow or refuse any given transaction. Even if scoring is not used to fully

automate the payment decision process, it can be used to draw up a hierarchy of risks involved

in each overdraft transaction and to display a list of transactions on the account manager’s

computer screen, starting with the most critical items and ending with the least risky. Scoring

allows the manager to concentrate on the essential risk elements, thereby saving time. If he

gains just a quarter of an hour per day, the bank gains 3.6% in productivity: 27 people can do

the same work as 28 would have done (28� 1/4 hour¼ 7 hours¼ one working day).

12.3 Methodology

This section is complementary to Chapter 2 in some ways, while focusing on certain

particularities of scoring. I shall therefore follow the plan of Chapter 2, which will enable

us to maintain the correct logical and chronological order.

12.3.1 Determining the objectives

Wemust decide on the type of score required by the business, according to the objectives and

the available technology. For example, the creation of a behavioural score will require the use

of historical data covering at least one year; if we only have six months’ worth of historical

data, it will be better to buy a generic score; if we have even fewer historical data, we had

better use a granting score.

We must also decide how the score will be used: will it be a decision-making tool

(‘operational score’, see below) or a targeting tool for direct marketing (‘strategic score’)?
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Even if the underlying models are identical in both cases, the output of the score will depend

on the use made of it, as well as the computer resources available for implementing it.

We must draw up a schedule and milestones for the project. We must provide for a test

phase on part of the system, and choose the deployment date so as to avoid conflict with any

unrelated major marketing campaigns already in the pipeline.

We must also decide whether to develop the scoring in-house, with the assistance of a

specialist firm if necessary, or to subcontract the score calculations to a service provider (see

below). In the latter case, the provider will probably have to sign a confidentiality clause to

meet legal requirements.

We can then specify the perimeter of the customer base to be scored, together with the ‘at

risk/no risk’ customers (for a risk score), or ‘purchasers/non-purchasers’ (for a propensity

score) or those ‘leaving/not leaving’ (for an attrition score). The definition of the perimeter

must specify whether or not any ‘dormant’ customers (those carrying out few, or no, banking

transactions, but with non-zero balances) should be included. If they are scored, it is best to

separate them from the rest. They should be processed with a special scoring model, in the

absence of data on their banking transactions, which will rely more heavily on their

sociodemographic characteristics. The choice of target also depends on the marketing policy

of the business and the markets which it wishes to develop or gain. We must also decide

whether each statistical individual to be scored will be a person, a couple (if appropriate) or a

household, including dependent children.

12.3.2 Data inventory and preparation

The data are collected and then analysed and prepared before the creation of the scoring model

(or models if the population to be scored has been pre-segmented). In the collection of data,

somewill give rise to more questions than others. This is particularly true of income. The bank

may know of three types of income for a customer. These are the income he has declared, the

incomemeasured via the credit entries in his accounts, and thosewhich can be estimated using

geodemographic databases. The first type of information is not provided by all customers; and it

may not be accurate, or up to date. The third type is known for all customers, as well as for

prospects, but is only an approximation subject to the limits of accuracy of geodemographic

information. The first and third types of income information have the advantage of representing

the total income of the customer, even if he uses more than one bank. The second type of data,

relating to the income held in the customer’s accounts at a bank, is fragmented for the bank

observing it. The information does notmatch the total household income,which for INSEE, the

French Statistical Office, ‘is understood as the total net monetary income received by all

members of the household; it includes income from work, from property and from transfers’.

This distinction between the three components of income cannot always be maintained on the

basis of the computer data available to the bank; in somecases the data only inform the bank that

a movement originating outside the bank has credited the current account of a customer,

although the bank does not know, from the description of the movement, whether it is due to a

wage payment, a rent, a maintenance payment, or some other payment.

12.3.3 Creating the analysis base

For risk score learning, we need a sample of customers who have been accepted by the bank

and whose files have been found to be good or bad, but it is preferable to have a sample of
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customers refused by the bank as well. This is because their absence from the learning sample

would mean that they could not be scored, even though their risk profile is probably far from

neutral. The procedure for taking rejected customers into account is a form of ‘reject

inference’ (see Section 11.16.3). It is not a simple matter, because, even if the files of these

rejected customers are available and comprehensive (in fact they are not always retained, or

even completed in full), their credit variable is inherently unknown. The aim of reject

inference is to predict what the credit variable (good or bad file) would have been if the

credit had been granted, so that the rejected customers can be incorporated in the construction

of the model.

To ensure that the model is reliable and has a good generalization capacity, the training

sample should, if possible, contain at least:

. 500–1000 credit files confirmed as ‘good’;

. 500–1000 credit files confirmed as ‘bad’;

. ideally, 500–1000 rejected credit files.

In the worst case, the number of files may be reduced to 200–300, while ensuring that only a

small number of variables are introduced into the model. If there is more than one segment in

the population, and a score model is developed for each segment, then the numbers givenmust

of course relate to each segment.

Obviously, wemust define in advancewhat wemean by a ‘good’ and ‘bad’ file. A ‘bad’ file

often contains at least two or three (monthly) instalments unpaid and still outstanding, even if

the file has not led to legal action or was closed without losses. A ‘good’ file records no

unpaid instalments; in no circumstances must there be two or more consecutive unpaid

instalments outstanding. Sometimes a neutral area is defined, corresponding to a single

missed payment.

‘Good’ and ‘bad’ as described in Section 11.16.2 must also be defined for learning

purposes in a propensity score model. In this type of score, allowance must be made for

preferential pricing granted to some types of customer, such as employees of the business and

certain partners. Even if these customers are ultimately scored, they are generally excluded

from the score model training sample because their atypical behaviour may affect the

modelling. Customers who have benefited from a free period are also excluded from

the learning phase, because these customers more often cancel their contract at the end of

this period.

If the quantity of one of the file types is insufficient, we can try to resample by

bootstrapping (see Section 11.15.1) the files concerned, for example the ‘bad’ files, in order

to bring their number closer to that of the ‘good’ ones. Even though the representativeness of

the ‘bad’ files is not improved by this, the ‘good’ ones are still as representative as before,

which would not be the case if their number had to be reduced in order more closely to match

the number of ‘bad’ files. This bootstrap resampling can be carried out as follows. The number

of non-payments, which is assumed to be small (less than 500, say), is denoted d. B bootstrap

samples of d individuals are then taken from the ‘bad’ files,B being large enough to ensure that

Bd> 500, and Bd individuals are drawn from the ‘good’ files by a simple random procedure.

In this waywewill obtain a 50–50 sample of ‘good’ and ‘bad’, with adequate representation of

the ‘bad’.
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12.3.4 Developing a predictive model

The predictive techniques most commonly used for scoring are logistic regression,

discriminant analysis and decision trees; sometimes support vector machines or naive

Bayesian classifiers are used. However, neural networks are rarely used, because their

advantages cannot make up for their drawbacks, particularly their opaque nature, the

difficulty of setting their parameters correctly and the lack of appropriate statistical tests.

They are especially prone to overfitting, particularly if the number of neurons in the

hidden layer or layers is large; on the other hand, if the number of neurons is low, the

goodness of fit of the network generally tends to approach that of logistic regression, so

there is no obvious reason to use a neural network.

12.3.5 Using the score

If we wish to use a score at a point of sale, we must be able to retrieve the information in a

simple and immediately comprehensible form. Consultation with end users often leads to the

division of scores into three classes: low, medium and high.

To choose the boundaries of these three groups, in the case of a propensity score for

example, the response rates of the scored customers are shown as a function of their score

marks. This representation also enables us to verify the score, by comparing the response rates

of the customers included in the modelling, the customers excluded from the modelling

(atypical customers, privileged customers, employees, etc.), and all the scored customers

(Figure 12.1).

We also check that the response rate is an increasing function of the score, even for

customers who have not been taken into account in the development of the model.

Where the score division is concerned, we find two natural thresholds in the example of

Figure 12.1: the first is between the scores of 6 and 7, and the second is between the scores of 8

and 9. Thus we have customers with low propensity, whose score is between 1 and 6, and whose
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Figure 12.1 Response rate as a function of the score points.
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response rate is less than 1%. Thenwe have customers withmedium propensity, with scores of 7

or 8, and a response rate ranging from 1% to 3%. Finally, there are customers with high

propensity, whose score is between 9 and 10, with a response rate of more than 3%.

12.3.6 Deploying the score

The score is used after it has been presented to its future users for their approval, if necessary,

and after a full-scale test period. The deployment of an operational score (see below) takes

more time, because it has to be retrievable at the workstations of the sales staff.

12.3.7 Monitoring the available tools

The use and quality of the score are monitored. This monitoring is carried out on:

. the number of customers by value or score band;

. the number of customers moving from one value of the score to another between two

calculation dates, output in the form of a transition matrix;

. the response rate and the amounts taken up by score value or band;

. the forcing rate (‘forcing’, in risk scoring, means that credit has been granted to a

customer whose poor score, if taken in isolation, does not justify acceptance of the file);

. the non-payment or dispute rate for each score value or band (risk);

. the reasons for refusal to purchase (propensity) or sell (risk).

We then compare the results for the different customer segments, the different products, the

different sales channels (branches, call centres, Internet), the different regions and the

different months (development over time).

Monitoring is important because the scores have a limited life. For example, risk scores

become obsolete as a result of changes in the economic, legal or sociodemographic

environment, while propensity and attrition scores become outdated due to changes in the

competitive environment and choice of products on the market.

We must therefore provide monitoring tools to ensure that scores have not become

obsolete. For example, in the case of a credit risk score, the non-payment rate of customers in

each score band must remain within a fixed interval. If it goes beyond this interval, the

threshold of acceptance can be modified as a first step. If this is insufficient, the score model

must be revised. The life of a score model is extremely variable, but is commonly 5 years at

least, especially if it has been developed in good conditions (on data samples that are reliable,

stable, comprehensive, etc.). Fraud scores have obviously a shorter life.

Score monitoring tools are also useful for sales staff, as they act as performance indicators

and measures of the potential of their customers.

12.4 Implementing a strategic score

A strategic score is a score used in the proactive targeting of customers for more or less

centralized marketing operations. Generally, therefore, it is a propensity score which
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incorporates a risk behaviour score, in other words a pre-acceptance score (see Section 12.1),

towhich is added the calculation of the amount (of a loan, investment, standing order, etc.) that

can be offered to the customer. This amount is calculated on the basis of the customer’s

income, outgoings, commitments and scores. It is difficult to evaluate the actual disposable

income and irreducible financial commitments of the customer; these must be found by

analysing the database, not by means of customer declarations, because a strategic score is

calculated for all customers, even those who have never contacted a customer service

representative and have never needed to supply this information. It may be useful to have

a score model for each distribution channel.

If we wish to conduct a preliminary test on a number of branches, it will be preferable to

choose branches that are fairly well differentiated in terms of the type of housing and

customers.Wemaywish to conduct this test because it is our first venture into this field andwe

need to train our customer service representatives, or because we have no feedback from

previous campaigns, or simply in order to refine the scoring system (especially the recom-

mended acceptance and rejection thresholds).

The statistical determination of the profile of customers who have or have not responded

during the test will be useful for generalizing the score. It will be useful to compare the

resulting response rates with the response rates of a control sample, taking care to ensure that

we are comparing comparable operations (same product, same price and same marketing

presentation). The control sample will consist of customers taken randomly from two

populations. On the one hand, there are customers who have been scored, but whose scores

have not been passed on to the sales staff: all the score values, including the least favourable

ones, will be represented, ensuring that customers with low scores have been given them

correctly, and that information is obtained on customers with a sufficient variety of segments

and scores to enrich the forthcoming score calculation. On the other hand, there are customers

chosen not because of their score, but because they belong to a conventional target group for

marketing. By not divulging the score, we can evaluate the ‘placebo’ effect on sales staff who

may sell better to customers whom they consider to be well scored. This comparison will

demonstrate the relevance of data mining (by comparing the response rates of the control

sample as a function of the score points and as a function of membership of the conventional

target group), as well as the relevance of the use of data mining (by comparing the response

rates of the main population with those of the control sample).

12.5 Implementing an operational score

An operational score is a score of risk behaviour (for customers) or credit approval (for

customers and prospects), designed as a decision support system for customer service

representatives, to suggest whether or not to grant credit, and to propose a maximum

amount to be lent or a guarantee requirement (surety, mortgage, etc.). It can also be used

to automate payment decisions for accounts which have exceeded their credit limit (see

above). The ‘risk’ element of a strategic score (see the preceding section) can act as an

operational score. The difference between the two types of score, strategic and operational,

is that the latter is preferably used in a ‘reactive’ way (in response to a customer’s approach)

in the course of a contact (in a branch, on the telephone or on the business’s website), while the

former is preferably used in a ‘proactive’ way (the bank takes the initiative) and in

direct marketing.
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The score result can be output in the form of ‘traffic lights’ (green, amber or red) or as a

decision table, produced by cross-tabulating the score value and another variable. Table 12.1

is an (imaginary) example relating to the approval of a property loan.

Although the application score is calculated in real time, the risk behaviour score is

generally calculated monthly, with daily updates for customers whose financial resources

have decreased (e.g. if there is a new loan or direct debit on their account) or for whom a

payment incident has been recorded, when the score must immediately be downgraded.

12.6 Scoring solutions used in a business

12.6.1 In-house or outsourced?

There exist consultancy firms that provide services in scoring strategy, development and

monitoring. Evidently, these bureaus can offer immediate access to the know-how and

experience of specialists in scoring.

On the other hand, in-house scoring has the benefit of developing skills in the business, so

that in a few years it will be possible:

. to build up a thorough knowledge of the business’s data (which may have other positive

effects for marketing and management);

. to develop synergy and a scoring culture among all the personnel involved in the

operation;

. to develop greater reactivity whenever a new study is required;

. and to develop a range of resources for scoring, clustering, product association

searching, and the like, for various requirements and users.

As a general rule, the desirability of outsourcing data mining operations varies from one

business to another. It will be less advantageous for those that have more data to mine, and

Table 12.1 Decision table for property loans.

Risk Risk score Percentage of personal contribution

<10% 10–20% 20–50% >50%

�� between 75

and 100

to be examined D150 000 D200 000
preferential

rate

D300 000

preferential

rate

� between 50

and 75

to be examined D100 000

mortgage

D150 000
mortgage

D200 000

þ between 25

and 50

to be examined D100 000

mortgage þ
guarantee

D150 000
mortgage þ
guarantee

D150 000

mortgage

þ þ between 0

and 25

to be examined to be examined to be examined to be examined
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those that gain a greater competitive advantage by doing this themselves, such as financial

institutions, insurance companies, retail businesses, and telephone companies. However,

banks may outsource some of their activities which are concerned less with the historic

customer data and more with the granting scores used to estimate the risk of non-payment of

applicants for credit who are unknown to the bank.

This kind of outsourcing in the banking system is common practice in the USA, where it is

facilitated by the fact that is permissible to generate ‘positive’ files on borrowers, in other

words files containing information on a person’s income and loans (past and present). The use

of ‘positive’ files is permitted in most European countries, including the United Kingdom,

Ireland, Germany, Austria, the Netherlands, Belgium, Switzerland, Norway and Italy. In

France, however, it is only permissible at present to use ‘negative’ files, which record the

details of over-indebted borrowers. Some people fear that the existence of positive files

‘promotes the development of aggressive credit marketing’. Indeed, this does appear to be the

case in some countries where positive files are used and where the credit risks have

paradoxically increased.

In the USA there are service providers, known as credit bureaus,3 which create vast

databases with the aid of information supplied by lending institutions or obtained from legal

announcements, yearbooks, etc. They work for credit institutions that can ask them for

information about an applicant for credit, and can obtain a list of all existing loans,

accompanied by a risk score if required. This information can be provided in real time,

for example to a motor showroom where a vehicle is about to be sold on credit. A credit

institution which refuses to grant credit must send the applicant, free of charge, a letter

explaining the reasons for rejection, and stating the name of the credit bureau that has been

used. If the reasons given are incorrect, the customer can ask the credit bureau to modify the

data in question.

The three leading American credit bureaus are Equifax, Experian and TransUnion. They

are beginning to establish a presence in countries outside the USA, including those where

positive files are prohibited, and where an institution’s knowledge of credit granted by its

competitors is based solely on each customer’s declaration and cannot be verified until the

borrower is a non-payer and recorded in a negative file. Credit bureaus are most widespread in

North America, South Africa, the UK, Italy and Spain.

In these countries, and in an increasing number of others, a credit institution can therefore

obtain the score rating of a person who applies for credit (or, in particular, a credit card). This

rating is provided by a credit bureau, which has calculated the score by applying a model (the

scorecard) to the data it holds on this person. The most widespread score models in the USA

have been developed, not by the credit bureaus themselves, but by ‘model producers’, themost

famous of which is Fair, Isaac and Company (see Section 12.10). This firm supplies the three

credit bureaus, via a software package, with score models known by the name of FICO scores

(although the credit bureaus have developed other models, which are less widely used and

may be less expensive, such as Experian’s ScoreX). As each credit bureau calculates its scores

on its own data, the FICO scores for a given individual may differ from one credit bureau to

another. However, the FICO scores are regularly adjusted to ensure that a rating represents the

same risk regardless of which credit bureau calculates it.

These score models are called generic models, or generic scores, because they have not

been specifically determined on the basis of data from any one institution, but on the data

3 Sometimes spelt ‘credit bureaux’.
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collected in numerous institutions and organizations. The performance of a generic scoremay be

slightly less perfect than that of a personalized score, but it is still very satisfactory and highly

stable over time, evenover 10years, because it is inherently less sensitive to changes in the scored

population. There are also some generic scores adapted to each type of portfolio or product.

Thus there are three stages in the US system: the score producers (1) which supply score

models to credit bureaus (2), which apply them to their mega-databases to rate individuals

whose ratings are then notified to the credit institutions (3), which may match these generic

scores with personalized scores or internal criteria relating to the additional knowledge of the

individuals that they may have, to additional granting rules (debt to income ratio, personal

contribution, etc.) or to the allowance for the specific features of the type of credit applied for

(since the FICO scores rate an individual, not any specific application).

Score producers may also work directly for businesses, to which they supply generic or

personalized scores.

A scorecard such as that shown in Table 12.2 can be used to calculate a number of points

for a customer, to form the score, which, if high, signifies that the risk associated with the

customer is low. The development of this type of scorecard is examined below in a detailed

example of credit scoring.

Table 12.2 Scorecard.

Data Value Points

Age 18–25 10

35–45 20

45–60 25

>60 15

Marital status married/widowed 20

cohabiting 10

divorced 5

unmarried 15

Number of children 0 15

1 20

2 25

3 20

>3 15

Number of overdraft days per month <10 20

10–20 10

21–25 5

>25 0

Occupation employee/executive/retired 10

other 0
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FICO scores are mostly based on the following data:

. the person’s payment history and the presence or absence of late payments (35% of

the score);

. the current use of loans taken out and especially the proportion of credit facilities used

(30% of the score);

. the length of the credit history (15% of the score);

. the types of credit in use (10% of the score);

. the number of recent credit applications (10% of the score).

FICO scores do not take age, occupation or seniority at work into account, although these

data are legally usable. They range over a scale which runs, not from 0 to 100, but from

300 to 850,with amedian at 723. They are generally used in the followingway, but theremay be

variations between institutions, with specific acceptance thresholds. Below a certain number of

points, about 540, credit is refused. Just above this level, but below 640, are the notorious

‘subprime’ loans which triggered the financial crisis that began in 2007 and led to the crash of

autumn 2008. These are loans granted in spite of statistical predictions, disregarding the low

ratingswhich suggested a high rate of non-payment. The best credit is ‘prime’ (a score of 680 or

above). Depending on the rating, the credit institution may reject the application, raise the

interest rate, make additional checks, or demand additional guarantees.

12.6.2 Generic or personalized score

As we have just seen, the business can choose between a generic and a customized score. The

advantages of a generic score are those of all off-the-shelf solutions: it can be obtained quickly

(in about a month); it is cheaper in the short term; and it requires little technical and human

investment (less data history, for example).

There are three drawbacksofgeneric scores. First, a generic score is less precise than amade-

to-measure score, obtained after an in-depth statistic analysis of each variable conducted in

partnership with experts in the business. Secondly, it does not allow for feedback from previous

operations in the business, new or specialized products of the business, local competition, etc.

Thirdly, it is more suitable for use in English-speaking countries where positive risk files exist

and where financial institutions exchange their data, allowing credit bureaus to work with very

large databases and develop generic scores adapted to each type of institution.

12.6.3 Summary of the possible solutions

The various possible solutions are summarized in Figure 12.2 and their advantages and

disadvantages shown in Table 12.3.

12.7 An example of credit scoring (data preparation)

In this section, we will use two of the methods described in this book on a public data set, in

order to construct a credit scoring tool which can be used for granting consumer credit in a

bank or a specialist credit institution.

We will use qualitative or discrete independent variables for the most part, with some

continuous variables. When the continuous variables have been discretized, we can use all the
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variables in amultiple correspondence analysis (Section 7.4), which will help us to explore the

data and ensure their consistency. We will then go on to the modelling phase, calculating two

score models, using:

. binary logistic regression (Section 11.8);

. the DISQUAL method of linear discriminant analysis (Section 11.6.7).

We will use these to construct two scorecards and then compare their performance. After

choosing one of these scorecards, for appropriate reasons, we will draw up the rules for

granting credit based on this scorecard. The naive Bayesian classifier has also been tested on

this data set, but the results are rather less satisfactory (Section 11.10.1).

The data set which is used is well known under the name of ‘German credit data’ and is

available on the Internet.4 It contains 1000 consumer credit files, of which 300 are classed as

defaulting. It is actually a stratified sample adjusted on the dependent variable, the real non-

payment rate being 5%.

type of score

customized score generic score

created 
externally

created 
internally

scorecard
retrieved

(1)

scorecard not 
retrieved

(2)
business only

(3)

with 
consultant

(4) 

scorecard
retrieved

(5)

scorecard 
not retrieved

(6)

created 
externally

Figure 12.2 Possible solutions for developing a score.

Table 12.3 Advantages and disadvantages of the different solutions.

Performance

of the score

Technology

transfer

Short-term life of

the score

Long-term

life of

the score

Speed of

production

(1) þ � þ � �
(2) þ � � (for one-time use) � �
(3) þ � þ þ �
(4) þ þ þ þ �
(5) � � þ � þ þ (30 days)

(6) � � � (for one-time use) � þ

4 At http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit.html. For a description of the data, see:

http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kreditvar.html.
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This data set was originally provided by Hans Hofman, of the University of Hamburg, and

there are several variants, with different transformations of some of the variables. It was used

by Fahrmeir and Tutz (1994).5 It consists of the ‘Credit’ variable (the dependent variable),

with its 700 ‘Good’ categories (no non-payments) and its 300 ‘Bad’ categories (non-payments

present), and 19 independent variables (one of which, relating to the applicant’s place of

origin, has been omitted):

. three continuous numeric variables – credit duration in months, amount of credit in

euros and age in years;

. seven discretized numeric variables – mean current account balance, savings outstand-

ing, number of loans already recorded at the bank, affordability ratio, seniority at work,

length of time at the address, number of dependents;

. nine qualitative variables: purpose of the credit, applicant’s repayment history, other

borrowings (outside the bank), valuables owned by the applicant, his guarantees, his

marital status, his residential status, his type of employment and the existence of a

telephone number.

Some variables relate to the credit itself (duration, amount, purpose), others to the financial

profile of the borrower (amounts outstanding, other borrowings, etc.) and some to the personal

profile of the borrower (age, marital status, etc.). All these data are of course measured at the

time of the credit application and not subsequently. I have added a variable, ID, which is a

customer number from 1 to 1000.

Given that only three variables are not divided into classes, we shall start by discretizing

them, enabling them to be used together with the others, with the same methods. This will

provide greater simplicity and readability.

The SAS syntax below will provide an illustration of the distributions of the three

continuous variables, for the 700 ‘Good’ files on one hand, and for the 300 ‘Bad’ files on the

other. These graphs will also enable us to detect immediately any anomalies and links between

the continuous variable and the dependent variable.

PROC UNIVARIATE DATA=test ;

VAR Credit_duration Credit_amount Age ;

CLASS Credit ;

HISTOGRAM Credit_duration Credit_amount Age

/ NORMAL (MU=EST SIGMA=EST COLOR=BLACK L=2) ;

INSET MEAN MEDIAN CV NMISS ;

FORMAT Credit CREDIT. ;

RUN ;

The credit duration has predictable peaks at 12, 24, 36, 48 and 60 months (Figure 12.3). The

high proportion of longer-term credit among the defaulters is clearly visible.

Very small amounts of credit are rare: the minimum is D250, and 95% are above D700

(Figure 12.4). A maximum frequency is reached at about D1200, after which the trend is

5 Fahrmeir, L. and Tutz, G. (1994) Multivariate Statistical Modelling Based on Generalized Linear Models.

New York: Springer.
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entirely downwards. The larger proportion of higher amounts among the non-payments

is evident.

The ages of the borrowers range from 19 to 75 (Figure 12.5). The distribution for the non-

payment-free borrowings is much more uniform than for the others. The non-payments

mainly relate to borrowers who were under 40 when the credit was granted.

Each of the three continuous variables that we have examined has a significant link with

the dependent variable; the next step is to discretize them. Let us take the example of age. We

start by dividing it into deciles, like the other two variables.

Figure 12.3 Distribution of the duration of credit (for good customers and others).

Figure 12.4 Distribution of the amount of credit (for good customers and others).
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PROC RANK DATA = test GROUPS = 10 OUT = deciles ;

VAR Credit_duration Credit_amount Age ;

RANKS dCredit_duration dCredit_amount dAge ;

RUN ;

We then display the thresholds of the deciles.

PROC MEANS DATA = deciles MIN MAX ;

CLASS dAge ;

VAR Age ;

RUN ;

Analysis Variable: Age

Rank for Variable Age N Obs Minimum Maximum

0 105 19.0000000 23.0000000

1 85 24.0000000 25.0000000

2 101 26.0000000 27.0000000

3 120 28.0000000 30.0000000

4 105 31.0000000 33.0000000

5 72 34.0000000 35.0000000

6 113 36.0000000 39.0000000

7 98 40.0000000 44.0000000

8 105 45.0000000 52.0000000

9 96 53.0000000 75.0000000

Figure 12.5 Distribution of the applicant’s age (for good customers and others).
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Then we cross-tabulate the age deciles with the dependent variable.

PROC FREQ DATA = deciles ;

TABLES dAge * Credit / NOCOL ;

FORMAT Credit Credit. ;

RUN ;

Table of dAge by Credit

dAge (Rank for Variable Age) Credit

Frequency

Percent

Row Pct

Good Bad Total

0 63 42 105

6.30 4.20 10.50

60.00 40.00

1 47 38 85

4.70 3.80 8.50

55.29 44.71

2 74 27 101

7.40 2.70 10.10

73.27 26.73

3 79 41 120

7.90 4.10 12.00

65.83 34.17

4 72 33 105

7.20 3.30 10.50

68.57 31.43

5 55 17 72

5.50 1.70 7.20

76.39 23.61

6 89 24 113

8.90 2.40 11.30

78.76 21.24

7 70 28 98

7.00 2.80 9.80

71.43 28.57

8 84 21 105

8.40 2.10 10.50

80.00 20.00

9 67 29 96

6.70 2.90 9.60

69.79 30.21

Total 700 300 1000

70.00 30.00 100.00
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The contingency table shows that the first two age deciles correspond to a non-payment rate

markedly higher than that of the other deciles. Thus there is a threshold at 25 years. No other

threshold is clearly evident, as the non-payment rate subsequently fluctuates between 20% and

a little over 30%. We can therefore decide on how to divide ‘age’ into two bands.

This procedure is repeated for the duration and the amount of credit. I have omitted it here

for reasons of space. I will simply say that the credit duration has a threshold at 15 months,

and then at 36 months (inclusive). It also has a threshold at 8 months, which is nevertheless

unusable because of the size too small of this band: 94 files. The non-payment rate certainly

low of 10.64% has a 95% confidence interval which leads it to an upper bound of 16.87%,

close to the default rate of the second decile. As for the amount of credit, this shows a

threshold at D4716, between the 7th and 8th decile, but the threshold is not very clear, and

could be between the 6th and 7th decile. The examination of vingtiles helps us here to decide,

with a clearer cut between the 14th and 15th vingtiles, which corresponds to D3972, which

we round off to D4000. We have therefore divided the variable into twenty bands of equal

size and then measured the non-payment rates in each band. Here are the SAS formats

corresponding to these divisions:

PROC FORMAT ;

value DURATION

0-15 = ‘<= 15 months’

16-36 = ‘16-36 months’

37-high = ‘ > 36 months’ ;

value AMOUNT

0-<4000 = ‘< 4000 euros’

4000-high = ‘> 4000 euros’ ;

value AGE

0-25 = ‘<= 25 years’

26-high = ‘> 25 years’ ;

RUN ;

It is worth noting that a discretizationmethod based on the principle of minimizing the entropy,

as implemented in the IBMSPSSData Preparationmodule (seeChapter 5 on software), yields a

single threshold at 15 months for the duration, a threshold at D4000 for the amount, and

considers that the age variable is too weakly linked to dependent variable to be discretized.

The formats of the other variables, available on the Internet, are as follows:

PROC FORMAT ;

value ACCOUNTS

1 = ‘CA < 0 euros’

2 = ‘CA [0-200 euros[’

3 = ‘CA >= 200 euros’

4 = ‘No checking account’ ;

value $HISTORY

‘A30’ = ‘Current non-payment at another bank’

‘A31’ = ‘Previous non-payments’

‘A32’ = ‘Current credits without delay till now’

‘A33’ = ‘Previous credits without delay

‘A34’ = ‘No credit at any time’ ;

value $PURPOSE

‘A40’ = ‘New vehicle’

‘A41’ = ‘2nd hand vehicle’
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‘A42’ = ‘Furniture’

‘A43’ = ‘Video HIFI’

‘A44’ = ‘Household appliances’

‘A45’ = ‘Improvements’

‘A46’ = ‘Education’

‘A47’ = ‘Holidays’

‘A48’ = ‘Training’

‘A49’ = ‘Business’

‘A50’ = ‘Others’ ;

value SAVINGS

0 = ‘No savings’

1 = ‘< 100 euros’

2 = ‘[100-500 euros[’

3 = ‘[500-1000 euros[’

4 = ‘>= 1000 euros’ ;

value EMPLOYMENT

1 = ‘Unemployed’

2 = ‘Empl < 1 year’

3 = ‘Empl [1-4[ years’

4 = ‘Empl [4-7[ years’

5 = ‘Empl >= 7 years’ ;

value $STATUS

‘A91’ = ‘Man: divorced/separated’

‘A92’ = ‘Woman: divorced/separated/married’

‘A93’ = ‘Man: unmarried’

‘A94’ = ‘Man: married/widowed’

‘A95’ = ‘Woman: unmarried’ ;

value $GUARANTEE

‘A101’ = ‘No guarantee’

‘A102’ = ‘Co-borrower’

‘A103’ = ‘Guarantor’ ;

value RESID

1 = ‘Res < 1 year’

2 = ‘Res [1-4[ years’

3 = ‘Res [4-7[ years’

4 = ‘Res >= 7 years’ ;

value DEPENDENTS

1 = ‘0-2’

2 = ‘>=3’ ;

value NBCRED

1 = ‘1 credit ’

2 = ‘2 or 3 credits’

3 = ‘4 or 5 credits’

4 = ‘>= 6 credits’ ;

value INSTALL_RATE

1 = ‘< 20’

2 = ‘[20-25[’

3 = ‘[25-35[’

4 = ‘>= 35’ ;

value $ASSETS

‘A121’ = ‘Property’

‘A122’ = ‘Life insurance’

‘A123’ = ‘Vehicle or other’
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‘A124’ = ‘No known assets’ ;

value $CREDIT

‘A141’ = ‘Other banks’

‘A142’ = ‘Credit institutions’

‘A143’ = ‘No credit’ ;

value $HOUSING

‘A151’ = ‘Tenant’

‘A152’ = ‘Owner’

‘A153’ = ‘Rent-free accommodation’ ;

value $JOB

‘A171’ = ‘Unemployed’

‘A172’ = ‘Unskilled’

‘A173’ = ‘Skilled employee / worker’

‘A174’ = ‘Executive’ ;

value $TELEPHONE

‘A191’ = ‘No Tel’

‘A192’ = ‘With Tel’ ;

value CREDIT

1 = ‘GOOD’

2 = ‘BAD’ ;

RUN ;

As all the variables are now available in the form of classes, we can perform a multiple

correspondence analysis.We use theCORRESP procedurewith the BINARYoption to create an

indicatormatrix. This enables us to collect in the output data set OUT the records of _OBS_ type

containing the factor coordinates Dim1 and Dim2 of each individual. The _name_ variable of

this data set contains anobservation number. It is not usually directly linked to any IDof the input

data set, but in this case, as the data set to be scored has an ID that we have created as equal to the

observation number, this ID can be matched with the _name_ variable to add the factor

coordinates to the input data set to be scored. This then enables us to represent the factor plane of

the individuals, distinguishing them according to the value of the dependent variable (which

the OUT data set does not contain). This variable has also been specified as ‘supplementary’

in theMCA, so that it can be represented in the variable plane, but without making it participate

in the factor axis calculations.

PROC CORRESP DATA=test BINARY DIMENS=2 OUT=output NOROW=PRINT ;

TABLES Accounts Credit_duration Credit_amount Savings Seniority_

employment Installment_rate Seniority_residence Age Nb_credits

Number_of_dependents Credit_history Purpose_credit Marital_status

Guarantees Assets Other_credits Status_residence Job Telephone Credit ;

SUPPLEMENTARY Credit ;

FORMAT Accounts ACCOUNTS. Credit_duration DURATION. Credit_amount

AMOUNT. Savings SAVINGS. Seniority_employment EMPLOYMENT.

Installment_rate INSTALL_RATE. Seniority_residence RESID. Age AGE.

Nb_credits NBCRED. Number_of_dependents DEPENDENTS. Credit_history

$HISTORY. Purpose_credit $PURPOSE. Marital_status $STATUS. Guarantees

$GUARANTEE. Assets $ASSETS. Other_credits $CREDIT. Status_residence

$HOUSING. Job $JOB. Telephone $TELEPHONE. Credit CREDIT. ;

RUN ;

DATA coord ;

SET output;

WHERE _type_ = ‘OBS’ ;
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id = INPUT(STRIP(_name_),8.) ;

KEEP id Dim1 Dim2 ;

RUN ;

We have to carry out the minor task of transforming the _name_ variable, which is not

numeric but alphanumeric, and in which the observation number is not left-justified. The

STRIP function left-justifies it and removes the terminal spaces, and the INPUT function

transforms it into a numeric variable.

PROC SORT DATA = test_score ; BY id ; RUN ;

PROC SORT DATA = coord ; BY id ; RUN ;

DATA test_acm ;

MERGE test (IN=a) coord (IN=b) ;

BY id ;

IF a ;

RUN ;

After linking with the initial data set, the stated graphic representation can be obtained,

using the GPLOT procedure for high definition display. The individuals are differentiated as a

function of the ‘Credit’ variable by adding the instruction ‘¼ Credit’ to the PLOT line.

GOPTIONS RESET=all;

SYMBOL1 v=CIRCLE c=BLACK;

SYMBOL2 v=DOT c=BLACK;

PROC GPLOT DATA = test_acm ;

WHERE _type_ = ‘OBS’ ;

PLOT Dim2*Dim1 = Credit ;

FORMAT Credit CREDIT. ;

RUN ;

QUIT ;

The key to Figure 12.6 shows that the at-risk individuals are represented by solid dots,

while good payers are represented by circles. It can be seen that the at-risk individuals are

concentrated towards the top of the factor plane, and more precisely in the upper left-hand

area. They are much rarer in the lower part.

We shall now display the factor plane of the variables. We will not use the customary

GPLOT procedure, as it gives a poor picture of a large number of categories, with too much

superimposition. Instead, we will use the recent GTL language and ODS GRAPHICS,

mentioned above, which appeared with Version 9 of SAS. These will give us the elegant

graphic shown in Figure 12.7. The SAS 9.2 syntax, which differs in several ways from that of

Version 9.1.3, is shown below.

PROC TEMPLATE ;

DEFINE STATGRAPH example.mca ;

BEGINGRAPH ;

LAYOUT OVERLAY / XAXISOPTS=(LABEL="Axis 1" GRIDDISPLAY=ON)

YAXISOPTS=(LABEL="Axis 2" GRIDDISPLAY=ON) ;

SCATTERPLOT X=Dim1 Y=Dim2 / DATALABEL=_name_ GROUP=_type_ ;

ENDLAYOUT ;

ENDGRAPH ;
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END ;

RUN ;

ODS HTML ;

ODS GRAPHICS ON ;

DATA _NULL_ ;

SET output ;

WHERE _type_ IN (’VAR’ ’SUPVAR’) AND (SqCos1 > 0.02 OR SqCos2 > 0.02) ;

FILE PRINT ODS=(TEMPLATE="example.mca") ;

PUT _ODS_ ;

RUN ;

ODS GRAPHICS OFF ;

ODS HTML CLOSE ;

Note that we only display the categories that are sufficiently well represented on at least

one of the factor axes and whose positioning in the plane can therefore be commented on

legitimately. We exclude the categories for which none of the squared cosines is greater than

0.02 (see Chapter 7 on factor analysis). Wewill see subsequently, in the contingency tables for

the independent variables and the dependent variable, that the categories which are not

represented are also those which are least frequent.

The principal plane shows the coherence of the categories with each other. For example, the

categories ‘<¼ 25 years’, ‘tenant’ and ‘empl< 1 year’ are close together, in the upper left-hand

area. The categories ‘property’ and ‘owner’ are also fairly close together. Oddly, they are close

to the ‘non-qualified’ type of employment, whereas we would have expected to see the

‘executive’ category at this position. However, the ‘unemployed’ category of employment type

and seniority of employment are in the same part of the plane. They are also fairly close to

the categories of ‘rent-free accommodation’ and ‘no known assets’. It is very surprising that the

last two are near the ‘executive’ category. Possiblywe should bewary of the ‘employment type’

variable. The category ‘>¼ 35%’ is very close to the ‘Good’ category, which is remarkable,

Figure 12.6 Multiple correspondence analysis on the credit data set (individuals).
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because we expect it to be linked to a risk of non-payment, as it corresponds to the highest

indebtedness.However, there are somepossible explanations for this, such as the fact that higher

indebtedness may be due to a property loan. This form of credit is only granted to the most

solvent customers. But we should not interpret anyway too much the position of this category

“>¼ 35%”because it is rather poorly represented on the factor plane,with a sumof the squared

cosine¼ 0.0214 (the ‘‘quality’’ of the representation) which ranks it 54th among 72 categories.

We actually find the ‘Bad’ category higher up, close to the ‘CA< 0 euros’ category. The

‘previous non-payment’ category is halfway along the segment linking ‘Bad’ and

‘unemployed’. The executives are on the right of the plane, near the categories ‘second-hand

car’, ‘>36months’ and ‘>4000 euros’.While the second axis opposes good and bad payers, the

first axis tends to oppose major loans (on a longer period) accepted for buying a vehicle to the

smaller loans (on a shorter period) accepted for buying furniture or electronic equipment.

If we look at squared cosine of the categories, we shall notice that the amount and the duration

are far better represented on the factor plane than the purpose of the credit. So we should not

interpret too much the position of the categories of the purpose of credit. Moreover, the category

‘Newvehicle’ is not even represented on the plane because none of its squared cosine reaches 0.02.

Before considering the cross-tabulation of the independent variables with the dependent

variable, we shall follow the procedure described in Section 3.8.4 to produce a single table

showing the discriminating power of the set of variables, measured by the absolute value of

Cram�er’s Vof the independent variable with the dependent variable. The values of Cram�er’s V
are written after a FREQ procedure in a ChiSq data set by ODS, and this is then displayed in

the correct order. To avoid having towrite the list of all the variables, it is replacedwith amacro-

variable denoted &var. We initially disable the output of the contingency tables, using the

NOPRINT instruction. We use the SCAN(c,n) function to extract the nth word of the chain c.

Figure 12.7 Multiple correspondence analysis on the credit data set (variables).
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ODS OUTPUT ChiSq = ChiSq ;

PROC FREQ DATA=test ;

TABLES (&var) * credit / CHISQ NOCOL NOPRINT ;

FORMAT Accounts ACCOUNTS. Credit_duration DURATION.

Credit_amount AMOUNT. Savings SAVINGS. Seniority_employment EMPLOYMENT.

Installment_rate INSTALL_RATE. Seniority_residence RESID. Age AGE.

Nb_credits NBCRED. Number_of_dependents DEPENDENTS. Credit_history

$HISTORY. Purpose_credit $PURPOSE. Marital_status $STATUS. Guarantees

$GUARANTEE. Assets $ASSETS. Other_credits $CREDIT. Status_residence

$HOUSING. Job $JOB. Telephone $TELEPHONE.

Credit CREDIT. ;

RUN ;

DATA ChiSq ;

SET ChiSq ;

WHERE Statistic CONTAINS "Cramer" ;

abs_V_Cramer = ABS(Value) ;

Variable = SCAN (Table,2) ;

KEEP Variable Value abs_V_Cramer ;

RUN ;

PROC SORT DATA = ChiSq ; BY DESCENDING abs_V_Cramer ; RUN ;

PROC PRINT DATA = ChiSq ; RUN ;

Here is the list of variables, arranged in decreasing order of discriminating power:

Obs Value abs_V_Cramer Variable

1 0.3517 0.35174 Accounts

2 0.2484 0.24838 Credit_history

3 0.2050 0.20499 Credit_duration

4 0.1900 0.19000 Savings

5 0.1735 0.17354 Purpose_credit

6 0.1581 0.15809 Credit_amount

7 0.1540 0.15401 Assets

8 0.1355 0.13553 Seniority_employment

9 0.1349 0.13491 Status_residence

10 �0.1279 0.12794 Age

11 0.1133 0.11331 Other_credits

12 0.0980 0.09801 Marital_status

13 0.0815 0.08152 Guarantees

14 0.0740 0.07401 Installment_rate

15 0.0517 0.05168 Nb_credits

16 0.0434 0.04342 Job

17 �0.0365 0.03647 Telephone

18 0.0274 0.02737 Seniority_residence

19 �0.0030 0.00301 Number_of_dependents
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A decrease in Cram�er’s V can be seen after the 12th variable, with another decrease after the

14th variable. Variables after the 15th haveV values less than 0.05, and consequently these are

not retained for use in the score model.

For example, the type of employment is found to have little predictive value for the risk of

non-payment, and not in an intuitive way, since executives are most at risk (perhaps related to

their position on the MCA graphic) with a non-payment rate of 34.46%.

Table of Job by Credit

Job Credit

Frequency

Percent

Row Pct

Good Bad Total

Unemployed 15 7 22

1.50 0.70 2.20

68.18 31.82

Unskilled 144 56 200

14.40 5.60 20.00

72.00 28.00

Skilled employee/worker 444 186 630

44.40 18.60 63.00

70.48 29.52

Executive 97 51 148

9.70 5.10 14.80

65.54 34.46

Total 700 300 1000

70.00 30.00 100.00

The length of time at the current address also has a surprising effect on the risk of non-

payment, since those who have been at the address for the shortest time are least at risk.

Table of Seniority_residence by Credit

Seniority_residence Credit

Frequency

Percent

Row Pct Good Bad Total

Res <1 year 94 36 130

9.40 3.60 13.00

72.31 27.69

Res [1–4[ years 211 97 308

21.10 9.70 30.80

68.51 31.49

Res [4–7[ years 106 43 149

10.60 4.30 14.90

71.14 28.86
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Res >¼ 7 years 289 124 413

28.90 12.40 41.30
69.98 30.02

Total 700 300 1000

70.00 30.00 100.00

I have not reproduced the table for the possession of a telephone number. As might be

expected, the absence of a telephone number is a risk factor, but a very weak one, as indicated

by the low value of its Cram�er’s V. This variable is sometimes examined, but it is not often of

much use, especially as it fails to distinguish between landlines, mobiles and work numbers.

Similarly, I have omitted the table for the number of dependents, as Cram�er’s V for this

variable is practically zero and there is practically no link with the dependent variable.

Before going on to examine the modelling based on the independent variables which were

not eliminated at this stage, we should make sure that there are no excessively strong links

between these variables. As the variables are all qualitative or discrete, Cram�er’s V is an

appropriate measure of the links. The previous syntax, based on the output of the contingency

tables in an ODS data set which is subsequently formatted, will now be slightly modified. In

this case, the FREQ procedure cross-tabulates the set of variables with itself, and we must of

course exclude any trivial pairs (variables cross-tabulated with themselves) and symmetrical

pairs, which is done by the IF SCAN. . . instruction.

ODS OUTPUT ChiSq = ChiSq ;

PROC FREQ DATA=test ;

TABLES (&var) * (&var) / CHISQ NOCOL NOPRINT ;

FORMAT Accounts ACCOUNTS. Credit_duration DURATION. Credit_amount

AMOUNT. Savings SAVINGS. Seniority_employment EMPLOYMENT.

Installment_rate INSTALL_RATE. Seniority_residence RESID. Age AGE.

Nb_credits NBCRED. Number_of_dependents DEPENDENTS. Credit_history

$HISTORY. Purpose_credit $PURPOSE. Marital_status $STATUS. Guarantees

$GUARANTEE. Assets $ASSETS. Other_credits $CREDIT. Status_residence

$HOUSING. Job $JOB. Telephone $TELEPHONE.

Credit CREDIT. ;

RUN ;

DATA ChiSq ;

SET ChiSq ;

WHERE Statistic CONTAINS "Cramer" AND value NE 1 ;

abs_V_Cramer = ABS(Value) ;

Variable = SCAN(Table,2)!!" x "!!SCAN(Table,3) ;

KEEP Variable Value abs_V_Cramer ;

IF SCAN(Table,2) < SCAN(Table,3) ;

RUN ;

PROC SORT DATA = ChiSq ; BY DESCENDING abs_V_Cramer ;

PROC PRINT DATA = ChiSq ; RUN ;
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Obs Value abs_V_Cramer Variable

1 0.5532 0.55318 Assets� Status_residence

2 0.5066 0.50660 Credit_duration�Credit_amount

3 0.4257 0.42569 Job�Telephone

4 0.3782 0.37822 Credit_history�Nb_credits

5 0.3416 0.34158 Credit_amount� Purpose_credit

6 0.3113 0.31131 Job� Seniority_employment

7 0.3096 0.30965 Age� Status_residence

. . . . . . . . . . . .

The first pairs displayed are very closely linked and values of Cram�er’sVabove 0.4 in absolute
terms are considered to be problematic.

Table of Assets by Status_residence

Assets Status_residence

Frequency

Percent

Row Pct

Tenant Owner Rent-free

accommodation

Total

Property 55 226 1 282

5.50 22.60 0.10 28.20

19.50 80.14 0.35

Life insurance 46 184 2 232

4.60 18.40 0.20 23.20

19.83 79.31 0.86

Car or other 60 271 1 332

6.00 27.10 0.10 33.20

18.07 81.63 0.30

No known assets 18 32 104 154

1.80 3.20 10.40 15.40

11.69 20.78 67.53

Total 179 713 108 1000

17.90 71.30 10.80 100.00

The contingency table clearly shows that the most valuable asset is related to the status at

residence by only one category for each variable, by the link between the ‘no known assets’

category and the ‘rent-free accommodation’ category. This does not justify the exclusion of one

of the two variables at this stage, but wemust bear this link in mind in case it becomes relevant.

The secondmost closely linked pair is the duration and amount of credit. The strength of the

link is due to the fact that 95% of the loans for periods of more than 15 months are for amounts

belowD4000,while 83%of the loans for periods ofmore than 36months are for amounts above

D4000. It is unlikely that both variables will appear simultaneously in amodel, and the duration

(Cram�er’s V¼ 0.20) is appreciably more discriminating than the amount (Cram�er’s V¼ 0.16).

We may even wonder if the discriminating power of the amount is due to its link with the
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duration, because the link with the risk of non-payment ismore evident for the duration than for

the amount, since there is no difference between the orders of magnitude of the monthly

instalments on these amounts, which are much smaller than the amount of a property loan.

Table of Credit_duration by Credit_amount

Credit_duration Credit_amount

Frequency

Percent

Row Pct

<4000 euros >4000 euros Total

<¼ 15 months 408 23 431

40.80 2.30 43.10

94.66 5.34

16–36 months 331 151 482

33.10 15.10 48.20

68.67 31.33

>36 months 15 72 87

1.50 7.20 8.70

17.24 82.76

Total 754 246 1000

75.40 24.60 100.00

The cross-tabulation with the dependent variable supports the view that the duration is

preferable. It offers a more balanced division of the population, because no category exceeds

half of the credit applications. One of the categories (�15 months) is also markedly less risky

than the average, whereas another (>36 months) is markedly more risky. This enables us to

distribute the files more satisfactorily between higher and lower risk.We therefore exclude the

credit amount from the list of variables to be tested in the model.

Table of Credit_duration by Credit

Credit_duration Credit

Frequency

Percent

Row Pct

Good Bad Total

<¼15 months 342 89 431

34.20 8.90 43.10

79.35 20.65

16–36 months 316 166 482

31.60 16.60 48.20

65.56 34.44

>36 months 42 45 87

4.20 4.50 8.70

48.28 51.72

Total 700 300 1000

70.00 30.00 100.00
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Table of Credit_amount by Credit

Credit_amount Credit

Frequency

Percent

Row Pct

Good Bad Total

<4000 euros 559 195 754

55.90 19.50 75.40

74.14 25.86

>4000 euros 141 105 246

14.10 10.50 24.60

57.32 42.68

Total 700 300 1000

70.00 30.00 100.00

The thirdpair of strongly linkedvariables has disappearedwith the exclusionof the ‘telephone’

variable, as has the fourth pairwith the removal of the ‘number of credits’ and the fifth pairwith the

removal of the ‘amount of credit’. The pairs shown below have acceptable links.

Let us examine the other variables, starting with those most strongly linked to the

dependent variable. To obtain the contingency tables shown below, we rerun the FREQ

procedure without the NOPRINT option.

For the average balance in the current account, a negative balance clearly increases the riskof

non-payment. A balance of more than D200 reduces the non-payment rate by more than half.

Table of Accounts by Credit

Accounts Credit

Frequency

Percent

Row Pct

Good Bad Total

CA< 0 euros 139 135 274

13.90 13.50 27.40

50.73 49.27

CA [0–200 euros] 164 105 269

16.40 10.50 26.90

60.97 39.03

CA >¼ 200 euros 49 14 63

4.90 1.40 6.30

77.78 22.22

No checking account 348 46 394

34.80 4.60 39.40

88.32 11.68

Total 700 300 1000

70.00 30.00 100.00
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Very logically, the non-payment rates are linked to the applicant’s repayment history. There

is a clearly marked gradation from the applicant who has never had any credit to the applicant

whohas hadoutstandingpayments at the bank or has other outstandingpayments at other banks.

Two intermediate classes have non-payment rates very similar to each other, and very close to

the average: thosewhohave already repaid their loans in the past (31.82%of non-payments) and

those who have a loan being repaid without any delay at present (31.89% of non-payments).

Similar non-payment rates, a similar significance for the business, and one of the classes which

represents less than 9% of the files: these are three reasons for grouping these two classes

together for modelling. This is also programmed in the FORMAT procedure:

value $HISTORY

“A30” = “Current non-payment at another bank”

“A31” = “Previous non-payments”

“A32”,“A33” = “Credits without delay”

“A34” = “No credit at any time” ;

Table of Credit_history by Credit

Credit_history Credit

Frequency

Percent

Row Pct

Good Bad Total

Current non-payment at another bank 15 25 40

1.50 2.50 4.00

37.50 62.50

Previous non-payments 21 28 49

2.10 2.80 4.90

42.86 57.14

Current credits without delay till now 361 169 530

36.10 16.90 53.00

68.11 31.89

Previous credits without delay 60 28 88

6.00 2.80 8.80

68.18 31.82

No credit at any time 243 50 293

24.30 5.00 29.30

82.94 17.06

Total 700 300 1000

70.00 30.00 100.00

Similarly, for savings, there is a low non-payment rate for those having no savings product

(which is different fromhaving a savings product with a zero balance), which simplymeans that

their savings are held at another bank. The non-payment rate then rises sharply, taking similar

values under D100 and between D100 and D500. These categories are therefore combined. We

may hesitate to combine the two bands betweenD500 andD1000 and overD1000, because their
non-payment rates are somewhat different, but the small size of these two bands is a good reason

for combining them. We could even consider grouping them together with the first category.
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value SAVINGS

0 = ‘no savings’

1-2 = ‘< 500 euros’

3-4 = ‘> 500 euros’ ;

Table of Savings by Credit

Savings Credit

Frequency

Percent

Row Pct

Good Bad Total

No savings 151 32 183

15.10 3.20 18.30

82.51 17.49

<100 euros 386 217 603

38.60 21.70 60.30

64.01 35.99

[100–500 euros] 69 34 103

6.90 3.40 10.30

66.99 33.01

[500–1000 euros] 52 11 63

5.20 1.10 6.30

82.54 17.46

>¼1000 euros 42 6 48

4.20 0.60 4.80

87.50 12.50

Total 700 300 1000

70.00 30.00 100.00

For the purpose of the credit applied for, the categories are too numerous, and some of them

are much too small. We must therefore create some combinations. It is logical, and in

accordance with the non-payment rates, to group the purposes ‘furniture’, ‘household appli-

ances’ and ‘improvements’ together.Wewill also group ‘training’with ‘education’, in spite of a

very high non-payment rate for ‘training’, which in fact means nothing because it is based on a

single non-payment. In this grouping, therefore, we have taken a logical approach. We might

also consider grouping this category with ‘business’. We find that the non-payment rates are

doubled between second-hand cars and new cars. Note that the purpose is always specified, and

the credit granted is not a revolving credit, for example.

value $PURPOSE

‘A40’ = "New vehicle"

‘A50’ = "Others"

‘A41’ = "2nd hand vehicle"

‘A42’,‘A44’,‘A45’ = "Internal fittings"

‘A43’ = "Video HIFI"

‘A46’,‘A48’ = "Education"

‘A49’ = "Business"

‘A47’ = "Holidays" ;
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Table of Purpose_credit by Credit

Purpose_credit Credit

Frequency

Percent

Row Pct

Good Bad Total

New vehicle 145 89 234

14.50 8.90 23.40

61.97 38.03

2nd hand vehicle 93 22 115

9.30 2.20 11.50

80.87 19.13

Furniture 123 58 181

12.30 5.80 18.10

67.96 32.04

Video HIFI 218 62 280

21.80 6.20 28.00

77.86 22.14

Household appliances 8 4 12

0.80 0.40 1.20

66.67 33.33

Improvements 14 8 22

1.40 0.80 2.20

63.64 36.36

Education 28 22 50

2.80 2.20 5.00

56.00 44.00

Training 8 1 9

0.80 0.10 0.90

88.89 11.11

Business 63 34 97

6.30 3.40 9.70

64.95 35.05

Total 700 300 1000

70.00 30.00 100.00

The link between the asset of highest value possessed and the non-payment risk is

logical. The absence of known assets doubles the non-payment rate as compared with the

possession of a property asset. An applicant in the latter class has a better financial position,

especially if he has repaid his property loan. Even if this is not the case, he is more likely than

the average customer to ensure that his instalments are paid on time (out of fear of

repossession, maybe). In any case, if a property loan has been granted to him, he must
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have had a degree of financial security. The two intermediate categories of ‘life insurance’

and ‘vehicle or other’ have equal non-payment rates, and are therefore grouped together into

the ‘non-property asset’ category.

value $ASSETS

‘A121’ = “Property”

‘A122’,‘A123’ = “Other assets”

‘A124’ = “No known assets” ;

Table of Assets by Credit

Assets Credit

Frequency

Percent

Row Pct

Good Bad Total

Property 222 60 282

22.20 6.00 28.20

78.72 21.28

Life insurance 161 71 232

16.10 7.10 23.20

69.40 30.60

Vehicle or other 230 102 332

23.00 10.20 33.20

69.28 30.72

No known assets 87 67 154

8.70 6.70 15.40

56.49 43.51

Total 700 300 1000

70.00 30.00 100.00

Seniority in employment follows a logical general trend, since an applicant with greater

seniority is less at risk. Some of the detailed results are rather surprising, and may simply be

due to a number of non-payments which is too small to yield reliable non-payment rates.

However, there may be other explanations. For instance, an unemployed person is slightly less

at risk than a person who has worked for less than a year. This may be due to the fact that the

‘unemployed’ category includes not only job seekers, but also people such as retired persons

who do not need to work. As for the category of people who have been in their present

employment for more than 7 years, this presents slightly more risk than the category of

4–7 years. This may be due to the presence of older employees who are more likely to bemade

redundant. Whatever the reasons, the first two and the last two categories will be grouped

together to avoid any inconsistencies and to ensure that the categories are large enough.

value EMPLOYMENT

1-2 = ‘Unemployed or lt 1 year’

3 = ‘Empl [1-4[ years’

4-5 = ‘Empl >= 4 years’ ;
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Table of Seniority_employment by Credit

Seniority_employment Credit

Frequency

Percent

Row Pct

Good Bad Total

Unemployed 39 23 62

3.90 2.30 6.20

62.90 37.10

<1 year in employment 102 70 172

10.20 7.00 17.20

59.30 40.70

Employed [1–4]years 235 104 339

23.50 10.40 33.90

69.32 30.68

Employed [4–7]years 135 39 174

13.50 3.90 17.40

77.59 22.41

Employed >¼7 years 189 64 253

18.90 6.40 25.30

74.70 25.30

Total 700 300 1000

70.00 30.00 100.00

For residential status, the grouping of the categories follows the same logic as before.

value $HOUSING

‘A151’,‘A153’ = ‘Not Owner’

‘A152’ = ‘Owner’ ;

Table of Status_residence by Credit

Status_residence Credit

Frequency

Percent

Row Pct

Good Bad Total

Tenant 109 70 179

10.90 7.00 17.90

60.89 39.11

Owner-occupier 527 186 713

52.70 18.60 71.30

73.91 26.09

Rent-free accommodation 64 44 108

6.40 4.40 10.80

59.26 40.74

Total 700 300 1000

70.00 30.00 100.00
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For age, no changes need to be made, and it will be tested as it stands.

Table of Age by Credit

Age Credit

Frequency

Percent

Row Pct

Good Bad Total

<¼25 years 110 80 190

11.00 8.00 19.00

57.89 42.11

>25 years 590 220 810

59.00 22.00 81.00

72.84 27.16

Total 700 300 1000

70.00 30.00 100.00

Where loans from other institutions are concerned, it is logical that these should entail a

higher risk of non-payment, because the customer is more indebted and events taking place

at the other institutions cannot be monitored or controlled. The nature of the banking

institution – conventional or specialist – makes no difference in the non-payment rate, and

the first two categories are combined.

value $CREDIT

‘A141’,‘A142’ = “Other banks or institutions”

‘A143’ = “No credit” ;

Table of Other_credits by Credit

Other_credits Credit

Frequency

Percent

Row Pct

Good Bad Total

Other banks 82 57 139

8.20 5.70 13.90

58.99 41.01

Credit institutions 28 19 47

2.80 1.90 4.70

59.57 40.43

No credit 590 224 814

59.00 22.40 81.40

72.48 27.52

Total 700 300 1000

70.00 30.00 100.00
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Turning tomarital status, Cram�er’s Vwith the dependent variable goes below the threshold of

0.1, and the decrease in discriminating power is evident. The difference between the non-payment

rates of the different categories diminishes. The two categories having the most similar non-

payment rates will be grouped together, but it is unlikely that the variable will play a major part in

the prediction. Counterintuitively, the weakness of this variable is often encountered in scoring.

It is a pity, however, that the ‘divorced/separated woman’ category has been grouped with

‘marriedwoman’ forwhich thenon-payment rate is probably lower.Themodelmaysuffer from this.

Wemay also note the rather surprising absence of an ‘unmarried woman’ category from the

sample. The scoremodel will therefore be developedwithout this variable, andwill be unable to

score a credit applicationmade by an unmarried woman, if this occurs. To avoid this unforeseen

situation, it is preferable to add an a priori rule on unmarried women, which can be validated by

credit analysts. This rulewill be that the ‘unmarriedwoman’ categorywill be combinedwith one

of the existing categories, either ‘woman: divorced/separated/married’ or ‘man: unmarried’.

value $STATUS

‘A91’ = “Man: divorced/separated”

‘A92’ = “Woman: divorced/separated/married”

‘A93’,‘A94’ = “Man: unmarried/married/widowed”

‘A95’ = “Woman: unmarried” ;

Table of Marital_status by Credit

Marital_status Credit

Frequency

Percent

Row Pct

Good Bad Total

Man: divorced/separated 30 20 50

3.00 2.00 5.00

60.00 40.00

Woman: divorced/separated/married 201 109 310

20.10 10.90 31.00

64.84 35.16

Man: unmarried 402 146 548

40.20 14.60 54.80

73.36 26.64

Man: married/widowed 67 25 92

6.70 2.50 9.20

72.83 27.17

Total 700 300 1000

70.00 30.00 100.00

The existence of a guarantor tends to decrease the non-payment rate, by contrast

with the effect of a co-borrower, but this situation is fairly uncommon. However, we can test

this variable, which may provide further useful information for the individuals concerned.
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Table of Guarantees by Credit

Guarantees Credit

Frequency

Percent

Row Pct

Good Bad Total

No guarantee 635 272 907

63.50 27.20 90.70

70.01 29.99

Co-borrower 23 18 41

2.30 1.80 4.10

56.10 43.90

Guarantor 42 10 52

4.20 1.00 5.20

80.77 19.23

Total 700 300 1000

70.00 30.00 100.00

Inspection of the instalment rate table confirms a fact that is well known to credit scoring

experts: this variable, which appears to be popular among credit analysts, is actually a poor

predictor of the risk of non-payment. The non-payment rates are so close that this variable

cannot be of any use at all, and we remove it from the selection.

Table of Installment_rate by Credit

Installment_rate Credit

Frequency

Percent

Row Pct

Good Bad Total

<20 102 34 136

10.20 3.40 13.60

75.00 25.00

[20–25] 169 62 231

16.90 6.20 23.10

73.16 26.84

[25–35] 112 45 157

11.20 4.50 15.70

71.34 28.66

>¼35 317 159 476

31.70 15.90 47.60

66.60 33.40

Total 700 300 1000

70.00 30.00 100.00

When the categories have been regrouped, we can recalculate the contingency tables with

the credit variable, to obtain a precise measurement of the effect of the changes on the non-
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payment rates. This is also the way to measure the changes in Cram�er’s V following the

regrouping. These tables are not reproduced here for reasons of space.We find that Cram�er’sV
for savings changes from 0.190 to 0.188, for the purpose of the credit it changes from 0.174 to

0.161 (more regroupings), and for seniority in employment it changes from 0.136 to 0.133.

The other V values vary imperceptibly or not at all.

We can use all 12 selected variables for modelling in an SASmacro-variable. This is more

convenient and will avoid the need to specify them all in the syntax.

%let varselec =

Accounts Credit_history Credit_duration Savings Seniority_employment

Age Purpose_credit Marital_status Guarantees Assets

Other_credits Status_residence ;

Regardless of the modelling method, we have seen that the population to be modelled had

to be divided in a random way into two samples, namely one for training and one for

validation. Here wewill do this by simple random sampling, which gives a satisfactory result.

For the details of stratified random sample, see Section 2.16.2 of my book Étude de Cas en

Statistique D�ecisionnelle.6

%LET seed = 123;

DATA train valid ;

SET test ;

IF RANUNI(&seed) < 0.66

THEN DO ; sample = "T" ; OUTPUT train ; END ;

ELSE DO ; sample = "V" ; OUTPUT valid ; END ;

RUN ;

PROC FREQ DATA = train; TABLE Credit; FORMAT Credit CREDIT.; RUN;

PROC FREQ DATA = valid ; TABLE Credit; FORMAT Credit CREDIT.; RUN;

Here is the distribution of the Good and Bad files in the training sample:

Credit Frequency Percent Cumulative frequency Cumulative percent

Good 451 70.03 451 70.03

Bad 193 29.97 644 100.00

and in the validation sample:

Credit Frequency Percent Cumulated frequency Cumulative percent

Good 249 69.94 249 69.94

Bad 107 30.06 356 100.00

These distributions are very close to those of the total population.

The performance of the models is evaluated by calculating the area under the ROC curve

for the test sample, using the SAS %AUC macro described in Section 11.16.5.

6 Tuff�ery, S. (2009) Étude de Cas en Statistique D�ecisionnelle. Paris: Technip.
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12.8 An example of credit scoring (modelling by logistic

regression)

The first modelling method used in this case study is logistic regression, which is the standard

method for this kind of situation, for the reasons mentioned previously. I will not repeat the

detailed description of the principles of logistic regression and its implementation in the SAS

LOGISTIC procedure, as these were covered in Chapter 11.

Let us assume that we are modelling the ‘Bad’ category of the ‘Credit’ variable, in other

words the existence of non-payments, using the variables preselected on the basis of the initial

statistical tests. We carry out a stepwise selection, with the usual 5% thresholds. The

FORMAT instruction takes into account the completed discretization and regrouping of

categories, without the need for any physical modification of the input data set.

PROC LOGISTIC DATA=train ;

CLASS &varselec / PARAM=glm;

MODEL Credit (ref=’Good’) = &varselec / SELECTION=stepwise

SLE=0.05

SLS=0.05 ;

SCORE DATA=train OUT=train_score;

SCORE DATA=valid OUT=valid_score;

FORMAT Accounts ACCOUNTS. Credit_history $HISTORY. Credit_duration

DURATION. Age AGE. Purpose_credit $PURPOSE. Savings SAVINGS.

Seniority_employment EMPLOYMENT. Marital_status $STATUS. Guarantees

$GUARANTEE. Assets $ASSETS. Other_credits $CREDIT. Status_residence

$HOUSING. Credit CREDIT.;

RUN ;

We obtain a model with eight variables. Note that the first five variables included in the

model are the five most closely linked to the dependent variable in terms of Cram�er’s V.

Age appears in tenth place according to Cram�er’s V, but it is usually included in this type of

scoring because it is less correlated with the other variables and contributes a different kind

of intrinsic informationwhich is independent of the banking relationship. The presenceof credit

at other institutions appears in eleventh position, but is included here because it provides

external information which is less correlated with the other information of internal origin.

Summary of Stepwise Selection

Effect Number

In

Score

Chi-Square

Wald

Chi-Square

Pr>ChiSqStep

Entered Removed

DF

1 Accounts 3 1 89.1537 <.0001

2 Credit_duration 2 2 32.6682 <.0001

3 Purpose_credit 5 3 31.1379 <.0001

4 Credit_history 3 4 15.6917 0.0013

5 Savings 2 5 10.2912 0.0058

6 Age 1 6 7.2765 0.0070

7 Guarantees 2 7 7.2307 0.0269

8 Other_credits 1 8 5.7753 0.0163
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A type 3 analysis of effects has already been described in the Titanic case study

(Section 11.8.13). It is performed for each variable by comparing the sub-model excluding

the variable with the model including this variable and the others, in order to test the null

hypothesis that this variable has no effect in the model if the other variables are included.

Type 3 analysis of effects

Effect DF Wald Chi-Square Pr>ChiSq

Accounts 3 48.8490 <.0001

Credit_history 3 13.6473 0.0034

Credit_duration 2 39.8004 <.0001

Savings 2 11.7869 0.0028

Age 1 7.6924 0.0055

Purpose_credit 5 34.2489 <.0001

Guarantees 2 7.6865 0.0214

Other_credits 1 5.7013 0.0170

Wemust then carefully read the table of parameters of the logistic model. It is particularly

important to identify Wald statistics below 3.84 (the 5% significance threshold) and

coefficients that are inconsistent with the actual non-payment rates.

There is no problemwith the ‘accounts’, ‘credit duration’, ‘age’ and ‘other credits’ variables.

For credit history, the ‘Credits without delay’ category has an abnormally high coefficient

because it is hardly lower than that of the ‘Previous non-payments’ category. Moreover, the

Wald statistic for this coefficient is too low.

For savings, the coefficient of 0.8267 for the ‘>500 euros’ category is inconsistent with

the fact that this category presents the least risk. Also, the Wald statistic is too low. This

category will therefore be grouped with the ‘no savings’ category, for which the non-payment

rate is practically the same.

In the case of guarantees, the ‘co-borrower’ category has a negative sign which is

inconsistent with the fact that it presents a higher risk than the ‘no guarantee’ category. These

two categories will be grouped together.

For the purpose of credit, the coefficients are completely inconsistent and have little

significance. We could group ‘business’ and ‘education’ together as their non-payment rates

are similar. However, the ‘internal fittings’ and ‘video Hi-Fi’ categories are problematic: they

have different risk levels, but should be grouped together. This can be done by creating a

category called ‘Home’:

PROC FORMAT;

value $PURPOSE

‘A40’ = “New vehicle”

‘A50’ = “Others”

‘A41’ = “2nd hand vehicle”

‘A42’,‘A43’,‘A44’,‘A45’ = “Home”

‘A46’,‘A48’,‘A49’ = “Education-Business”

‘A47’ = “Holidays” ;

RUN ;
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Table of Purpose_credit by Credit

Purpose_credit Credit

Frequency

Percent

Row Pct

Good Bad Total

New vehicle 145 89 234

14.50 8.90 23.40

61.97 38.03

2nd hand vehicle 93 22 115

9.30 2.20 11.50

80.87 19.13

Home 363 132 495

36.30 13.20 49.50

73.33 26.67

Education-Business 99 57 156

9.90 5.70 15.60

63.46 36.54

Total 700 300 1000

70.00 30.00 100.00

When we run a test with this grouping, we find that the ‘New vehicle’ coefficient is much

higher than that for ‘Education-Business’,whichdoes notfit the real situation, even if this grouping

slightly improves the performance.We can see that it is difficult to achieve satisfactory groupings,

and wewill try to dispensewith this variable subsequently. A further reason is that seven variables

are quite enough in view of the relatively limited number of observations for training the model.

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard

Error

Wald

Chi-Square

Pr>
ChiSq

Intercept 1 �3.5215 0.6479 29.5442 <.0001

Accounts CA< 0 euros 1 1.9927 0.2913 46.7810 <.0001

Accounts CA>¼ 200 euros 1 1.0816 0.4466 5.8662 0.0154

Accounts CA [0–200 euros] 1 1.4617 0.2835 26.5899 <.0001

Accounts No checking account 0 0 . . .

Credit_history Credits without delay 1 �0.1701 0.4633 0.1348 0.7135

Credit_history Current non-payment
at another bank

1 0.8270 0.6314 1.7153 0.1903

Credit_history No credit at any time 1 �0.8344 0.4924 2.8715 0.0902

Credit_history Previous non-payments 0 0 . . .

Credit_duration >36 months 1 1.9666 0.3836 26.2768 <.0001

Credit_duration 16–36 months 1 1.3391 0.2396 31.2309 <.0001
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Credit_duration <= 15 months 0 0 . . .

Savings <500 euros 1 1.0611 0.3097 11.7404 0.0006

Savings >500 euros 1 0.8267 0.4400 3.5300 0.0603

Savings No savings 0 0 . . .

Age <= 25 years 1 0.7323 0.2640 7.6924 0.0055

Age >25 years 0 0 . . .

Purpose_credit 2nd hand vehicle 1 �0.7367 0.4544 2.6281 0.1050

Purpose_credit Business 1 0.1404 0.3914 0.1287 0.7198

Purpose_credit Education 1 0.8946 0.4545 3.8734 0.0491

Purpose_credit Internal fittings 1 0.2388 0.3160 0.5709 0.4499

Purpose_credit New vehicle 1 1.3640 0.3108 19.2645 <.0001

Purpose_credit Video HIFI 0 0 . . .

Guarantees Co-borrower 1 �0.0619 0.5057 0.0150 0.9026

Guarantees Guarantor 1 �1.6185 0.5838 7.6854 0.0056

Guarantees No guarantee 0 0 . . .

Other_credits No credit 1 �0.6159 0.2579 5.7013 0.0170

Other_credits Other banks

or institutions

0 0 . . .

The%AUCmacro calculates the area under the ROC curve, which is 0.835 for the training

sample and 0.742 for the validation sample.

%AUC(train_score,Credit,P_Bad);

%AUC(valid_score,Credit,P_Bad);

Wemay find that a backward stepwise selection would produce exactly the samemodel in

this case, which would support our confidence in the choice of variables.

We will group the categories as shown below, before restarting the logistic regression on

the ‘accounts’, ‘credit history’, ‘credit duration’, ‘savings’, ‘age’, ‘guarantees’ and ‘other

credits’ variables, leaving out the purpose of the credit for the reasons stated above.

PROC FORMAT ;

value $HISTORY

‘A30’,‘A31’ = “Credits with non-payments”

‘A32’,‘A33’ = “Credits without delay”

‘A34’ = “No credit at any time” ;

value SAVINGS

0 = “No savings or > 500 euros”

1-2 = “< 500 euros”

3-4 = “No savings or > 500 euros” ;

value $GUARANTEE

‘A101’,‘A102’ = “No guarantor”

‘A103’ = “Guarantor” ;

RUN ;
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Here is the resulting model:

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard

error

Wald

Chi-Square

Pr>
ChiSq

Intercept 1 �3.1995 0.3967 65.0626 <.0001

Accounts CA< 0 euros 1 2.0129 0.2730 54.3578 <.0001

Accounts CA >¼ 200 euros 1 1.0772 0.4254 6.4109 0.0113

Accounts CA [0–200 euros] 1 1.5001 0.2690 31.1067 <.0001

Accounts No checking account 0 0 . . .

Credit_history Credits with

non-payments

1 1.0794 0.3710 8.4629 0.0036

Credit_history Credits without delay 1 0.4519 0.2385 3.5888 0.0582

Credit_history No credit at any time 0 0 . . .

Credit_duration >36 months 1 1.4424 0.3479 17.1937 <.0001

Credit_duration 16–36 months 1 1.0232 0.2197 21.6955 <.0001

Credit_duration <¼15 months 0 0 . . .

Age <¼25 years 1 0.6288 0.2454 6.5675 0.0104

Age >25 years 0 0 . . .

Savings <500 euros 1 0.6415 0.2366 7.3501 0.0067

Savings No savings or

>500 euros

0 0 . . .

Guarantees Guarantor 1 �1.7210 0.5598 9.4522 0.0021

Guarantees No Guarantor 0 0 . . .

Other_credits No credit 1 �0.5359 0.2439 4.8276 0.0280

Other_credits Other banks

or institutions

0 0 . . .

The area under the ROC curve is 0.806 in the training sample and 0.762 in the validation

sample, showing a noticeable convergence of the two areas by comparison with the first

model, demonstrating the greater robustness of the new model.

Only ‘Credits without delay’ has a Wald statistic slightly below the critical threshold of

3.84. However, its coefficient is consistent. I have tested the grouping of this category with the

‘No credit at any time’ category, but this led to a reduction in performance (AUC¼ 0.750 in

validation). So we shall retain the model above in its existing form. We may recall (see

Section 11.8.6) that the Wald test sometimes lacks power when the number of observations is

rather limited, with the result that it may fail to detect the significance of a coefficient.

When the logistic model has been chosen, with its variables and their division into

categories, we no longer need to use a training sample and a validation sample, and it is

preferable to adjust the coefficients in the table above by re-evaluating them against the whole

population. This enables us to find the coefficients with the smallest possible bias, and this
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becomes more useful if the population is not very large, as in this case. In the interests of

brevity, we shall assume that this has already been done.

We can then transform the above table of coefficients into a scorecard, following the

principle described in Section 2.27 of my book Étude de Cas en Statistique D�ecisionnelle
cited in Section 12.7 above.

The transcription of a model into scorecard form is common practice in credit scoring. In

the case of a logistic regression on qualitative or discretized variables, producing one

coefficient per category of each variable, we simply need to do the following:

. substitute the logit (linear combination of the indicators of the categories) for the

probability EXP(logit)/{1 þ EXP(logit)} as the score value;

. then normalize the logit so that it lies between 0 and 100 (or, in many cases, 1000, in

order to limit the effects of rounding).

In this normalization of the logit, the logistic regression coefficients are replaced with new

coefficients, called ‘numbers of points’, each associated with a category. For example, instead

of assigning the coefficient 0.6288 to the category ‘<¼25 years’, we assign 8 points to it. The

number of points assigned to each category is determined in such a way that each individual

has a total number of points in the range from 0 to 100, these two bounds being achievable, at

least in theory. This number of points is the score of the individual.

This number of points is perfectly linearly correlated (Pearson correlation¼ 1) with the

logit, but not with the ‘true’ logistic score, in other words the probability EXP(logit)/

{1 þ EXP(logit)}. However, it is perfectly correlated with the logistic score in terms of

ranks (Spearman correlation¼ 1), and its discriminating power is exactly the same, since the

ranks, and therefore the classification of the individuals, are retained by the increasing

function EXP(x)/{1 þ EXP(x)}. The area under the ROC curve for the scorecard is therefore

equal to that for the logistic score (allowing for rounding).

This calculation of the score as a sum of points is explained in Section 4.8.3 of Nakache

and Confais (2003).7

The coefficient of the model associated with category i of variable j is denoted c( j,i). For

each variable j, we look for the smallest coefficient c( j,i), denoted min( j), and the largest

coefficient c( j, k), and we then calculate Deltamax( j), the difference between them, as the

largest difference between the two coefficients of a single variable. We then calculate

Total_weight, the sum of all the Deltamax for j. Finally, a number of points is assigned

to each category i of the variable j:

Nðj; iÞ ¼ 100� cð j; iÞ�minð jÞ
Total weight

To sum up, we find that:

Nð j; iÞ ¼ 100� cð j; iÞ�minkðcð j; kÞÞP
l maxmcðl;mÞ�minmcðl;mÞ½ �

This calculation can be carried out simply with SAS (see my book cited above) or with an

Excel type spreadsheet. In the present case, we obtain the following grid:

7 Nakache, J.-P. and Confais, J. (2003) Statistique Explicative Appliqu�ee. Paris: Technip.
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Variable ClassVal0 nbpoints

Age >25 years 0

Age <¼25 years 8

Other_credits No credit 0

Other_credits Other banks or institutions 7

Accounts No checking account 0

Accounts CA >¼ 200 euros 13

Accounts CA [0–200 euros] 19

Accounts CA< 0 euros 25

Credit_duration <¼ 15 months 0

Credit_duration 16–36 months 13

Credit_duration >36 months 18

Savings no savings or >500 euros 0

Savings <500 euros 8

Guarantees Guarantor 0

Guarantees No guarantor 21

Credit_history No credit at any time 0

Credit_history Credits without delay 6

Credit_history Credits with non-payments 13

The advantage of this scorecard is its readability. I have highlighted the category with the

maximum weight for each variable. The sum of the highlighted numbers is 100. Credit analysts

who are not statisticians can easily understand and comment on this scorecard. This will facilitate

their use of the scoring tool and they will be able to compare the numbers of points with their

professional understanding. It may also suggest that a given division is inappropriate or that a

particular variable has too much weight, and may lead the statistician to re-examine his model.

In our example, the personal criteria (age) or external criteria (credits at other institutions)

have less weight. On the other hand, an overdrawn current account is amajor risk factor, which

is common knowledge, as is the absence of a guarantor. Rather surprisingly, the duration of the

credit has more weight than the presence of non-payments.

By way of example, let us calculate the number of points of two applicants. A young

person aged under 25, applying for credit for the first time at the institution and having no

other credit, with no non-payments, with an account having a slightly positive balance (but

less than D200), with a small amount of savings (less than D500), without a guarantor,

applying for credit for 36 months, will have a score of

8þ 0þ 19þ 13þ 8þ 21þ 0 ¼ 69 points:

An applicant aged over 25, with credits at competing institutions, without non-payments,

with an account having an average balance of more than D200, with more than D500 in
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savings, without a guarantor, applying for credit for 12 months, will have a score of:

0þ 7þ 13þ 0þ 0þ 21þ 0 ¼ 41 points:

The decision made as to their risk will be considered below.

The implementation of a scorecard in an IT system is very simple. In SAS, the

implementation is as follows:

DATA test_score ;

SET train_score valid_score ;

nbpoints = SUM (

(age<=25)*8 , (other_credits NE "A143")*7 , (accounts=3)*13 ,

(accounts=2)*19 , (accounts=1)*25 , (credit_duration >= 16 AND

credit_duration <= 36)*13 , (credit_duration > 36)*18 ,

(savings = 1 OR savings = 2)*8 , (guarantees NE "A103")*21 ,

(credit_history in ("A32" "A33"))*6 ,

(credit_history in ("A30" "A31"))*13

) ;

RUN ;

We can thus assign a number of points to any credit application. But this calculation cannot be

considered to be a decision support tool, because it does not allow the credit analyst to reach an

opinion immediately on the credit application that he is examining. A number of points is not

enough to tell him whether he should accept or reject the application.

The last step in the construction of the scoring tool is to divide the numbers of points into

bands. Three score bands are generally created:

. the least risky, for which a few checks need to be made and the customer must be asked

for the minimum requisite documents;

. an intermediate band, for which the file must be examined rather more closely and a

standard risk analysis must be conducted;

. the most risky, for which the application is either rejected, or at least sent to the line

manager for a more thorough examination of the file.

I shall now show how this division is carried out.

The first step is to use the RANK procedure to create a data set containing the variable

‘nbpoints’ and its division into deciles, ‘dnbpoints’. We then cross-tabulate the deciles with

the dependent variable, using the FREQ procedure.

PROC RANK DATA = test_score GROUPS = 10 OUT = deciles_score ;

VAR nbpoints ;

RANKS dnbpoints ;

RUN ;

PROC FREQ DATA = deciles_score ;

TABLES dnbpoints * Credit / NOCOL NOPERCENT ;
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FORMAT Credit CREDIT.;

RUN ;

The contingency table showsaphenomenonwhich iswell known in scoring: the non-payment

rates (more generally, the proportion of occurrence of the event to be predicted) does not increase

linearly. Thus we see that this rate is very low and gradually increasing in the first three deciles,

then jumps to 15.83% in the fourth decile, and then to 27.55% in the next decile. The non-payment

rate then goes through a region of moderate increase, up to the last two deciles in which the rate

increases strongly. The grouping of these bands is therefore self-evident, and we can make it

match the thresholds of the numbers of points calculated by the MEANS procedure.

Table of dnbpoints by Credit

dnbpoints (Rank for

Variable nbpoints)

Credit

Frequency

Row Pct

Good Bad Total

0 99 5 104

95.19 4.81

1 89 6 95

93.68 6.32

2 100 7 107

93.46 6.54

3 101 19 120

84.17 15.83

4 71 27 98

72.45 27.55

5 60 33 93

64.52 35.48

6 48 33 81

59.26 40.74

7 60 44 104

57.69 42.31

8 38 54 92

41.30 58.70

9 34 72 106

32.08 67.92

Total 700 300 1000

PROC MEANS DATA = deciles_score MIN MAX ;

CLASS dnbpoints ;

VAR nbpoints ;

RUN ;
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Analysis Variable: nbpoints

Rank for Variable

nbpoints

N Obs Minimum Maximum

0 104 6.0000000 29.0000000

1 95 33.0000000 37.0000000

2 107 39.0000000 42.0000000

3 120 43.0000000 48.0000000

4 98 49.0000000 54.0000000

5 93 55.0000000 60.0000000

6 81 61.0000000 65.0000000

7 104 66.0000000 69.0000000

8 92 70.0000000 74.0000000

9 106 75.0000000 95.0000000

The thresholds of the numbers of points are 48 and 69, highlighted in the table above. We

create a format corresponding to the bands defined in this way, and we can apply it to a table

cross-tabulating the number of points and the occurrence of non-payment. We can see that the

minimum (maximum) number of points is 6 (95) in the modelling sample; however, it could

be smaller (greater) in another sample.

PROC FORMAT ;

VALUE nbpoints

0-48 = ‘low risk ’

49-69 = ‘medium risk ’

70-high = ‘high risk ’ ;

RUN ;

PROC FREQ DATA = test_score ;

TABLES nbpoints * Credit / NOCOL ;

FORMAT Credit CREDIT. nbpoints nbpoints. ;

RUN ;

We have established a band of 42.6% of the credit applications for which the risk is very

low, because the non-payment rate is 8.69%, far below the average rate of 30% (remember that

these rates are not real, because the sampling has been stratified on the dependent variable).

We then have a band of 37.6% of credit applications for which the non-payment rate is slightly

above average. Finally, we have a very high risk band in which almost two-thirds of the files

show non-payment. They represent about 20% of the applications which must be rejected or at

least closely examined.

At 69 points, the young applicant described above presents a medium risk, but on the

borderline of high risk. The other applicant has a low risk. Both would have moved into a

higher risk band if they had applied for longer-term credit.
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Table of nbpoints by Credit

nbpoints Credit

Frequency

Percent

Row Pct

Good Bad Total

low risk 389 37 426

38.90 3.70 42.60

91.31 8.69

medium risk 239 137 376

23.90 13.70 37.60

63.56 36.44

high risk 72 126 198

7.20 12.60 19.80

36.36 63.64

Total 700 300 1000

70.00 30.00 100.00

This gives us a practical tool. I shall show another way of obtaining it in the next section.

12.9 An example of credit scoring (modelling by DISQUAL

discriminant analysis)

The second modelling method used for our credit scoring example is Saporta’s DISQUAL

linear discriminant analysis, described in Section 11.6.7. We will test this method because

its principles are interesting and different from those of logistic regression, and also

because it was invented to overcome some of the problems of credit scoring, in which it

is very successful. It is particularly useful in this case, because most of the variables are

qualitative.

The first step of the DISQUAL procedure is a multiple correspondence analysis, enabling

us to find the factor coordinates of the individuals. We use the same syntax as before, with the

BINARYoption which creates a complete binary table with one row per individual. We will

restrict ourselves to the variables selected in the data exploration, a list of which is given by the

&varselec macro variable (see Section 12.7). This time, however, we use the DIMENS¼21

instruction because we wish to extract 21 axes, in other words all the axes, because, as you

may remember (Section 7.4.1), the total number of axes is the difference between the number

of categories (33) and the number of variables (12). One of the outputs of theMCA shows that

the total inertia is 33/12–1¼ 1.75 and that the first eight axes account for 51% of this inertia.

The SOURCE option is used to add to the output data set a variable _VAR_containing the name

of the variable on each row of the _VAR_type (otherwise we only have the name of the

category, in the variable _NAME_). This will be useful later on.
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PROC CORRESP DATA=test_score BINARY DIMENS=21 OUT=output

NOROW=PRINT SOURCE ;

TABLES &varselec ;

FORMAT Accounts ACCOUNTS. Credit_history $HISTORY. Credit_duration

DURATION. Age AGE. Purpose_credit $PURPOSE. Savings SAVINGS.

Seniority_employment EMPLOYMENT. Marital_status $STATUS. Guarantees

$GUARANTEE. Assets $ASSETS. Other_credits $CREDIT. Status_residence

$HOUSING. Credit CREDIT.;

RUN ;

DATA coord ;

SET output ;

WHERE _type_ = ‘OBS’ ;

id = INPUT(STRIP(_name_),8.) ;

KEEP id Dim1-Dim21 ;

RUN ;

PROC SORT DATA = test_score ; BY id ; RUN ;

PROC SORT DATA = coord ; BY id ; RUN ;

DATA test_acm ;

MERGE test_score (IN=a) coord (IN=b) ;

BY id ;

IF a ;

RUN ;

After saving the factor coordinates of the individuals in the test_acm data set at the same

time as the initial variables (bymergingwith the initial data set), we canmove on to the second

step of the DISQUAL method, namely the linear discriminant analysis on the factor

coordinates. We start by selecting the variables with the SAS STEPDISC procedure, adapted

for this operation as shown in Section 11.6.6. We wish to know which factor axes to keep, out

of the 21 produced by theMCA. In a DISQUAL analysis, these axes will not necessarily be the

first in terms of eigenvalues, because there is no reason why the axes accounting for most of

the inertia in the cloud of independent variables should be those which are most closely linked

to the dependent variable.

PROC STEPDISC DATA= test_acm ;

CLASS credit ;

VAR Dim1-Dim21 ;

RUN ;

The summary table shows that 10 axes are selected, because they meet the (default)

threshold of 15% for the F test applied toWilks’ lambda. However, we shall restrict ourselves

to the first eight axes selected, which satisfy the F test at the 5% threshold. Eight is a

convenient number of axes, and avoids a long search for axes with low inertia which only

weakly differentiate the individuals.

AN EXAMPLE OF CREDIT SCORING 605



Stepwise Selection Summary

Step Number in Entered Removed Partial

R-square

F value Pr>F Wilks’

lambda

Pr<Lambda Average

Squared

Canonical
Correlation

Pr>ASCC

1 1 Dim2 0.1235 140.68 <.0001 0.87645066 <.0001 0.12354934 <.0001

2 2 Dim1 0.0433 45.09 <.0001 0.83852569 <.0001 0.16147431 <.0001

3 3 Dim5 0.0296 30.39 <.0001 0.81369748 <.0001 0.18630252 <.0001

4 4 Dim3 0.0232 23.60 <.0001 0.79484596 <.0001 0.20515404 <.0001

5 5 Dim9 0.0188 19.06 <.0001 0.77989449 <.0001 0.22010551 <.0001

6 6 Dim15 0.0161 16.24 <.0001 0.76734394 <.0001 0.23265606 <.0001

7 7 Dim11 0.0073 7.25 0.0072 0.76177807 <.0001 0.23822193 <.0001

8 8 Dim4 0.0041 4.04 0.0447 0.75868553 <.0001 0.24131447 <.0001

9 9 Dim12 0.0030 2.96 0.0858 0.75642611 <.0001 0.24357389 <.0001

10 10 Dim16 0.0023 2.27 0.1324 0.75469550 <.0001 0.24530450 <.0001
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We then perform a conventional linear discriminant analysis on the factor axes selected in

this way, namely those of rank 2, 1, 5, 3, 9, 15, 11 and 4. We use the standard DISCRIM

procedure (Section 11.6.6).

PROC DISCRIM DATA=test_acm (WHERE=(sample="T")) METHOD=normal

POOL=yes CROSSVALIDATE ALL CANONICAL OUT=scores

OUTSTAT=statdescr TESTDATA=test_acm (WHERE=(sample="V"))

TESTOUT=testout ;

CLASS Credit ;

PRIORS prop ;

VAR Dim2 Dim1 Dim5 Dim3 Dim9 Dim15 Dim11 Dim4 ;

RUN ;

Using the%AUCmacro, we find an area under the ROC curve of 0.823 for the learning sample

and 0.777 for the test sample, indicating a degree of overfitting.

We now progressively simplify the model, removing the axes one by one:

Removal of axis AUC in learning AUC in testing

Dim4 0.822 0.776

Dim11 0.812 0.780

Dim15 0.794 0.792

Dim9 0.783 0.785

Dim3 0.772 0.767

We find that the AUCs in training and validation converge towards a very similar value, a sign

that the performance is free of optimistic bias in both case, and therefore has a good chance of

being obtained subsequently with other samples. The optimum is achieved with a model with

five variables, namely Dim2, Dim1, Dim5, Dim3 and Dim9.

We rerun the linear discriminant analysis on the five variables and retrieve the coefficients

of the Fisher discriminant function in an ODS file.

ODS OUTPUT LinearDiscFunc = Fisher ;

PROC DISCRIM DATA=test_acm (WHERE=(sample="T")) METHOD=normal

POOL=yes CROSSVALIDATE

ALL CANONICAL OUT=scores OUTSTAT=statdescr

TESTDATA=test_acm (WHERE= (sample="V")) TESTOUT=testout ;

CLASS credit ;

PRIORS prop ;

VAR Dim2 Dim1 Dim5 Dim3 Dim9 ;

RUN ;
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Linear Discriminant Function for Credit

Variable Bad Good

Constant �1.50516 �0.42748

Dim2 1.65305 �0.91802

Dim1 0.95066 �0.35603

Dim5 �1.10068 0.53319

Dim3 0.75686 �0.17947

Dim9 �0.81894 0.36289

The difference between the two columns gives us a score function on the factor axes. We find

that the coefficients of this function are not an increasing function of the eigenvalue, and that

an axis such as the ninth has a coefficient that is not negligible. It is impossible to know in

advance which axes will be selected and what their coefficients will be in the score function.

However, we should certainly avoid the ones with the lowest eigenvalue.

We should also note the absence of standard deviations for the coefficients, which is not

the case with logistic regression. They are not provided by linear discriminant analysis, and

we must carry out multiple evaluations of the coefficients on bootstrap samples in order to

obtain an estimate of their standard deviations.

DATA Fisher ;

SET Fisher ;

SCORE = Bad – Good ;

RUN ;

Variable Bad Good SCORE

Constant �1.50516 �0.42748 �1.07768

Dim2 1.65305 �0.91802 2.57107

Dim1 0.95066 �0.35603 1.30669

Dim5 �1.10068 0.53319 �1.63387

Dim3 0.75686 �0.17947 0.93633

Dim9 �0.81894 0.36289 �1.18184

In the next step, we move from the coefficients on the factor axes to the coefficients on the

categories of the initial variables, using the definition of the axes as linear combinations of

the indicators of the categories. We start by transforming the data set of the coefficients of the

Fisher score function.

PROC TRANSPOSE DATA=Fisher OUT=t NAME=_TYPE_ ;

VAR SCORE ;

RUN ;
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_TYPE_ COL1 COL2 COL3 COL4 COL5 COL6

SCORE �1.07768 2.57107 1.30669 �1.63387 0.93633 �1.18184

DATA coeff_score ;

SET t ;

RENAME COL1 = Constant COL2 = Dim2 COL3 = Dim1 COL4 = Dim5 COL5 = Dim3

COL6 = Dim9 ;

_NAME_ = "Estimate" ;

RUN ;

_TYPE_ Constant Dim2 Dim1 Dim5 Dim3 Dim9 _NAME_

SCORE �1.07768 2.57107 1.30669 �1.63387 0.93633 �1.18184 Estimate

The above ‘coeff_score’ data set can then be applied by the SCORE procedure to the

‘output’ data set produced by the MCA, which contains, in particular, the coordinates Dim1,

. . ., Dim21 of each category on the factor axes. This procedure will calculate the scalar

product of the vector of the first data set and each vector of the second; each row, and therefore

each category, corresponds to one vector. On each row, the result will be placed in a variable

whose name is given by the _NAME_ variable of the first data set. Thus, for the category

‘CC >¼ 200 euros’, the scalar product Estimate will be:

ð2:57107� 0:01611Þ�ð1:30669� 0:46706Þþ . . . ¼ �0:84991:

This will be the coefficient of the DISQUAL score function for this category. Thus we obtain

the coefficient of each category.

PROC SCORE DATA=output (WHERE=(_TYPE_ = "VAR") KEEP=_TYPE_ _VAR_ _

NAME_ Dim1-Dim9 RENAME=(_VAR_=Variable))

SCORE=coeff_score OUT=coeff_disqual ;

VAR Dim2 Dim1 Dim5 Dim3 Dim9 ;

RUN ;

Variable _NAME_ Dim1 Dim2 . . . Dim9 Estimate

Accounts CA>¼ 200 euros �0.46706 0.01611 . . . 1.91183 �0.84991

Accounts CA< 0 euros 0.16320 0.55458 �0.46835 3.26808

Accounts CA [0–200 euros] 0.15208 0.42907 0.11839 0.89370

Accounts No checking account �0.14265 �0.68119 �0.06083 �2.74699

Credit_history Credits with

non-payments

1.17406 0.63792 0.03760 4.66420

Credit_history Credits without delay �0.14471 0.23650 0.09229 0.03387

Credit_history No credit at any time �0.05140 �0.69260 �0.20609 �1.48821

Credit_duration >36 months 1.43311 0.28466 �0.86441 2.46306

... ... ... ... ... ...
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We then move from the table of coefficients on the initial variables to the scorecard, as we

did previously for logistic regression, and once again we should start by re-evaluating these

coefficients over the whole population. This new scorecard uses more variables and is more

complex than the previous one.

Because of the greater number of variables, the variables that were present in the first

scorecard must now have a lower weight: this is the case for age, the existence of other credit,

the current account balance (which is still the most important variable) and the duration of the

credit. However, savings have an increased weight, as does the credit history. The latter also

now has a weight equal to that of the average current account balance, which seems more

reasonable than the limited weight that it had in the first scorecard.

The absence of a guarantor has considerably less weight than in the first scorecard. This is

because the two categories of the ‘Guarantees’ variable are closer to each other, for all the

chosen axes, than are the categories of other variables, such as the current account balance.

The moderate weight of this variable also appears to be a better reflection of its non-payment

rates than the high weight of this variable in the logistic model. The advantage of the

DISQUAL method is that we can allow for not only the links with the dependent variable

(because of the linear discriminant analysis) but also the links between the independent

variables (because of the MCA). In looking for a risk profile, we are interested in the elements

of the profile which clearly distinguish the at-risk individuals from the rest, but also

distinguish between the individuals. This double aim is reminiscent of PLS regression.

Other variables appear in the scorecard, some of them with a greater weight than the

variables that were already present in the previous scorecard: these are seniority in employ-

ment, assets owned, marital status and residential status. The purpose of credit also appears,

although it was excluded from the logistic regression. In this case it only shows a minor

anomaly, in that the ‘Education-Business’ category has a greater weight than the ‘New

vehicle’ category, although the latter is slightly more risky (38.03% non-payment rate as

against 36.54% – see above). However, there is only one point of difference in the scorecard,

and furthermore the ‘Education-Business’ category includes the ‘Education’ category which

is by far the most risky (44% non-payment rate).

In conclusion, this scorecard is more balanced and comprehensive than the previous one.

As the areas under the ROC curve are almost identical in learning and testing, we can expect

this scorecard to have a good capacity for generalization to other samples of customers.

Admittedly, its greater complexity might lead us to expect the opposite, given that a simpler

model is usually generalized more satisfactorily, but the rather large number of variables in

this case is not achieve at the price of a regression on correlated variables, as in the usual

methods, because the regression is carried out on factor axes that are orthogonal by

construction. As with PLS regression, we retain more predictors, with weights reduced

where necessary, without any problems of collinearity.

Variable _NAME_ Estimate nbpoints

Age >25 years �0.32343 0

Age <¼ 25 years 1.37885 4

Seniority_employment E >¼ 4 years �0.92331 0

Seniority_employment E [1–4]years �0.28461 2

Seniority_employment Unemployed or <1 year 2.09716 8
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Other_credits No credit �0.22075 0

Other_credits Other banks or institutions 0.96608 3

Assets Property �1.39717 0

Assets Other assets 0.13477 4

Assets No known assets 2.06488 9

Accounts No checking account �2.74699 0

Accounts CA >¼ 200 euros �0.84991 5

Accounts CA [0–200 euros] 0.89370 9

Accounts CA< 0 euros 3.26808 16

Credit_duration <¼15 months �0.68205 0

Credit_duration 16–36 months 0.16530 2

Credit_duration >36 months 2.46306 8

Savings no savings or >500 euros �3.13341 0

Savings <500 euros 1.30485 11

Guarantees Guarantor �0.71941 0

Guarantees No guarantor 0.03946 2

Credit_history No credit at any time �1.48821 0

Credit_history Credits without delay 0.03387 4

Credit_history Credits with non-payments 4.66420 16

Purpose_credit 2nd hand vehicle �1.33668 0

Purpose_credit Household �0.84660 1

Purpose_credit New vehicle 1.17962 7

Purpose_credit Education-Business 1.90228 8

Marital_status Man: unmarried/married/widowed �0.62477 0

Marital_status Woman: divorced/separated/married 0.91186 4

Marital_status Man: divorced/separated 2.34351 8

Status_residence Owner �0.72992 0

Status_residence Not owner 1.81335 7

The scorecard can then be programmed and applied to the whole population, or to another

sample. We create a data set which will include the training and validation samples, and also

the logistic score whose performance can be tested against that of the DISQUAL score.

DATA test_disqual ;

SET scores testout ;

nbpoints_disqual = SUM (

(Age <= 25) * 4, (Seniority_employment = 3) * 2, (Seniority_employment

<= 2) * 8, (Other_credits IN ("A141" "A142")) * 3, (Assets IN

("A122" "A123")) * 4, (Assets = "A124") * 9, (Accounts = 3) * 5,
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(Accounts = 2) * 9, (Accounts = 1) * 16, (Credit_duration >= 16 AND

Credit_duration <=36)*2,(Credit_duration>36)*8, (SavingsIN(12))*

11, (Guarantees = ‘No guarantor’ ) * 2, (Credit_history IN ("A32" "A33")) *

4, (Credit_history IN ("A30" "A31")) * 16, (Purpose_credit IN ("A42"

"A43" "A44" "A45")) * 1, (Purpose_credit = "A40") * 7, (Purpose_credit IN

("A46" "A48" "A49")) * 8, (Marital_status = "A92") * 4, (Marital_status =

"A91") * 8, (Status_residence NE "A152") * 7

) ;

RUN ;

Because of the revision of the DISQUAL model and the rounding in the scorecard, the

correlation coefficient between the ranks of the DISQUAL score and the corresponding

number of points is ‘only’ 0.99365. This is enough to create a difference in the area under the

ROC curve measured over the set of 1000 data sets: the area is 0.793 for the DISQUAL score

and 0.791 for the number of points. For the logistic model, this area is 0.790 for both the score

and the number of points, but the correlation coefficient of 0.99923 is closer to 1. In order to

reduce the differences in the DISQUAL model, we would have to create a scorecard based on

1000 points instead of 100 points. The small loss of simplicity would be offset by the gain

in precision.

The number of points in the DISQUAL scorecard is then divided into score bands, as was

done previously for logistic regression, using deciles (if the volumewere greater, we could use

a finer division).

Table of dnbpoints_disqual by Credit

dnbpoints_disqual (Rank for Variable

nbpoints_disqual)

Credit

Frequency

Row Pct

Good Bad Total

0 100 4 104

96.15 3.85

1 97 9 106

91.51 8.49

2 81 10 91

89.01 10.99

3 85 18 103

82.52 17.48

4 64 20 84

76.19 23.81

5 79 29 108

73.15 26.85

6 66 26 92

71.74 28.26

7 59 47 106

55.66 44.34
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8 40 69 109

36.70 63.30

9 29 68 97

29.90 70.10

Total 700 300 1000

Analysis Variable: nbpoints_disqual

Rank for Variable nbpoints_disqual N Obs Minimum Maximum

0 104 1.0000000 16.0000000

1 106 17.0000000 22.0000000

2 91 23.0000000 26.0000000

3 103 27.0000000 30.0000000

4 84 31.0000000 33.0000000

5 108 34.0000000 38.0000000

6 92 39.0000000 42.0000000

7 106 43.0000000 47.0000000

8 109 48.0000000 55.0000000

9 97 56.0000000 80.0000000

As before, score bands appear naturally, and if we cross-tabulate them with the dependent

variable (non-payment), we obtain a table that can be compared with the one provided by

logistic regression.

PROC FORMAT ;

VALUE nbpointsd

0-30 = ‘low risk’

31-47 = ‘medium risk’

48-high = ‘high risk’ ;

RUN ;

Table of nbpoints_disqual by Credit

nbpoints_disqual Credit

Frequency

Percent

Row Pct

Good Bad Total

low risk 363 41 404

36.30 4.10 40.40

89.85 10.15

(continued )
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medium risk 268 122 390

26.80 12.20 39.00

68.72 31.28

high risk 69 137 206

6.90 13.70 20.60

33.50 66.50

Total 700 300 1000

70.00 30.00 100.00

The size of the bands is more or less the same as those of the logistic model, but the at-risk

files are isolated more clearly, with 20.6% of the population having a non-payment rate of

66.5%, as against the previous model where 19.8% of files had a non-payment rate of 63.6%.

On the other hand, the threshold between the fourth and fifth deciles (there is another between

the third and fourth) is less clearly marked, so the less risky files are slightly less well

identified, but this is less important. This can be seen if we superimpose the ROC curves of the

two scorecards on the same graph (Figure 12.8). Neither of the models appears to be superior

to the other overall: the DISQUAL model is more discriminating on the most risky files and

less so on the others, and therefore its ROC curve is above the other on the left of the graph, but

falls below it on the right. This graph is plotted, for the whole sample, using the SAS syntax

given in Section 2.24 of my book Étude de Cas en Statistique D�ecisionnelle (see Section 12.7
above); this syntax can also be downloaded from the Éditions Technip website.

In conclusion, for all the reasons given above, namely the more similar performances in

training and validation, the more comprehensive scorecard, and the better identification

of the more risky files, I tend to prefer the second scorecard obtained by DISQUAL

discriminant analysis.

Figure 12.8 ROC curves for the two scorecards.
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12.10 A brief history of credit scoring

The origins of credit scoring lie in the work8 of David Durand, who showed in 1941 that the

risk of non-payment of a borrower could be modelled by discriminant analysis on the basis of

a number of characteristics such as the age and sex of the individual. At that time, Fisher’s

discriminant analysis was a mere 5 years old! After the Second World War, this theoretical

work was taken up by businesses facing a shortage of credit analysts. With the advent of the

first computers, in the late 1950s, credit scoring began to be used on an industrial scale,

particularly by consultancy firms, including the pioneers, Fair, Isaac and Company (FICO).

These were responsible for the first credit scoring system in 1958. From the 1960s onwards,

the development of computing tools enabled the constantly increasing numbers of credit

applications from individuals to be processed en masse. Credit scoring was subsequently

applied to businesses, with the well-known Z-score of Edward I. Altman,9 which was a

discriminant function of five financial ratios, capable of predicting the bankruptcy of a

business one year in advance with a reliability of about 94%. This function, invented in 1968,

has been updated and refined ever since. The initial Z-function was:

Z¼ 0.012X1þ 0.014X2þ 0.033X3þ 0.006X4þ 0.999X5

where

X1¼working capital / total assets

X2¼ retained earnings / total assets

X3¼ earnings before interest and taxes / total assets

X4¼market value equity / book value of total debt

X5¼ sales / total assets.

Numerous organizations then made use of discriminant analysis to construct credit

scoring models, defined by L.J. Mester in 1997 as ‘a statistical method used to predict the

probability that a prospective borrower or an existing debtor will default’.

In its earliest form, credit scoring was simply a matter of classifying credit applicants to

identify thosewhowere least and most at risk, for the purpose of a quick approval or refusal of

credit. Later, it was used to ‘price’ credit, in other words to modulate the interest rate of the

credit according to the score to incorporate a risk premium into the rate. The most advanced

models also incorporate the attractiveness of the rate offered to the applicant.

A major step forward in credit scoring resulted from the establishment of the rules on the

bank solvency ratio (the Basel II ratio – see Section 12.2), which led to thewider use of scoring

in many banks’ portfolios (for lending to private customers, businesses, individual entre-

preneurs, etc.). The rules alsomade it necessary to take into account not only the probability of

individual default, but also the correlation between the defaults of different borrowers. It also

became necessary to predict a probability of default in 12 months, over a number of years,

with allowance for economic cycles. Here again, the aim must be not only to order a set of

8 Durand, D. (1941) Risk Elements in Consumer Instalment Financing. New York: National Bureau of Economic

Research.
9 Altman, E.I. (1968). Financial Ratios Discriminant Analysis and the Prediction of Corporate Bankruptcy.

Journal of Finance. 23(4), 589–609.
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individual credit applications in isolation, but also to take the economic environment into

account and provide a medium-term forecast.

Various methods of prediction are used, including the nearest-neighbours algorithm,

neural networks, more recently support vector machines, and also genetic algorithms for

developing new optimal scorecards from initial scorecards, using themechanisms of mutation

and crossing. Since 1962, Markov chains have been used experimentally for modelling the

behaviour of customers on the basis of their previous behaviour. However, logistic regression

is by far the most commonly used method in credit scoring, after extensive use of linear

discriminant analysis. LDA provides a simple example of a score function. This is the Z

function (according to Altman’s terminology) of the Banque de France, which was used for a

considerable period to score French industrial companies. Eight financial ratios were taken

from their balance sheets and used to calculate Z according to the formula

100� Z ¼ �85:544�1:255� X1þ 2:003� X2�0:824� X3þ 5:221� X4�0:689
� X5�1:164� X6þ 0:706� X7þ 1:408� X8;

where

. X1¼ financial costs/gross earnings (%)

. X2¼ liable capital/invested capital (%)

. X3¼ cash flows from operations/overall indebtedness (%)

. X4¼ gross earnings/turnover before tax (%)

. X5¼ trade payables/net purchases (days)

. X6¼ rate of change of value added (%)

. X7¼ [stocks ofwork in progress� advance payments from customers þ trade debtors ]/

production (days)

. X8¼ physical investments/value added (%).

If Z> 0.125, the business is assumed to be in good health; if Z<– 0.25, the business is at risk;

between these two values is an area of uncertainty.

The interested reader can consult the following articles which are reasonably compre-

hensive comparative surveys of the data mining techniques used in credit scoring:
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13

Factors for success in a data

mining project

The aim of this chapter is to present the factors for success in a data mining project in business,

particularly where the project is implemented in-house rather than outsourced. It will describe

the pitfalls to be avoided and provide an outline of the expected return on investment.

13.1 The subject

The subject of the study must of course be one that requires the use of data mining tools and

cannot be dealt with by simple descriptive statistics. Data mining will not help us to find

the ‘20% of customers who generate 80% of the profits’, but it is useful for determining

their profile or for discovering thosewho do not form part of this group at present, but whowill

in future.

The subject, the target population and the objectives must be precisely specified. We must

avoid constructing a score on a certain customer segment and then extending it to another for

which it is inappropriate. The results must be capable of being measured. We must try to

estimate the return on investment.

The objectives must be realistic: if the rate of response to a mailing is 1%, it may perhaps

be increased to 3%, but certainly not 10%. Unrealistically ambitious objectives can lead

to disappointment which will harm the credibility of data mining and its wider application

in the business.

The business must have at least a degree of expertise on the subject.

The subject must be a challenge for the enterprise, and must offer some real benefits. This

is particularly true of a first project, which must be convincing and develop loyalty.

The business must be both willing and able to implement the solutions proposed by data

mining. For example, it is necessary to check the ITand electronic publishing resources: there

is no point in devising customized mailings if they cannot be provided at an acceptable cost.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



13.2 The people

The project must be supported by a business decision. The decision makers must be made

aware of the project and must back it.

The specialist staff of the business must be mobilized:

. before the project, to specify its content, outline the correct underlying concepts,

identify useful information sources, and supply the necessary data and definitions for

the study;

. during the study, to assess relevance and identify elements for closer examination

among the phenomena discovered by the statistician;

. after the study, to use the results and take the appropriate action.

IT specialists are needed to extract the data, construct the database to be supplied to the

statistician, and if necessary to program statistical models subsequently in an industrial

computing environment.

Statisticians are need to analyse and format the data, detect any anomalies, choose the

appropriate modelling techniques, implement them correctly, produce effective models from

these, test the models and analyse the results of their application.

A thorough knowledge of statistics, data, and the nature and customers of the business is

essential if we are to decide whether a clustering is correct and usable (the clusters must be

homogeneous, consistent and readable) and whether a model is correct (the coefficients of the

variables must have relevant values and signs, and sufficient reliability), and for the purposes

of regrouping or transforming the data and constructing good indicators or excluding

redundant data. A model or a classification may be far from self-evident and may even

include unexpected elements (which is what makes data mining useful), but it must not be

unlikely, incomprehensible or unusable by the people for whom it is designed.

We can see that the business will require a lot of in-house skills. The active cooperation of

all these people is essential. Specialist staff and future users must be involved in the progress

of the study: the knowledge contained in the data is only one part of the business’s general

know-how. Data mining on its own will not provide the best models; these will be created by

the interplay between the knowledge extracted from the data and the experience of specialist

staff. However, it is preferable for a single person, the data miner, to be skilled in three areas

(knowledge of the business, statistics, and information technology) to ensure the fast and

effective deployment of the project.

Finally, we must add the necessary legal expertise to decide on the legal and regulatory

aspects of using the data and carrying out the planned processing.

13.3 The data

We must have data which are known, reliable and usable, and there must be enough of them

(see Sections 2.4 and 3.3–3.5). We need to archive the data that change over time and whose

variation is to be analysed, or those which will be used to predict subsequent phenomena and

behaviour. We need to keep all information on earlier business operations: who has been

contacted, by what channel, who has responded, after what time interval, who has been
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followed up, how many times, who has accepted or refused, what the cost of the process was,

and so on. This will help us avoid the problems mentioned in Section 11.16.2. At the very

least, we must preserve the number of business contacts with each customer and their results.

This is because data mining does not guess the profile of ‘good’ customers, but extrapolates

from the data provided, mainly the results of earlier operations, which can be used to extract

positive and negative profiles relating to risk, propensity, etc. It is therefore absolutely

essential to store this information on business operations.

The multiplication of customer contact and distribution channels also offers many sources

of information, which tends to be scattered accordingly. To make the best use of this

information, we must be able to consolidate them into a coherent form in a synthetic

database, in order to obtain a unique and comprehensive view of each customer. This is not

easy, and is not always achieved.

13.4 The IT Systems

If a business is implementing data warehousing and data mining projects at the same time, it is

preferable to execute them in parallel rather than in sequence. To archive the data first and then

carry out the data mining would not be an acceptable procedure, because to some extent it is

the data mining itself that determines what must be archived in a reliable form, and how to go

about this task. It would also be unfortunate if we waited several years for the completion of

the data warehouse and then found, in the early stages of data mining, that we lacked some

important data which were not considered when the warehouse was designed. There are at

least four good reasons for the early application of data mining:

. it will generate a return on investment which will provide evidence of the value of data

mining, especially to managers in charge of budgets;

. it will identify the most important data and indicators for the construction of relevant

models;

. it will start the process of archiving business operations, as mentioned in Section 13.3;

. it will support and develop the skills of the participants.

For a first trial, or pilot project, it is possible and may even be preferable to use existing

tools, or new tools that are easily implemented, for data collection and output, and to wait

for the results of the initial trials before deciding on major changes in the IT systems for

full-scale operation.

It will also be necessary to archive numerous files, requiring a large storage capacity.

Unlike conventional management information systems, which back up data on media suitable

for limited, one-off retrieval, data mining often has to process several years of archives

simultaneously. Whereas a simple back-up system only has to retrieve a given stored file on a

given day, the data mining system must be able to put a very large number files – up to several

tens of terabytes – on-line.

Data mining also uses specialized data models. We cannot directly ‘mine’ the production

data or the tables of a data centre or data warehouse. We must first set up a special data mart,

known as a mining mart, a modelling base (Section 2.3), resulting in an even greater increase

in the volume of computer data to be stored. However, we can try to standardize the
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descriptions of themodelling bases so that they can be used for a number of different studies or

applications in the business.

Finally, it is obvious that a successful implementation of data mining is dependent on full

integration into the users’ workstations, especially those of the customer service representa-

tives, who need to have fast and straightforward access to the data, given the context in which

they use them. The output must be user-friendly and allow for direct, simple and unambiguous

interpretation. If necessary it must be made simpler than the detailed results supplied by the

data mining algorithms. For example, the average human mind will find it difficult to think of

more than six or seven customer segments simultaneously and instantly place a customer in

the correct segment.

13.5 The business culture

Data miningmust form part of the business culture. The business must ensure that it maintains

its expertise in data mining and statistics, as well as the quality of the data gathered and stored.

Every business operation dependent on data mining must be carefully managed in its

implementation and monitoring (recording the results). The iterative nature of data mining

must be clearly understood, and the results of an operation dependent on a data mining study

must be used automatically to enrich the next study.

Care must be taken in presenting and ‘selling’ data mining to marketing and sales

managers and to field staff, who may think it calls their know-how into question or is designed

to replace it. They must be persuaded that data mining only offers an aid to decision making,

not the decision itself, which is always up to them. They must also be reminded to keep the

marketing databases up to date, especially as regards the results of campaigns, namely the

acceptances and refusals. Customer service representatives must be made aware of the gains

in productivity and security that they can expect from data mining.

Marketing managers must also be involved in data mining studies, so that they do not

feel that they have lost control of the choice of target customers. Data mining will not make

their experience obsolete, but should incorporate it, not after the identification of targets for

campaigns, in the definition of each target, but rather beforehand, in the design of the data

mining models. In some businesses it will be essential to make the change from ‘product-

orientated’ to ‘customer-orientated’ marketing. Conventional product-orientated marketing

starts with a product i, looks for the period of the year Pi which will be best for selling it,

looks for the customers Ci who are likely to buy it, and targets customers C1 in period P1,

customers C2 in period P2, and so on. The drawback of this method is that the intersection of

the Ci is not necessarily empty: in other words, the same customer may be targeted several

times without any consistency in the marketing communications and trading logic. At best,

this is useless; at worst, it detracts from the customer’s image of the business. Of course, it

would be possible to excluded previously targeted customers from each campaign, but there

would be no guarantee that the order of targeting would lead to the best results. Conversely,

some customers will never be targeted. Moving to customer-orientated marketing means that

marketing operations are carried out according to the profile of customers, their require-

ments or their life events, rather than according to the events in the life of the products. We

know that a given customer belongs to a given segment characterized by a certain

consumption of products, services and means of access, and that this customer should
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therefore be offered certain products and services in a certain order of priority and via a

certain channel. It will be the strong trends in the customer segment that determine the

priorities for this customer, not the sequence of marketing campaigns and the randomness of

targeting. This will require a radical review of working habits, or even of whole organiza-

tions, where the marketing management is structured according to product lines rather than

customer segments.

13.6 Data mining: eight common misconceptions

13.6.1 No a priori knowledge is needed

It is true that some descriptive methods such as cluster analysis can be used without knowing

what the resulting clusters will be, or even the appropriate number of clusters.

However, it is important to know that the result of the clustering is influenced by the choice

of data and their coding at the input of the algorithm (an example is the standardization of

continuous variables), and it is therefore impossible to be completely neutral. We could

imagine a system in which all the available computer data were fed into the clustering process.

But even if this were technically feasible, such a solution would mean that the result of the

classification would be dependent on the computer data model, rather than on the business

or statistical requirements, which would obviously be unsatisfactory. Additionally, for

purely technical reasons, there may be redundant data which could distort the result of the

cluster analysis.

As for the predictivemethods of data mining, these require some a priori input in all cases,

because it is necessary to choose a target (dependent) variable whose definition and categories

will be carefully weighted.

In any case, someone who knows what he is looking for is more likely to find it!

13.6.2 No specialist staff are needed

The assistance of professional specialists (in production, engineering, risk assessment,

marketing, etc.) is indispensable at several stages of a data mining study. First of all, it is

required for the definition of the objectives. For example, before drawing up a risk score for a

financial establishment, we need to agree on the definition of a risk: is it a delayed payment, a

downgrading of debt, or a financial loss for the establishment? This is not a question for the

statistician only. It must be answered by the professional specialist, who will consider the

regulatory constraints and the policy of the establishment among other matters.

The assistance of specialists is also required in building up the store of useful and legally

usable data, including both raw and composite data. It is useful to know which data are

considered to be relevant by the specialists, and whichmay have concealed pitfalls, even if the

statistician may subsequently question certain prejudices about the importance of some of the

data, such as the debt ratio for the granting of credit.

Finally, such assistance is essential for analysing the results. Given two classifications of

equal statistical merit, a marketing analyst may prefer one which he considers to be more

suitable for business use. On seeing the initial results of a study, a professional specialist may

also say whether he considers them to be predictable, new and worth investigating, or

surprising and highly suspect, in which case the validity of the data, the sampling, and the use
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of the data mining tools will be called into question. The professional specialist may also be

consulted to discover if a correlation between the dependent variable and an independent

variable is created simply by the definition of the variable, or if it can be considered valid. In

some complex problems such as the analysis of the financial health of businesses based on

their accounting data, the cooperation of the statistician and the professional specialist is

essential if errors of interpretation are to be avoided.

13.6.3 No statisticians are needed (‘you can just press a button’)

In any data mining study, the most time-consuming andmost decisive stage is data processing.

It is entirely dependent on the use of statistical analyses for verifying the reliability of the

variables, their distribution, their correlations, etc., and for carrying out reliability improve-

ments, transformations, discretizations and groupings on categories and the like, before the

data mining algorithms are used. These operations are not performed in the same way for

every algorithm. Not all algorithms can accept every type of input variable. Variables with

missing values can be retained in some cases, but not in others. Some algorithms also require

preliminary sampling (see below). In predictive methods, we must ensure that variables

correlated by definition with the dependent variable are not included among the independent

variables. We must also be wary of the phenomenon of overfitting. Finally, the setting of the

parameters of data mining algorithms can have a considerable effect on the results, and certain

seemingly fine adjustments can lead to surprising differences. Simply encoding a qualitative

variable as a ‘discrete numeric’ variable may be enough to distort the results completely, even

if it is only one variable among a hundred other correctly coded ones.

Finally, the data processing phase is interleaved with the modelling phase, as the first

models produced are hardly ever completely satisfactory, and require further data transfor-

mations before the operations are repeated.

On completion of the data processing, the reading of the results may be deceptive; for

example, correlation may be confused with causation.

In conclusion, I quote Philippe Besse, from his course on ‘Statistical modelling and

learning’ at the University of Toulouse (France):

With the tools now available, it is becoming so easy to start the computation process that some

people compare a data miner with a driver, saying that you do not need to be a skilled mechanic

to drive a car. However, the designer of a modelling, segmentation or discrimination procedure

has to make more or less implicit decisions which are far from being neutral and which are far

more complex than the simple choice of a fuel by a driver at a service station.

13.6.4 Data mining will reveal unbelievable wonders

The models produced by data mining are rarely marvellous or extraordinary; they normally

make use of variables considered to be discriminating by professional specialists, in a

common-sense way. So what does data mining offer us? Simply the fact that there are

thousands of common-sense combinations of variables known to be discriminating for any

given problem area, and that data mining enables us to detect the very best possible

combination (or one of the best), together with the precise parameter that should be assigned

to each of the variables. Ultimately, a small improvement in each rule among a set of several

targeting rules is enough to multiply the response rate by a factor of 3–4.
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13.6.5 Data mining is revolutionary

Data mining incorporates conventional data analysis, and only differs from it in the following

ways (see also Section A.1.2):

. some of the techniques used, such as decision trees and neural networks, are exclusive to

data mining;

. the number of individuals studied is often larger in data mining, where the optimization

of the algorithms for data processing may be crucial;

. data mining sometimes prefers a slightly less precise model, if it is much more

understandable;

. data mining models are integrated into industrialized data processing procedures, with

automatic updates, computation and outputs.

In spite of everything, we cannot claim that data mining is really a radically new approach.

13.6.6 You must use all the available data

We might think that the results of a data mining model will improve as the number of input

variables increases. However, this is not the case. Models are degraded by unreliable or

incomplete variables and by the presence of outliers; furthermore, redundant variables may

affect a cluster analysis, variables with categories having irregular frequencies may affect a

factor analysis, poorly discriminating or excessively intercorrelated variables may reduce

the predictive power of a discriminant analysis, and an excessive number of variables may

swamp a neural network. Quite often, when a good score model has been built, an attempt is

made to improve it by incorporating a new variable, but, even though the relevance and

reliability of this variable have been ascertained, it actually degrades the quality, and above all

the robustness, of the model.

13.6.7 You must always sample

It is always tricky to achieve satisfactory sampling. A thorough knowledge of the population

to be sampled is a prerequisite. Since this knowledge is not always available, especially with

the kind of unstable populations formed by customers, we must avoid sampling as far as

possible. As an example of the problems caused by sampling, if the distribution of a variable in

the training sample differs from its distribution across the whole population, this may have a

major impact on a method using this variable. It is also best to avoid sampling when we are

looking for rare phenomena (e.g. types of fraud) or narrow customer segments.

13.6.8 You must never sample

Predictive methods based on modelling (inductive methods) require sampling, because

they work by building a model based on part of the population, and then testing the model

on another part of the population. The test phase is essential for selecting the best of the

resulting models.

It may also be desirable to work on a sample of the population in order to avoid prohibitive

computing time for large volumes of data. Sometimes it is best to sample and perform more
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in-depth calculations on a sample, rather than more superficial calculations on the total

population. In the words of Jerome H. Friedman: ‘a powerful computationally intense

procedure operating on a subsample of the data may in fact provide superior accuracy than

a less sophisticated one using the entire data base’.1

13.7 Return on investment

The return on investment (ROI) is generated by an increase in the response rate to marketing

campaigns, an increase in the productivity of sales staff, a better distribution of resources, an

increase in customer loyalty, a reduction in defaults, etc.

Many figures have been quoted on the subject of this ROI. The truth is that it is often

difficult to quantify, because the gains due to the use of data mining are not always

distinguished from those due to good communication, effective marketing, and motivated

personnel. In some cases, these various factors cannot be separated: one example is that of the

bank which, having established a risk score, a propensity score for consumer credit and a

monthly repayment capacity for each customer, sent a customized offer of credit to each of its

customers having a good score for risk and propensity (the ‘core target’ group). The amount of

credit offered to each customer was not a standard (rather low) amount such as D1000, D2000

or D3000, but an amount corresponding to his capacity to repay, which was itself calculated

according to his profile, income, expenditure, commitments and scores. This was a clear

example of ‘one-to-one’ marketing. The results were much better than usual, as demonstrated

both quantitatively (in the increased take-up rate) and qualitatively (in the appreciation of the

sales personnel and telephone sales staff). How much of this was due to the quality of

targeting, and how much was due to the customization of the mailing and the amount offered,

which were highly appreciated by the customers? The answer will never be known, and in any

case is irrelevant, since the customization would not have been possible without the

information provided by data mining. Clearly, the essential factor in the return on investment

is not the possession of the best data mining tools (although this certainly cannot be

disregarded), but the ability to use them in an integrated database marketing strategy.

Data mining is only one element in database marketing, among others such as:

. the marketing communication style;

. the sales dialogue used;

. the format of the mailings sent to customers (colour or black and white? etc.);

. the provision of a dedicated telephone number;

. a system of telephone follow-ups;

. the training of the sales staff;

. the quality of the data output from data mining;

. the recording and storage of information supplied by customers;

1 Friedman, J.H. (1997)Datamining and statistics: what’s the connection? http://www-stat.stanford.edu/�jhf/ftp/

dm-stat.pdf
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. the adaptation of the marketing processes (changing from ‘product’ to ‘customer’

marketing);

. the adaptation of the sales procedures (including decision-making powers).

However, if we really need to provide accurate information on the quality of a targeting

process based on data mining, because there will always be some managers concerned about

Table 13.1 Calculated return on investment.

Conventional

targeting

Targeting using

data mining

A number of customers targeted 30 000 15 000

B cost of each mailing D1 D1

C cost of each telephone follow-up D5 D5

D total cost (¼ A� (B þ C)) D180 000 D90 000

E number of new subscriptions 1 000 1 500

F subscription rate (¼ E/A) 3.33% 10%

G cost per subscription (¼ D/E) D180 D60

H annual turnover per subscription D150 D175 (larger amounts

taken up)

I total annual turnover (¼ H�E) D150 000 D262 500

ROI (¼ I/D) 83% 292%

Table 13.2 Calculated return on investment due to increased loyalty.

A cost of acquiring a new customer D150

B annual profit from each departing customer D450

C customer activation time 0.5 year

D loss due to a departure (¼ A þ (B�C)) D375

E cost of increasing loyalty of a detected ‘departing’ customer D50

F total number of customers 1 000 000

G number of departures per year 80 000

H attrition rate (¼ G/F) 8%

I number of ‘departing customers’ detected (correctly or incorrectly) 40 000

J total cost of increasing loyalty (¼ E� I) D2 000 000

K number of actual departing customers retained 8 000

L losses avoided (¼ D�K) D3 000 000

net total profit (¼ L� J) D1 000 000
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the soundness of their investments, and also because it is important to measure performance in

order to improve it, there is oneway of achieving this. This is to add a random ‘control’ sample

of customers from one (or more) conventional target groups, identified by the marketing

department, to the marketing target generated by data mining. We must then treat all the

customers in the same way (using the same channels, the same media, the same commu-

nications, the same follow-ups, etc.) and compare the results at the end of the campaign.

They can be presented as in Table 13.1, where the last row shows the ROI, which is greater

than 100% if it is achieved in less than one year, and less than 100% otherwise.

In another field, the development of customer loyalty is also an important source of profit

for a business. We can attempt to estimate this as in Table 13.2. For the sake of completeness,

we should deduct the software costs and the salaries of data miners from the profits and ROI.

However, these costs are often small compared with the savings they offer.
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14

Text mining

I mentioned in Chapter 3 that there was a special class of data, namely text data. The earlier

chapters discussed tools for manipulating data consisting of codes and quantities; the aim of

this chapter is to complete our survey of data mining by showing how it can be combined with

linguistics and lexicometry for the automatic analysis and use of text data.

14.1 Definition of text mining

Text mining is the set of techniques and methods used for the automatic processing of natural

language text data available in reasonably large quantities in the form of computer files, with

the aim of extracting and structuring their contents and themes, for the purposes of rapid (non-

literary) analysis, the discovery of hidden data, or automatic decision making. It is different

from stylometry, which studies the style of texts in order to identify an author or date thework,

but it has much in common with lexicometry or lexical statistics (also known as ‘linguistic

statistics’ or ‘quantitative linguistics’); indeed, it is an extension of the latter science using

advanced methods of multidimensional statistics.

We can show this schematically as:

Text mining ¼ LexicometryþData mining

Like data mining, text mining originated partly in response to the huge volume of text data

created and diffused in our society (think of the amounts of laws, orders, regulations,

contracts, for example), and partly for the purpose of quasi-generalized input and storage

of these data in computer systems. It also owes its acceptance to developments in statistical

and data processing tools whose power has increased greatly in recent years. Thus, following

the work of researchers such as Jean-Baptiste Estoup, George Kingsley Zipf, Benoı̂t

Mandelbrot, George Udny Yule, Pierre Guiraud, Charles Muller, Gustav Herdan, Etienne

Brunet, Jean-Paul Benz�ecri, Ludovic Lebart and Andr�e Salem, there has been an exponential

growth in the use of statistics, probabilities, data analysis, Markov chains and artificial

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



intelligence tools based on data mining for the processing of text material, and we have made

considerable progress since the early days of simple calculation of percentages. Beginning in

1916 (Estoup1) and 1935 (Zipf2), the frequency of appearance of a word in a text has been

studied by statistical methods, giving rise to Zipf’s law, a well-known formula which links the

frequency of a word to its rank in the table of frequencies. The example of James Joyce’s

Ulysses is famous: the 10th word appears 2653 times, the 100th word appears 265 times, the

1000th word appears 26 times and the 10 000th word appears twice. We find that the product

of the rank r and the frequency f is virtually constant:

rf ¼ constant:

This law is not always valid with the same degree of accuracy, but it is truly universal,

because it applies to all types of text in all languages.Wentian Li3 demonstrated in 1992 that it

could be applied to a text in which the words were created by drawing letters (and a ‘space’

character) at random from an alphabet with a uniform distribution.

The formula shown above has now been revised to

raf ¼ constant;

where a is an exponent which depends on the language and the type of speaker. It generally

ranges from 1.1 to 1.3, and is close to 1.6 in children’s language. As a general rule, it decreases

with the richness of the corpus, measured as the ratio of the number of different words V

(the vocabulary) to the total number of words (V is generally proportional to the square

root of N).

Zipf’s law has since been extended to other rank-size problems, such as the rank of cities

in a country related to their size, the rank of businesses related to their turnover, the rank of

individuals related to their income, etc.

One interesting consequence of Zipf’s law for text mining is that a few tens of words are

enough to represent a large part of any corpus, enabling the depth and complexity of analyses

to be limited.

As in data mining, there are two types of method in text mining. Descriptive methods can

be used to search for themes dealt with in a set (corpus) of documents, without knowing these

themes in advance. Predictive methods find rules for automatically assigning a document to

one of a number of predefined themes. This may be done, for example, for the purpose of

automatically forwarding a letter or a CV to the appropriate department. The corpus analysed

must meet the following conditions:

. it must be in a data processing format (the automatic reading of handwriting, used in the

processing of cheques and mail, is a different problem);

. it must include a minimum number of texts;

. it must be sufficiently comprehensible and coherent;

1 Estoup, J.-B. (1916) Gammes St�enographiques, 4th edn. Paris: Imprimerie Moderne.
2 Zipf, G.K. (1935) The Psycho-biology of Language. Boston: Houghton-Mifflin. The definitive formulation can

be found in Zipf, G.K. (1949) Human Behavior and the Principle of Least Effort. Cambridge, MA: Addison-Wesley.
3 Li, W. (1992) Random texts exhibit Zipf’s-Law-like word frequency distribution. IEEE Transactions on

Information Theory, 38(6), 1842–1845.
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. there must not be too many different themes in each text;

. it must avoid, as far as possible, the use of innuendo, irony and antiphrasis (saying

the opposite of what one thinks, e.g. ‘Oh, brilliant!’ in response to a particularly

stupid blunder).

14.2 Text sources used

The main sources of texts analysed by text mining are opinion polls, customer satisfaction

surveys, letters of complaint, telephone interview transcriptions, electronic mail, reports of

marketing or medical interviews, press surveys, despatches from news agencies, experts’

documentation and reports, technology monitoring, competition monitoring, strategic and

economic monitoring, the Internet and on-line databases, and more recently curricula vitae.

Users of the information analysed may be financial analysts, economists, marketing profes-

sionals, customer relations services, recruiters or decision makers.

14.3 Using text mining

Some periodical analyses in which the presentation is always identical can be automated by

using text mining. This generates quick analyses without the need for repetitive and tedious

computation. The applications include the automatic generation of satisfaction surveys,

reports on a business’s image or the state of the competition, and the automatic indexing of

documents.

Textmining is also used to discover hidden information (‘descriptivemethod’), for example

new research fields (in filed patents), or information to be added to marketing databases on

customers’ areas of interest andplans. It can even be used by a businesswishing to communicate

with its customers in the vocabulary that they use, and to adapt its marketing presentations

to each customer segment. It can be used in search engines on the web.

Finally, text mining is an aid for decision making (‘predictive methods’), for example in

automatic mail routeing, email filtering (to identify spam and non-spam, technical and

business subject matter, etc.), data filtering and news filtering.

The discovery of hidden information and decision making are mainly classed as forms of

information retrieval, while quick analysis is a form of information extraction.

Information retrieval is concerned with documents in their totality and with the themes

which they deal with, and is used to compare documents and detect types of documents. It

aims to detect all the themes that are present. The analysis is global.

Information extraction is a search for specific information in the documents, without

any comparison of the documents, taking the order and proximity of words into account

to discriminate between different statements which have identical keywords. It is only

concerned with themes related to the ‘target’ database. Information extraction starts

with natural-language data and uses them to build up a structured database. It is a

matter of scanning the natural language text to detect words or phrases corresponding to

each field of the database. The analysis is local. In one sense, information extraction is a

more complex process, because it requires the use of lexical and morpho-syntactic

analysis to recognize the constituents of the text (words and phrases), their nature and

their relationships.
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14.4 Information retrieval

This section will describe the different analyses, first linguistic and then statistical, that are

required for the automatic updating of the themes contained in a corpus of documents. These

analyses follow the Strasbourg School which, following Charles Muller, does not apply

statistical methods directly to the text, but to its underlying lexicon, found by a sequence of

operations described below for disambiguation, categorization, lemmatization and combina-

tion. These operations consist of identifying units (the graphic forms which are sequences of

non-separator characters) in the text sequence, grouping them into equivalent classes (up to the

level of the theme) and performing counts and statistical analyses on these classes. This is not

the only approach, and othermethods have been proposed by researcherswho have pointed out

that the text sequence cannot be reduced to a series of unrelated units, and that the meaning of

a text is highly dependent on the relative positioning, juxtapositions and co-occurrences of the

graphic forms (even before considering the equivalence class). Étienne Brunet expressed this

in a humorous way: ‘Some people may regret the loss of the raw forms, whose opaque

materiality could conceal a degree of mystery. They may be repelled by a pale, bloodless

lemma reduced to a set of abstract properties’.4 Having said that, this method of content

analysis is effective because it can be used very successfully in conjunction with data mining

tools. It is also implemented in some of the leading textmining tools, such as IBMSPSS�Text

Analytics and (under the name of ‘text parsing’) in the Text Miner add-in of SAS� Enterprise

MinerTM. Although largely automatic, it still needs to be adapted, sometimes manually, to the

needs of the user and thevocabulary of his society: this is done by creating a list of prohibited or

obligatory terms and a dictionary of synonyms and compound words.

14.4.1 Linguistic analysis

Language identification

It should be noted that the Web obliges us to deal with multilingualism, even within a single

document in some cases. Some lovers of linguistic curiosities know about an extreme case of

multilingualism: this is the ‘polyglot’ phrase that has different meanings in different

languages. For example, at the time of Watergate, the English headline ‘Nixon put dire

comment on tape’ is also a French sentence meaning ‘Nixon could tell you how to type’. In

English-speaking parts of Canada there may be posters for a ‘Garage Sale’, which to French

speakers simply means ‘Dirty Garage’!

Identification of grammatical categories (grammatical labelling)

The next step is to identify the nouns, verbs, adjectives and adverbs in the texts of the corpus,

which requires a grammatical analysis. This can be complicated by the presence of homo-

graphs (e.g. ‘in a flood of tears, she tears up the letter’).

Disambiguation

There are many sources of ambiguity in a natural language text. They may be due to the

polysemy of words (the fact that a word has several meanings), to ellipses (in a ‘telegraphic’

4 Brunet, E. (2002) Le lemme comme on l’aime. In JADT 2002: 6th International Conference on the Statistical

Analysis of Textual Data.
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style), homographs (‘lead me to the lead mine!’), or antiphrasis and irony, the last of these

being particularly difficult to detect automatically.

Anaphora also gives rise to ambiguities that must be removed. ‘Anaphora’ is used here in

its linguistic sense, meaning avoiding repetition of a word by using another word, most often

a pronoun, to refer to it (‘he’, ‘she’, ‘it’, ‘this’, etc.).

The format of data processing texts is another source of ambiguities, such as the ambiguity

between the number ‘0’ and the letter ‘O’, the ambiguities due to line breaks without hyphens,

or those due to poor typography. The word ‘hit’ can be interpreted as a noun, a verb, an

adjective (‘a hit song’) or a past participle.

In personal notes whichmay have been recorded on an electronic notepad, the ambiguities

are even more numerous, owing to personal abbreviations, incorrect spelling, and the often

non-syntactical and non-logical order of entry of the words of a sentence.

This stage is tricky, and some ambiguities can only be removed by analysing the whole

text, or even by an arbitrary decision. We can also consider the probability of the appearance

of a form: ‘sate’ is more likely to be a verb meaning ‘satisfy completely’ than the past tense of

‘sit’, at least in a modern text.

Recognition of compound words

It is necessary to recognize that expressions such as ‘2 April 2005’, ‘the Governor of the

Central European Bank’ and ‘the Proceedings of the Royal Institution’ are groups meaning

a date, a person and a publication. ‘Term’ can denote either this kind of sequence of graphic

forms, or a graphic form with a length of 1 (a ‘word’). Then we must allow for the specialist

lexicon of the field of activity concerned. Thus, the banking lexicon includes terms such as

Visa card, current account, housing savings scheme, etc. The lexicon of business intelligence

will include the terms data mining, text mining, data warehouse, etc. It will be useful to create

a specific lexicon for the business, identifying sequences of graphic forms (often two or

three forms) which are repeated many times in the corpus, or even to compile such a

lexicon ‘manually’.

Lemmatization

The steps described above will have improved the understanding of the texts. They must then

be simplified, without changing the meaning of course, so that the main themes can be

extracted more easily.

We need to start by lemmatizing the texts: this means putting the terms in their canonical

form, so that nouns would be put in the singular and the various forms of verbs would be put in

the infinitive. This is the form in which the words are set out in an ordinary dictionary, which

may contain about 60 000 entries covering 700 000 different forms, such as plurals of nouns

and different tenses of verbs. French, Spanish, Russian and German have many inflected

forms (conjugations and declensions). German also has the distinctive feature of creating

compound words by stringing several nouns together, and we may have to decide whether to

divide these units into elementary fragments.

Grouping the variants

A second stage of simplification is to group together the variants of terms found in texts. The

graphic variants (realise¼ realize), syntactic variants (name of a man¼ a man’s name),
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semantic variants (‘X buys Y from Z’¼ ‘Z sells Y to X’), synonyms (US¼USA¼United

States¼Uncle Sam), parasynonyms (words with closely related meanings: discontent, anger,

dissatisfaction), and full forms of abbreviations (D ¼EUR¼ euro, BBC¼B.B.C.¼British

Broadcasting Corporation) are all recorded. Like the dictionary of words, the dictionary of

synonyms can be saved in a file specified by the text mining software.

Expressions and metaphors are identified: for instance, ‘Empire of the Rising Sun’ is

replaced with ‘Japan’ and ‘Threadneedle Street’ is replaced with ‘Bank of England’.

Figure 14.1 shows an example of the results of a text mining analysis using SAS

Text Miner.

Grouping the analogies

We can then group the analogies. We group the terms in families of derivative terms, as in

a thesaurus, which may include the following group of terms, for example:

. credit/loan/undertaking/debt/borrow/borrower/debtor.

Intensity markers are also grouped, for example:

. a little/less/very little/�

. much/more/very/þ
Identification of themes

The text analysis is completed by grouping all the terms around level 1 themes, then grouping

all the level 1 themes around level 2 themes. The first transition will be of the following type:

. cheque/bank card/draft/currency/. . . , means of payment

Figure 14.1 Terms disambiguated, labelled and lemmatized.
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while the second transition could be:

. means of payment/money/cash/. . . , bank

14.4.2 Application of statistics and data mining

When the analysis of texts and their themes is completed, we can filter the themes or terms to

be examined. We can use either a statistical criterion (selecting terms and themes by their

frequency) or a semantic criterion (centred on a given subject), or a corpus (identifying

offensive words to avoid and their derivation, in order to ‘clean up’ a document). With the

statistical criterion, we can use a number of weighting rules, for example preferring terms

which appear frequently but in few texts (weight¼ frequency of the term/number of texts

containing it).

These terms, having been disambiguated, labelled, lemmatized, grouped and selected, are

then treated with data mining methods, with the individuals (in the statistical sense) being the

texts or documents (e.g. emails) and the characters of the individuals (their variables) being

the themes or terms in the documents. Thus we can produce lexical tables in which each cell cij
is a number of occurrences of term j (or an indicator of presence/absence) in document i, to

which the conventional statistical methods are applied. The cell cij can also be the number

of occurrences of term j in the set of documents relating to customer i (letters, reports of

interviews, etc.)

These tables can be processed by correspondence analysis, which simplifies the problem

by reducing the initial variables (corresponding to the terms), often present in very large

numbers (several thousand) although the preliminary transformations may have decreased

their number, to about a hundred factors (which no longer correspond to terms: this is the

drawback of the method). At the end of this transformation, continuous variables will have

been substituted for the initial discrete variables, and conventional data analysis techniques

can be used – classification, clustering, etc. This method is incorporated, under the name of

SVD (singular value decomposition), in SAS Text Miner. Some techniques such as regular-

ized regression (see Section 11.7.2) are useful when we need to process a large number of

variables compared with the number of individuals.

14.4.3 Suitable methods

Text mining can respond to two types of request. Open requests (or free text requests) are

requests in the form of keywords or free text, used to search for relevant documents in a corpus

that changes slowly (such as a yearbook or an electronic library), with the most relevant

sections of text highlighted. Predefined requests are requests relating to a number of fixed

terms, applied to a corpus that changes in a dynamic way with time (e.g. categorization of

documents, routeing/filtering of mail or news). They are subject to the same problems

as classification.

Like data mining, text mining includes descriptive and predictive methods. In the

predictive domain, the classification (or categorization) of documents is carried out according

to predefined themes (nomenclature). It is used for predefined requests (routeing, filtering)

and is based on decision trees (CART, C5.0) and supervised learning neural networks.

Markov chains can be used for open requests. A Markov chain can be briefly described as

follows. Imagine that we have n boxes, each filled with numbered balls. We draw a ball at

random from the first box; its number indicates the box from which the next ball is to be
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drawn. We continue to draw balls until we reach an empty box. The set of boxes that we have

passed through, in sequence, is a Markov chain. The probability of drawing a given ball

depends on the box from which it is drawn, and therefore on all the previous drawings.

The same applies to a sentence: the probability of the appearance of a word depends on

the preceding words, and not all sequences of words have the same probability of

occurring. Markov chains are used for speech and handwriting recognition, spelling correc-

tion, voice control of automatic systems, and natural language human–machine interfaces

in general.

In the descriptive domain, a corpus clustering is carried out according to non-predefined

themes (discovered in the documents) and can be followed by automatic extraction of

keywords (terms which are frequent in the cluster and rare in the set of documents). The

clustering can be carried out by a Kohonen network or an agglomerative hierarchical

algorithm. It is also possible to carry out a multiple correspondence analysis by matching

the text data with the other data. For example, we can match the response to a questionnaire

with the respondent’s socio-occupational category. It is possible to create a document map

and identify isolated themes, themes forming homogeneous sets, the strength of the links

between the themes in a single set (the vocabulary common to the themes) and the number of

documents for each theme. Figure 14.2 shows by way of example a graphic representation of

the Tropes software from Acetic.

Figure 14.2 Themes in Shakespeare’s Sonnets.

634 TEXT MINING



14.5 Information extraction

14.5.1 Principles of information extraction

Information extraction systems are made up of trigger words (verbs or nouns), linguistic

forms, and constraints which limit the application of the trigger. These systems require

specific semantic dictionaries for the domain or business, as well as syntactic analysers that

can recognize the general linguistic forms (subject, verb, direct object, etc.). Using a target to

be extracted from and predefined fields to be filled, information extraction systems detect the

relevant sentences and extract the desired information.

The main applications of information extraction are:

. automatic completion of predefined forms from free texts;

. automatic construction of bibliographic databases from research papers (fields to be

extracted: title, author, journal, publication date, research establishment, etc.);

. automatic scanning of Reuters despatches on the acquisition of one company by another

(fields to be extracted: purchaser, vendor, price, industrial sector, turnover, stock

exchange quotation, etc.);

. automatic scanning of the financial press (the ‘people’ section, on chief executives’

moves between companies);

. automatic detection of the plans or requirements of the customers of a business, based

on the records of sales staff (fields to be extracted: name of customer, type of product or

service offered, type of plan or requirement of the customer, amount, customer’s

deadline, customer’s response (take-up/refusal), reason for customer’s response, other

suppliers used by the customer, etc.), and the use of the extracted information in

a propensity score.

The performance of information extraction is summarized by two indicators. The

accuracy rate is the number of correctly completed fields divided by the number of completed

fields. The recall rate is the number of correctly completed fields divided by the number of

fields to be completed.

14.5.2 Example of application: transcription of business interviews

If sales staff discover that their customers have plans that can be financed (buying a house,

changing their car, etc.), they offer the customer a credit proposal and note their reaction in

a report. If the reaction is positive, the completion of the report is less important, because it

will be evident that the product has been taken up. If the reaction is negative, the existence of

the report is more important, as it indicates that a product has been offered to the customer. It is

also useful to be able to analyse these marketing reports automatically in order to determine

the reasons for the customers’ refusal, and then deduce predictive models and typologies, or

even adapt the products offered.

One problem that arises is that these reports, written in natural language, are obviously not

standardized, and may contain:
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. spelling mistakes;

. personal abbreviations;

. stream-of-consciousness writing;

. ellipsis (‘telegraphic’ style);

. an illogical order in sentences in some cases (related words may be separated by

a certain distance);

. negations which are not always explicit (the sentence ‘construction Brighton – finance

NatWest’ is a negation if the bank where the salesperson works is not the NatWest!).

Faced with the difficulty of automatic normalization of reports, we need powerful text

mining tools for information extraction, not just keyword search tools.

Report analysis by text mining can be a highly penetratingmethod, offering these benefits:

. detection of customers resistant to certain kinds of credit (useful information for

building a propensity score);

. automatic detection of certain reasons for refusing to take up a product (customer

‘opposed to credit’, better offer from the competition, no need for credit, etc.);

. detection of customers having plans for future dates (enabling us to market to them at

the right time).

14.6 Multi-type data mining

A very promising method of data mining, known as multi-type data mining, can simulta-

neously examine text data (from text mining processes), paratextual data (such as the date and

purpose of a document, the type of document, the recipient of the document in the business,

etc.), and contextual data (such as information about the author of the document, his relations

with the business, the products he has bought, the services he has used, etc.).

Text data are converted into coded data and then stored with the other data in marketing

databases. The matching of all the data (textual and non-textual) makes multi-type data

mining a very powerful tool. For example, an attrition study will be more precise if it takes

letters of complaint and other exchanges between the business and the customer into account.
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15

Web mining

This brief chapter will take a look at web mining, which is the recent application of data

mining to data obtained from Internet servers on theway in which users browse thewebsites of

businesses and organizations. It can be used for analysing the behaviour of web users and can

also be linked to analyses of other data sources.

15.1 The aims of web mining

Just as market baskets provide useful information on the associations of products that have

been bought, so that a store can adjust its stocks, the analysis of a web user’s movements in

a website can supply valuable information to those who know how to use it: this is the aim of

web mining, the application of statistics and data mining to web browsing data. Web mining

covers a range of methods from the simple counting of visits to a page to the modelling of

users’ movements in the site.

Using web mining, we can:

. optimize browsing on a site by analysing the behaviour of users, in order to maximize

their convenience, increase the number of pages viewed and enhance the impact of links

and advertising banners;

. identify the focus of interest, and therefore the expectations, of users visiting the site;

. improve the business’s knowledge of the customers who log on under their own names,

by matching their browsing data with their personal data held by the site owner.

Each of three areas corresponds to a particular level of analysis, described in one of the

sections of this chapter. There is a fourth topic, which is not tackled in this book. This is

the whole area of information searching on the web and the ‘web crawling’ methods used by

search engines. It can be classed as ‘web content mining’, as opposed to the ‘web usage

mining’ which is described below.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



15.2 Global analyses

15.2.1 What can they be used for?

Some browsing information is useful even if it cannot be associated with any specific users.

Association rules such as ‘40% of users visiting page A also visit page B’ or that ‘20% of users

visiting page A visit page C immediately afterwards’ are interesting in themselves, because

they enable browsing in thewebsite to be optimized, or because they are an aid to the effective

positioning of advertising banners or links to other pages. The same applies to descriptive

statistics which inform us that ‘70% of users have visited three pages or fewer’ or that ‘40%

of the users access the site without going through the home page’. A transition matrix between

the pages of the site can be drawn up. On the subject of association rules, we should note that

they take the order of the items into account, unlike the usual methods of market basket

analysis (see Chapter 10).

The analysis of browsing on the site can also be used to construct taxonomies of users,

according to the original sites, the entry pages, the number of pages viewed, the time spent on

the pages, the files downloaded, the exit pages, etc. The taxonomies are interesting in

themselves, although it is even better to match them with the customer databases of the

business. A second kind of taxonomy can be created in web mining: this is web page

taxonomy, which groups the pages by their content.

15.2.2 The structure of the log file

These global analyses are based on the ‘log’ file, which is a text file saved on the website

server, in which one line is written for each user request (e.g. for a change of page, or

for downloading a file). There are several log file formats, including common log

format (CLF), extended log format (XLF) and special formats for certain sites, such

as secure sites.

The common log format contains the IP address of the client computer, the date and time

of the request, the type of request, the requested URL, the HTTP protocol, the server return

code (see below) and the size (in bits) of the object returned. For example, the line

130.5.48.74 [22/May/2006:12:16:57 -0100] “GET

/content/index.htm HTTP/1.1” 200 1243

indicates a successful request (return code¼ 200) for the download (GET) of an object

containing 1243 bits, on 22 May 2006 at 12:16 hours with a time difference of �1 hour

(�0100) from GMT.

The extended log format also contains the original page (‘referrer’) and the ‘user agent’

(designating the browser, the operating system of the client computer, and any other

parameters required). An example is:

130.5.48.74 - [22/May/2006:12:16:57 -0100] “GET

/content/news.htm HTTP/1.1” 200 4504 “/content/index.htm”

“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)”.

The user has come from the page/content/index.htm using Internet Explorer 6.0 installed in

Windows XP SP2. The reader will find a list of ‘user agents’ on Wikipedia at http://en.
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wikipedia.org/wiki/User_agent. The user’s login is shown between the IP address and the

date, if it is known; in most cases it is not known and is replaced by a dash.

A few explanations are required concerning the request type and the return code. Themain

values of the request type are:

. GET: download an object from the server;

. PUT: store an item on the server;

. DELETE: delete an item on the server;

. HEAD: a variant of GET (sometimes used by robots).

The main values of the return code are:

. 200: request completely successful;

. 2xx: request partially successful;

. 3xx: redirection;

. 401: access refused;

. 404: URL not found;

. 4xx: other errors;

. 5xx: server errors.

Be careful about the IP address, whichmay not be fixed for a user, as it is assigned dynamically

by the Internet service provider at the time of connection (there are exceptions in the case of

ADSL). The same difficulty is encountered if the user changes his computer or uses his

company network.

15.2.3 Using the log file

As with any data mining analysis, we have to begin by formatting the data, in this case the log

file. The log files are very large (up to several hundred megabytes per day for a medium-sized

web server) and they must be cleaned. We remove any lines recording the following:

. pages visited by less than five IP addresses;

. image files (GIF, JPEG, etc.) or scripts, which contribute nothing to the analysis;

. accesses by robots, agents or link testers;

. anomalous IP addresses.

Some data mining software, such as SAS Web Analytics and IBM SPSS Modeler Web

Mining, can clean log files in a largely automatic way (Figure 15.1) and then apply all the data

mining techniques (clustering, detection of association rules, etc.) to them.

The log file provides a set of very useful information for analysing visits by users. But how

dowe define a visit? It is a set of requests from the same IP address, from the same ‘user agent’

GLOBAL ANALYSES 639



(and especially the same browser), separated from each other by a maximum time interval.

The interval is generally set at 30 minutes, which means that, if a request follows the previous

one more than 30 minutes later, it is counted as the start of a new visit; in other words, if

a request is not followed by another within a period of 30 minutes, the visit is terminated.

The data extracted from the log file are: the identifier (IP address), the date of the visit, the

start and end time of the visit (working hours/evening and night/weekend and public

holidays), the browser type (Internet Explorer, Firefox, Netscape, Opera, Safari, Google

Chrome, etc.), the visitor’s operating system (Windows, Linux, Mac, etc.), the geographic

origin, the pages visited, the number of pages visited, the mean time spent on each page and

the mean number of clicks.

The mean time spent on each page is one of the indicators for distinguishing human

visitors from robots: only robots spend less than a second on each page! Another way of

identifying a robot is to look in the ‘user agent’ for terms such as ‘bot’, ‘crawler’, ‘libwww-

perl’ or ‘Java/’, or an expression such as the following (the example given here refers to

Google): “Mozilla/5.0 (compatible; Googlebot/2.1;þ http://www.google.com/bot.html)”. A

third indicator is that a correctly programmed robot will request the file ‘robots. txt’.

The IP enables us to identify the visitor’s country (Figure 15.2), possibly his city, and his

Internet service provider (see, for example, www.ip2location.com and www.dnsstuff.com).

The visitor’s browsing can be followed line by line in the log file, using the fields containing

the requested URL and the original URL.

In addition to commercial log file analysis software, such as the very comprehensive

WebTrends used by large companies, there is some free software for reporting and creating

charts based on log files: the leading brands are Analog, AWStats and Webalizer. Google

Figure 15.1 Fields supplied by the log file in IBM SPSS Modeler Web Mining.
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Analytics is a very useful newcomer. A list of these web analytics packages can be found

on Wikipedia.1

In the screenshots captured in Figure 15.3, we can see the difference between the numbers

of requests (hits), files and pages. The files are the satisfied requests (return code 200), and

the pages are the HTML files (excluding images, JavaScript, etc.). We can also find the dates

of the first and last visit, the number of visits, and the mean duration of visits for each IP

address (and each user agent). By cross-tabulating these data with the others, we can create a

taxonomy of visitors.

15.3 Individual analyses

We may wish to establish that ‘35% of web users who visit the web page for a crime novel

by Patricia Highsmith also view the web page for a Hitchcock film in the next two months’. In

other words, wewould like to go beyond a global analysis and obtain ‘one-to-one’ analyses. In

this case, the log file is not enough.We need tomake use of ‘cookies’, which are small text files

stored on the hard disks of users when they connect to certain websites. When a user connects

to a site that uses cookies, a text file is created on his computer, containing a specific identifier

for the computer together with other information on the user’s browsing, the number of pages

viewed, the entry and exit pages, the sites from which he has come, the downloaded files, and

possibly some personal information requested by the site. When the user (or rather the

computer) connects again, the identifier contained in the cookie is transmitted to the website

server, which can then update the content of the cookie, and offer customized web pages and

links, relevant advertisements, and the like to the user.
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Figure 15.2 Webalizer performance chart.

1 http://en.wikipedia.org/wiki/List_of_web_analytics_software
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Analyses based on the use of cookies have the advantage of speed, reliability, and

transparency for the user, who, without be aware of it, provides large amounts of information

on his interests.

Their disadvantage is that, in the present state of the law and Internet software technology

a user can refuse a cookie or destroy it when he logs off, or even block it with a firewall.

Another drawback is that a cookie does not identify an individual but a computer, which is

equivalent to a whole household in the case of a family computer.

15.4 Personal analysis

The most detailed analysis of a user’s browsing habits is possible when a website requires the

personal identification of the customer, as is the case with on-line banking sites for viewing

accounts and carrying out banking transactions. In this case, the user is a known customer of

the company, and the information on his browsing can be compared with other information

Figure 15.3 Webalizer performance chart.
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held by the establishment on its customer, and can enrich this. In particular, the pages viewed

and the requests made for simulation provide detailed indicators of the customer’s interest in

this or that product and his planned purchases or investments, and this information can be used

in propensity scores. The comparison of the user taxonomies with the customer databases is

a very useful exercise for the business, which can predict the behaviour of a customer by this

means. The Internet browsing data can form a valuable addition to the other customer data in

the business’s databases.
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Appendix A

Elements of statistics

This appendix provides a basic introduction to statistics. It will be useful for an understanding

of the methods described in this book and the outputs of statistical and data mining software,

enabling the user to set the correct parameters and manipulate the data without erroneous

interpretation. The reader should consult the books cited in Section B.1 of Appendix B for

further information about statistical methods.

A.1 A brief history

A.1.1 A few dates

Table A.1 provides a summary timeline. Note that, although some older methods (such as

Fisher’s discriminant analysis) have lost none of their usefulness, some recent techniques such

as bagging and boosting have already become widespread. In comparison to other scientific

disciplines, statistics is remarkable for the very short time lag between the discovery of a new

method and its widespread application. This is a powerful incentive for statisticians working

in business (and for other users) to improve their knowledge.

A.1.2 From statistics . . . to data mining

Traditional statistics (up to the 1950s):

. a few hundred individuals

. several variables defined with a special protocol (sampling, experimental design, etc.)

. firm assumptions regarding the statistical distributions involved (linearity, normality

and homoscedasticity)

. models developed theoretically and compared with the data

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



Table A.1 Timeline.

1875 Francis Galton’s linear regression

1888 Francis Galton’s correlation

1896 Karl Pearson’s formula for the correlation coefficient

1900 Karl Pearson’s w2

1933 Harold Hotelling’s factor analysis

1934 Chester Bliss’s probit model

1936 Discriminant analysis, developed by Ronald A. Fisher and Prasanta Chandra

Mahalanobis

1936 Harold Hotelling’s canonical correlation analysis

1941 Guttman’s correspondence analysis

1943 Formal neuron invented by the neurophysiologist Warren McCulloch and the

logician Walter Pitts

1944 Joseph Berkson’s logistic regression

1958 Frank Rosenblatt’s perceptron

c.1960 Appearance of the concept of exploratory data analysis in France (Jean-Paul

Benz�ecri) and the USA (John Wilder Tukey)

1962 Jean-Paul Benz�ecri’s correspondence analysis

1964 AIDdecision tree (precursor of CHAID) invented by J.P. Sonquist and J.-A.Morgan

1965 E. W. Forgy’s moving centres method

1967 J. MacQueen’s k-means method

1970 Ridge regression proposed by Arthur E. Hoerl and Robert W. Kennard

1971 Edwin Diday’s dynamic cloud method

1972 Generalized linearmodel formulated by JohnA.Nelder andRobertW.Wedderburn

1972 David Cox’s proportional hazards regression model

1975 John Holland’s genetic algorithms

1975 Gilbert Saporta’s DISQUAL classification method

1979 Bootstrap method proposed by Bradley Efron

1980 CHAID decision tree developed by Gordon V. Kass

1982 Teuvo Kohonen’s self-organizing maps (Kohonen networks)

1983 Herman and Svante Wold’s PLS regression

1984 CART tree proposed by Leo Breiman, Jerome H. Friedman, R.A. Olshen and

Charles J. Stone

1986 Multilayer perceptron inventedbyDavidE.Rumelhart and JamesL.McClelland

1990 Generalized additive model proposed by Trevor Hastie and Robert Tibshirani

c.1990 First appearance of the data mining concept

1991 Jerome H. Friedman’s multivariate adaptive regression splines (MARS)

1993 J. Ross Quinlan’s C4.5 tree

1993 Apriori algorithm proposed by R. Agrawal et al. for detecting association rules

1995 Vladimir Vapnik’s learning theory and support vector machines
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. probabilistic and statistical methods

. used in the laboratory.

Data analysis (1960–1980):

. a few thousand individuals

. several tens of variables

. construction of ‘individuals � variables’ tables

. importance of computing and visual representation.

Data mining (1990s onwards):

. several millions or tens of millions of individuals

. several hundreds or thousands of variables

. numerous non-numeric variables, such as textual variables (or variables containing

images)

. weak assumptions regarding the statistical distributions involved

. data collected before the study, and often for other purposes

. constantly changing population (difficulty of sampling)

. presence of ‘outliers’ (abnormal individuals, at least in terms of the distributions studied)

. imperfect data, with errors of input and coding, and missing values

. fast computing, possibly in real time, is essential

. the aim is not always to find the mathematical optimum, but sometimes the model that is

easiest for non-statisticians to understand

1995 Robert Tibshirani’s lasso method of linear regression

1996 DBSCAN clustering algorithm proposed by M. Ester, H.-P. Kriegel, J. Sander

and X. Xu

1996 Leo Breiman’s bagging method

1996 Yoav Freund’s and Robert E. Shapire’s boosting method

1998 Leo Breiman’s arcing method

2000 PLS logistic regression formulated by Michel Tenenhaus

2001 Leo Breiman’s random forests

2005 Elastic net linear regression proposed by Zou and Hastie

2007 Grouped lasso method proposed by Yuan and Lin

. the models are developed from the data, and attempts are sometimes made to draw

theoretical conclusions from them
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. use of statistical methods, artificial intelligence and machine learning theory

. used in the business world.

A.2 Elements of statistics

A.2.1 Statistical characteristics

The job of statistics, like that of data mining, is often to reduce a large body of data to a small

amount of relevant information. The main kinds of information relating to a single variable at

a time (‘univariate statistics’) are classed in three main groups: the characteristics (or

parameters) of central tendency, dispersion and shape.

The central tendency (or position) characteristics indicate the order of magnitude of the

data and their central value. The dispersion characteristics provide information about

the spread of the values of the data about the central value. The shape characteristics indicate

the symmetry or asymmetry of the data set, as well as its kurtosis.

The main central tendency characteristics are the mode, the means (arithmetic, geomet-

ric, harmonic), the median and the other quantiles (percentiles, deciles, quartiles, etc.). In

particular, the quartiles q1, q2 (the median), q3 divide the data set into four equal frequencies.

The main dispersion characteristics are the range, the interquartile range (q3� q1), the

variance, the standard deviation and the coefficient of variation. The coefficient of variation

CV(X) of a variable X is the standard deviation divided by the mean, expressed as a

percentage. This is a dimensionless quantity: multiplying the variable by a constant does

not change the coefficient of variation. It is sometimes considered that X is dispersed if CV

(X)� 25%.

The main shape characteristics are Fisher’s coefficients of skewness and kurtosis. The

skewness of a population is E½ðX��XÞ3�=s3, equal to the third-order moment divided by the

cube of the standard deviation, and for a series x¼ (xi) it is

1

n

X
i

xi��x
sx

� �3

:

It is 0 if the data set is symmetrical, positive if it is elongated towards the right (the tail of

the distribution towards the right), and negative if it is elongated towards the left (the tail of the

distribution towards the left); see Figure A.1.

Figure A.1 Coefficient of skewness.
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The kurtosis of a population is E½ðX��XÞ4�=s4, equal to the fourth-order moment divided

by the fourth power of the standard deviation, and for a series x¼ (xi) it is:

1

n

X
i

xi��x
sx

� �4

:

It is 3 for a normal distribution, regardless of the variance. The kurtosis is 3 when the series

has the same kurtosis (or concentration) as that of a normal distribution having the same

variance (‘mesokurtic’ distribution), more than 3 if it is more concentrated than a normal

distribution (‘leptokurtic’ distribution), and less than 3 if it is more flattened than a normal

distribution (‘platykurtic’ distribution); see Figure A.2. The distributions being compared

must, of course, have the same variance, as seen in the example of logistic distribution in

Section 11.8.2: the logistic distribution of parameter 1 with a kurtosis of 4.2 is less flattened

than the standard normal distribution, but this is because it should be compared with the

logistic distribution of parameter
ffiffiffiffiffiffiffiffiffiffi
3=p2

p
(with a variance of 1). The coefficient of kurtosis is

still greater than 1 and also greater than or equal to 1 þ skewness2. It is 1.8 for the uniform

distribution between 0 and 1. Some authors subtract the term ‘3’ from it to normalize it to 0 for

the normal distribution; this is done in the R, SAS and IBM SPSS Statistics software.

Note that the skewness and kurtosis of a sample include a correction term, like the sample

standard deviation.

A.2.2 Box and whisker plot

The box and whisker plot (or box plot), devised by J.W. Tukey, is a very popular and simple

summary representation of the dispersion of a data set. It is constructed by placing the values

of certain quantiles on a vertical or horizontal scale (Figure A.3). It provides an instant

snapshot of some of the central tendency, dispersion and shape characteristics of the variables.

It can also be used to compare two populations, or to detect the individual outliers that must be

excluded from the analysis to avoid falsifying the results.

A.2.3 Hypothesis testing

This is done in order to confirm a hypothesis H1 which may be, for example:

. that a mean measured in a sample is significantly different from the mean in the

population (‘significantly’ means that the result is not simply due to chance);

. that the means measured in a number of samples are significantly different;

Figure A.2 Coefficient of kurtosis.
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. that a variable does not follow a given theoretical distribution;

. that two variables are significantly different;

. that a sample is not homogeneous, but is composed of a number of sub-populations.

To accept H1, we subject the contrary hypothesis H0 to a test Twhich must be passed if H0 is

true, and then we show that T is not passed and that we must therefore rejectH0 and acceptH1.

H0 is called the null hypothesis and H1 is the alternative hypothesis.

To create the test T, we associate the null hypothesis H0 with a statistic, based on the

observations, which follows a known theoretical distribution if H0 is true. For example, if the

null hypothesis is H0: m¼ m0, then �x�m0= s=
ffiffiffi
n

pð Þð Þ follows a standard normal distribution,

that is, a normal distribution with mean 0 and standard deviation 1.

In this distribution, we choose a rejection region (one- or two-tailed) characterized by a

probability a of being in this zone. In many cases, a¼ 0.05 (5%). The complement of this is

the acceptance region (if a¼ 0.05, this is the region around the mean where 95% of the values

of the statistics are found; see Figure A.4).

The value of the statistic for the sample is measured and compared with the theoretical

values of the distribution. If this measured value falls in the rejection region, H0 is rejected;

otherwise, it is accepted. Rejecting H0 does not mean that we have ‘proved’ H1, because the

exceptional value

largest value < q3 + 1.5(q3–q1)

q3

median q2

q1

smallest value > q1 – 1.5(q3–q1)

Figure A.3 Box plot.
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calculation of the statistic associated with the test may have been affected by random factors,

especially if the number of observations is small.

The significance level, the degree of significance, or the p-value refers to the probability of

finding a test statistic which is as extreme (� or�) as the value measured for the samplewhere

H0 is true.

If the p-value is greater than or equal to a (as in Figure A.4), H0 is not rejected. If the

p-value is less than a, H0 is rejected, because we consider that such a low p-value is too

unlikely to exist if H0 is true, and therefore we cannot accept that H0 is true. However, there

is always a probability a that H0 will be rejected even though it is true. This is called the type

I error. The other possible error in a test is the non-rejection of a false H0, called the type II

error, the probability of which is conventionally denoted by b. It is impossible to reduce a and
b simultaneously.

REALITY

H0 true H0 false

DECISION
H0 not rejected decision correct (1� a) error b (type II)

H0 rejected error a (type I) decision correct (1� b)

By definition, the power of the test is 1� b. This is the probability thatH0 will be rejected

if it is false. The error b and the power 1� b depend on:

. the true value of the population parameter (the farther it is from the tested value, the

lower the error b will be);

. the standard deviation s of the population (the higher it is, the lower b is);

. the chosen significance level a (the higher it is, the lower b is);

. the size n of the sample (as n increases, b decreases).

A powerful test is also described as ‘liberal’. The opposite is a ‘conservative’ test.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20151050

region of 
rejection

95 %

calculated value

p-value

region of acceptance

Figure A.4 Acceptance and rejection regions in a statistical test.
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We can see that the power of a test increases with the sample size: the greater the number

of observations, the more elements there are to indicate the rejection of H0 if it is false. For

example, the Hosmer–Lemeshow test used in logistic regression is not very powerful for small

frequencies but becomes more powerful as the population increases. Note that, with powerful

tests, H0 is more easily rejected as the number of observations increases. This is the case with

the w2 test and tests of normality, for example.

A final comment: hypothesis tests can be successfully applied to constraining null

hypotheses (e.g. m¼ m0), because they result in precise tests. Tests can therefore prove

that a sample is heterogeneous or has not been formed by random drawing, but cannot

prove the opposite.

A.2.4 Asymptotic, exact, parametric and non-parametric tests

An asymptotic test is an approximation which is valid when the frequencies are relatively

large and the data sets are relatively dense. For example, the w2 test is not valid if the

theoretical frequencies are less than 5.

An exact test can be used on sparse data, as it is created by a direct probability calculation

taking all possible cases into account. The opposite side of the coin is that this calculation can

required a lot of machine time. An alternative to these costly calculations is approximation by

the Monte Carlo method, a variant offered by software such as SAS, IBM SPSS Statistics and

S-PLUS. Some asymptotic tests have exact equivalents; for example, the counterpart of the w2

test is Fisher’s exact test.

A parametric test assumes that the data come from a given distribution (normality,

homoscedasticity, etc.). It may be more powerful than a non-parametric test, but is not often

much more powerful. Student’s t test and ANOVA are parametric tests.

A non-parametric test, such as the Wilcoxon or Kruskal–Wallis test, does not assume that

the variables follow a given distribution, and is often based on the ranks of the values of the

variables, rather than the values themselves. This reduces its sensitivity to outliers. It is the

preferable method where sample sizes are small (less than 10). When sample sizes are large

(several tens or hundreds of thousands), the computation time may become very long. By

definition, distribution matching tests (such as tests of normality) are non-parametric.

A.2.5 Confidence interval for a mean: student’s t test

Consider a variable X with a mean mX and standard deviation sX defined in a population from
which random samples of size n are taken. For each of these samples, we calculate the

empirical mean mm ¼ n�1
P

ixi, and we examine the distribution {mm} of the empirical means.

If X follows a normal distribution or if n is large (> 30), then the distribution of the empirical

means also follows a normal distribution whose mean is mX and whose standard deviation is

sX=
ffiffiffi
n

p
. Given that 95% of the values of a normal distribution (m,s) are in the range

[m� 1.96s, m þ 1.96s], the empirical mean measured on a random sample of size n will

have a 95% probability of being in the range [mX�1:96sX=
ffiffiffi
n

p
, mX þ 1:96sX=

ffiffiffi
n

p
].

Although the principle of this test is simple it can only be applied if the following two

conditions are met:

1. The distribution of X is normal, or n> 30.

2. The standard deviation sX in the whole population is known.
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If the standard deviation sX is not known, the more generally applicable Student’s t test must

be used.

Student’s test is used to compare the empirical mean in a random samplewith a theoretical

value (the value mX of themean for thewhole population), and to decidewhether the difference

observed between these two means is significant or may be due to chance. There are twoways

of using the test:

. either the mean mX of the whole population is known, and, by providing the range of

values in which the sample means must fall, the test enables us to determine whether a

sample is 95% representative; or

. the mean mX is not known, and, by assuming that the sample is representative and

calculating its empirical mean mm, we determine a confidence interval which has a 95%

probability of containing the mean mX of the population.

Student’s t test enables us to replace the unknown standard deviation sX with an estimator

which is the sample standard deviation:

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðxi�mmÞ2
n�1

s
:

The definition of sm includes, in the denominator, a factor n� 1, instead of n as in the

population standard deviation, because the sample standard deviation must allow for not only

the dispersion of the observations xi about their mean mm, but also the dispersion of the mean

mm about the actual mean mX.
Student’s test is based on the finding that the above statement that the distribution of the

empirical means is a normal distribution with a mean of mX and a standard deviation of sX=
ffiffiffi
n

p
is equivalent to the statement that the quantity

mm�mX
sX=

ffiffiffi
n

p

follows the standard normal distribution. Student (whose real name was William Gosset)

showed that, if sX was replaced by the sample standard deviation sm, the quantity

t ¼ mm�mX
sm=

ffiffiffi
n

p

followed a special distribution called Student’s t distribution with n – 1 degrees of freedom.

As in the case of the standard normal distribution, we can find in a table the value ta
(generally t0.025) such that t has a probability of 2a of not being in the range [�ta, þ ta], or, in

other words, that the range

mm�ta
smffiffiffi
n

p ; mm þ ta
smffiffiffi
n

p
� �

has a probability of 1� 2a (generally 0.95) of containing the mean mX. This range is therefore
the 100(1� 2a)% confidence interval for mX.
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The test above is a two-tailed (symmetrical) test: the population mean can be above or

below the confidence interval, so there are two rejection regions. In a one-tailed test, the mean

is on only one side of the confidence interval, and the value ta to be found in the table is

generally t0.05.

Finally, if n> 30, the test is simpler, because the t distribution is approximated by the

standard normal distribution. Instead of finding ta or ta/2 in the table for the t-distribution with

n� 1 degrees of freedom, we find it in the standard normal distribution table; in particular,

t0.025¼ 1.96.

A.2.6 Confidence interval of a frequency (or proportion)

Theory

When an event occurs in a large population with a probability p, this probability can be

estimated, from a sample of size n from this population, by using the frequency f¼ k/n of

occurrence of the event (or the observed proportion) in the sample. If we assume that the

events are independent, the variable k follows a binomial distribution B(n,p) with a mean of

m¼ np and a variance of s2¼ np(1–p).We know that, when n> 30, np> 15 and np(1� p)> 5,

the binomial distribution B(n,p) tends to a normal distribution of parameters (m,s), so that the
frequency f follows a normal distribution with a mean of m/n¼ p and a variance of s2/n2¼ p

(1� p)/n. Given that 95% of the values of a normal distribution (m,s) are found in the range

[m� 1.96s, m þ 1.96s], the frequency f has a probability of 0.95 of falling within the

confidence interval:

p�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

r
; pþ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

r" #

Therefore the range

f�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1�f Þ

n

r
; f þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1�f Þ

n

r" #

has a probability of 0.95 of containing the true value of p.

Note that, in reality, the assumption of the independence of events is by nomeans true in all

cases. For example, in a survey, each person is only asked questions on one occasion, and a

survey of n persons is not the equivalent of n independent surveys according to a Bernoulli

distribution. Strictly speaking, sampling with replacement should be replaced by sampling

without replacement, and therefore the binomial distribution should be replaced by the

hypergeometric distribution. In practice, the binomial distribution is considered to be suffi-

ciently close to the hypergeometric distribution when the size N of the population is more than

10n (where n is the size of the sample),meaning that thevariances2¼ np(1� p)(N� n)/(N� 1)

of the variable k following a hypergeometric distribution tends towards the variance of a

binomial distribution.

The 95% confidence interval is the one most commonly used. The formula for the

confidence interval shows that it is widest in the region of p¼ 0.5. For a 99% confidence

interval, the constant 1.96 above should be replaced by 2.58.
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Example 1

An exit poll of 96 voters at a two-candidate election finds that 52% voted for candidate X and

48% for candidate Y. The formula shown above, with f¼ 0.52 and n¼ 96, shows that the actual

proportion of votes for X is 52%� 10% with 95% confidence. Thus the exit poll cannot

separate the two candidates. In a poll of 9604 voters, the same results give a 95% confidence

interval of 52%� 1%. We can therefore predict, with only a 5% risk of error, that X will

be elected.

Example 2

If a survey question receives 50% ‘yes’ responses, we can deduce the confidence interval for

‘yes’ according to the sample size n, as follows (with 95% confidence, given that all the above

values of n would have to be multiplied by 1.727 at the 1% threshold):

n range precision

96 [40%, 60%] 10%

119 [41%, 59%] 9%

150 [42%, 58%] 8%

196 [43%, 57%] 7%

267 [44%, 56%] 6%

384 [45%, 55%] 5%

600 [46%, 54%] 4%

1067 [47%, 53%] 3%

2401 [48%, 52%] 2%

9604 [49%, 51%] 1%

Note that, as indicated by the formula above, the sample size nmust be multiplied by x2 in

order to divide thewidth of the confidence interval by x. Precision, then, comes at a high price.

It depends on the size of the sample, not the size of the population.

Similarly, if 40% of the responses to a question are ‘yes’, the sample sizes needed to

achieve a certain degree of precision are almost identical to those shown above. If 30% of the

responses to a question are ‘yes’, the necessary sample sizes will be slightly smaller than

those above.

n range precision

81 [20%, 40%] 10%

. . . . . . . . .

8068 [29%, 31%] 1%

If 20% of the responses to a question are ‘yes’, the necessary sample sizes will again be a little

smaller than those above, and so on.
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A.2.7 The relationship between two continuous variables:
the linear correlation coefficient

The strength of the linear relationship between two continuous variables can be measured by

the linear correlation coefficient (Pearson’s r). The relationship is:

. zero if the correlation coefficient is 0 (i.e. the cloud of points is circular or parallel to one

of the two axes corresponding to the variables);

. perfect if the correlation coefficient is þ 1 or �1 (the cloud of points is a straight line)

. strong if the correlation coefficient is greater than þ 0.8 or less than than �0.8 (the

cloud is elliptical and elongated).

The linear correlation coefficient is positive when the two variables change in the same

direction: that is, both variables increase or decrease together. A negative correlation coefficient

indicates the opposite kind of change: one increases when the other decreases.

Note that a non-linear relationship, particularly a non-monotonic relationship, cannot

always be measured with Pearson’s linear correlation coefficient. This is the case with a

(second degree) parabolic relationship such as that shown in Figure A.5 (D). And even a linear

relationship may not be detected by the Pearson coefficient if there are extreme values or

outliers present.

Thus, in Figure A.6, the decreasing linear relationship is masked by an outlier point, so

that Pearson’s r becomes positive instead of negative. Another example is that of Anscombe,

described in Section 11.7.6 on linear regression. Figure A.7 shows how the shape of the cloud

of points representing two variables varies as a function of the linear correlation coefficient of

these two variables. Each variable has been constructed five times, by random sampling

A EDCB
IndependenceNo correlation, butPositive

correlation < 1
negative
correlation = 1

positive
correlation = 1 dependence

Non-monotonicMonotonicMonotonicMonotonicRalationship
Non-linearLinearLinear
IncreasingDecreasingIncreasing

Figure A.5 Correlation and dependence of numeric variables.

Figure A.6 Correlation masked by the presence of outlier points.
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according to the normal distribution, the five sampling procedures yielding ten different

correlation coefficients, from 0.0046 to 0.96. The correlation coefficient of each cloud is in the

cell which is symmetrical about the diagonal, the clouds of the diagonal corresponding to a

correlation coefficient of 1 (correlation of the variable with itself).

A.2.8 The relationship between two numeric or ordinal variables:
Spearman’s rank correlation coefficient and Kendall’s tau

Whereas Pearson’s linear correlation coefficient can only be used with continuous variables,

Spearman’s rank correlation coefficient (or ‘rho’) can be used to measure the relationship

between two variables X and Y which may be continuous, discrete or ordinal. Even for

continuous variables, Spearman’s r is preferable to Pearson’s r if the variables have extreme

values or do not follow a normal distribution. Spearman’s r is also good at detecting all

monotonic relationships, even if they are non-linear. Thus, in Figure A.5 (C), the non-linearity

of the monotonic relationship will give rise to a low value of r, but r will remain high. A

striking example is provided by the calculation of r and r for the variable X¼ 0, 1, 2, 3, . . . and
the variable Y¼e0, e1, e2, e3, . . . . In this case, r¼ 1 as would be expected, but r is less than 1

and becomes smaller and smaller.

It is always useful to compare the Pearson and Spearman coefficients, as the latter can be

used in more situations:

. if r> r, there may be exceptional values present;

. if r< p, there may be a non-linear relationship.

In theory, Spearman’s correlation coefficient is calculated in the same way as Pearson’s

coefficient, after replacing the values of the variables with their ranks:

r ¼ covðrx; ryÞ
srx ; sry

:

Figure A.7 Clouds of points as a function of the correlation coefficient.
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In practice, we calculate Spearman’s coefficient by determining the rank rxi of each individual

i according to the variable X, then the rank ryi according to the variable Y. Assume, by way of

example, that the individuals are employees, X is their grade, and Y is their salary. If individual

1 is on the highest grade but has only the second highest salary, then rx1¼ 1 and ry1¼ 2. If n is

the number of individuals, Spearman’s coefficient is given by the formula

r ¼ 1�
6
Xn

i¼1
ðrxi�ryiÞ2

nðn2�1Þ :

If the association between the two variables is perfect, then of course r¼ 1. The

independence of two variables is tested with Spearman’s coefficient in the usual way, by

comparing the calculated value of rwith a value found in a table, depending on the degrees of

freedom and the significance level (often 5%). For example, if n> 25, the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n�2

1�r2

s
:

follows a Student t distribution with n� 2 degrees of freedom; we can then conduct a t test.

This test is robust, because Spearman’s r is calculated on the ranks of the values of the

variables, not on the values themselves, enabling us to avoid the constraining assumption of

the normality of the variables: it is a non-parametric test.

Spearman’s coefficient has the advantage of being easily interpreted, like the linear

correlation coefficient. However, it is considered to be imperfect if a variable has numerous

cases of tied ranks in the population; in this situation another statistical quantity, called

Kendall’s tau (t), is preferred. Without going into the complexities of its calculation and

interpretation, Iwill point out that t is not a correlation coefficient, but is the difference between:

. the probability that, for the observed data, X and Y are in the same order, and

. the probability that, for the observed data, X and Y are in different orders.

It follows that Kendall’s tau is equal to 2 times the first probability�1, and it lies between

�1 and þ 1.

Kendall’s tau t and Spearman’s rho r are related by the Siegel–Castellan formula:

�1� 3t� 2r� 1.

A.2.9 The relationship between n sets of several continuous or binary
variables: canonical correlation analysis

Canonical correlation analysis is a very broad generalization of the correlation of two

continuous variables. It deals with n (� 2) sets {Ui}, {Vi}, . . . of a number of continuous

or binary variables, and the aim is to find the linear combinations (called canonical variables)

which maximize the correlation between
P

iaiUi,
P

imiVi, . . .. It can be implemented by the

CANCORR procedure in SAS (if n¼ 2) and OVERALS in IBM SPSS Statistics. It is a

generalization of all the following methods:

. multiple regression (n¼ 2 and one of the sets of variables contains one variable only);

. linear discriminant analysis (n¼ 2 and one of the sets of variables contains the

indicators of the partition to be discriminated);

658 ELEMENTS OF STATISTICS



. correspondence analysis (n¼ 2 and each set of variables contains the indicators of a

qualitative variable).

A.2.10 The relationship between two nominal variables: the w2 test

The w2 test is used to check that the distribution of a variable X follows a given probability

distribution, by comparing the observed distribution (of frequencies {Oi}) with the theoretical

distribution (of frequencies {Ti}). If the null hypothesis,H0¼ {Oi¼ Ti, for every i¼ 1, . . ., n},
is true, then each element Oi�Tið Þ=Ti tends towards a standard normal distribution (according

to the central limit theorem) if the theoretical frequency Ti is large enough (conventionally

� 5). Therefore, if H0 is true and if Ti� 5 for every i, the quantity

X
i

ðOi�TiÞ2
Ti

follows a distribution which is a sum of p squares of independent N(0,1) distributions:

such a distribution is called a w2 distribution with p degrees of freedom. Note the absence

of any assumption on the theoretical distribution of the variable X: the w2 test is non-

parametric (Section A.2.4). However, the quantity
P

iðOi�TiÞ2=Ti only follows a w2

distribution asymptotically: if the theoretical frequencies are small (< 5), an exact probability

calculation is required. The exact test which replaces the w2 test for a 2� 2 contingency table is

called Fisher’s test and is based on the hypergeometric distribution. This distribution is defined

for two variables A and B with two categories, for which the 2 � 2 contingency table has

frequencies denoted a, b, c and d, and it states that, ifA andB are independent, the probability of

having a table (a,b,c,d) with fixed margins a þ c, b þ d, a þ b, c þ d is given by

Pða; b; c; dÞ ¼ ðaþ cÞ!ðbþ dÞ!ðaþ bÞ!ðcþ dÞ!
a!b!c!d!ðaþ bþ cþ dÞ! :

The w2 test is often used to test the independence of two variables X and Y, given that X and

Y are independent (the null hypothesis, H0). Then, for all i and j,

#fX ¼ i and Y ¼ jg ¼ #fX ¼ ig � #fY ¼ jg � 1=N;

where #{..} is to be read as ‘the number of individuals such that’ and N is the total number of

individuals. IfOij denotes the term on the left-hand side of the equality and Tij denotes the term

on the right, the test of independence of X and Y is the w2 test applied to the statistic

w2 ¼
X
i

X
j

ðOij�TijÞ2
Tij

The number of degrees of freedom is

p ¼ ðnumber of rows�1Þ � ðnumber of columns�1Þ:
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A.2.11 Example of use of the w2 test

The w2 test is used to decide if the value (A or B) taken by a variable depends on the class (1 or

2) to which the individual belongs.

For a small frequency

Consider the case of a population of 150 individuals.

Class 1 Class 2 Total

Observed frequencies:

A 55 45 100

B 20 30 50

Total 75 75 150

Frequencies expected if the variable is independent of class:

A 50 50 100

B 25 25 50

Total 75 75 150

Probability of the w2¼ 0.0833

In the population of 150 individuals, 66.67% of individuals take the value A. In class 1,

73.33% of individuals take the value A. Is this difference in the distribution of the categories

between the two classes significant? The w2 calculated for the above distribution is

55--50ð Þ2
50

þ 45--50ð Þ2
50

þ 20--25ð Þ2
25

þ 30--25ð Þ2
25

¼ 3;

and the number of degrees of freedom is (2� 1)(2� 1)¼ 1. Now, for 1 degree of freedom, if the

variables {A, B} and {class 1, class 2} are independent, the probability that w2� 3 is 0.0833. This

probability is greater than 0.05, indicating that the null hypothesis of independence can be accepted.

For a large frequency

Weshall nowconduct the same test on a population of 1500 individuals.All the previous frequencies

are multiplied by 10, to demonstrate the effect of the frequency on the result of the w2 test.

Class 1 Class 2 Total

Observed frequencies:

A 550 450 1000

B 200 300 500

Total 750 750 1500

Frequencies expected if the variable is independent of the class:

A 500 500 1000

B 250 250 500

Total 750 750 1500

Probability of w2¼ 4.3205� 10�8
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In the population of 1500 individuals we have that 66.67% of individuals take the value A,

while in class 1 we have that 73.33% of individuals take the value A, as before. The w2

calculated for the above distribution is

550--500ð Þ2
500

þ 450--500ð Þ2
500

þ 200--250ð Þ2
250

þ 300--250ð Þ2
250

¼ 30;

and the number of degrees of freedom is (2� 1)(2� 1)¼ 1. Now, for 1 degree of freedom, if

the variables {A, B} and {class 1, class 2} are independent, the probability that w2� 30 is

4.3205� 10�8. Because this probability is less than 0.05, the hypothesis of independence is

rejected in this case.

Conclusion

When the size of the population increases, the least difference becomes significant at the

normal significance levels (5% or 1%), even if the proportions are unchanged. It must be

remembered that the w2 test was devised at a time when statistics dealt with small samples of

no more than a few hundred individuals. The significance levels were fixed accordingly, but

must be reduced when the frequencies increase.

A.2.12 The relationship between two nominal variables:
Cram�er’s coefficient

Let r be the number of rows and s the number of columns. In the above description, the

maximum value of the variable

w2 ¼
X
i

X
j

ðOij�TijÞ2
Tij

foundwhen the contingency table has a single non-zero cell in each row (r> s) or a single non-

zero cell in each column (r< s), or when it has non-zero values on the diagonal only (r¼ s), is:

w2max ¼ frequency� ½minðr; sÞ�1�:

From this value w2max we can deduce a new quantity, Cram�er’s coefficient

V ¼
ffiffiffiffiffiffiffiffiffi
w2

w2max

s
;

which varies between 0 (zero relationship) and 1 (maximum relationship) and can be used to

evaluate the strength of the relationship between two qualitative variables, without using a w2

table. This is because this quantity is scaled by definition and incorporates the number of

degrees of freedom via w2max. The probability can be used in the same way, but it lacks

readability when it is very small, and above all it is sensitive to the size of the population, as

mentioned in the last section. Cram�er’s V, on the other hand, is insensitive to this, because it

incorporates the population size via w2max. It therefore has the major advantage of providing an

absolute measure of the strength of the relationship between two nominal variables,
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independently of the number of their categories and the population size. Thus, for the tables

in the last two sections, Cram�er’s V takes the same value, being the square root of 3/150

or 30/1500.

Other coefficients can be found from w2, namely Pearson’s contingency coefficient and

Chuprov’s coefficient; they are located in the range from 0 to 1, but Pearson’s coefficient never

reaches 1 and Chuprov’s coefficient can only reach it if r¼ s. Pearson also used the formula

F2¼ w2/N to find an indicator Fwhich is not normalized but is independent of the population

size N. As their significance level depends on r and s, unlike that of Cram�er’s V, and is not

associated with a statistical test (their distribution is not known), unlike w2, these indicators are
less useful than Cram�er’s V.

A.2.13 The relationship between a nominal variable and a numeric
variable: the variance test (one-way ANOVA test)

Let X be a nominal variable having k categories x1, x2, . . ., xk, with frequencies n1, n2, . . ., nk.
Let Y be a numeric variable, with mean m. Let n be the total number of individuals. We wish

to test the independence of X and Y.

Let mi be the mean of Y calculated for all the individuals for which X is equal to xi. This is

themean of Y for the ith group. Similarly, we defineVi as the variance of Y calculated for all the

individuals for which X is xi, i.e. the sum of (Y� mi)
2 calculated for the ni individuals yj for

which X is xi, divided by (ni� 1): this is the variance within the class {xi}.

For example, let X be the sex of an individual and Y his salary. We examine m1 and V1,

which are the mean and variance of the men’s salaries, and m2 and V2, which are the mean and

variance of the women’s salaries; we then check to see if X and Y are independent, in other

words if the means mi are equal to each other. This equality of the means is the null hypothesis

in the ANOVA test. The ANOVA test can also be used to compare the crop yields of a number

of fields, the effectiveness of a number of fertilizers, or the outputs of a number of factories.

Thus we are generally comparing more than two groups: ANOVA is a generalization of

Student’s t test where k> 2. In this case, the null hypothesis is that m1¼ m2¼ . . .¼ mk, and the
alternative hypothesis is that one or more of the means is different. This does not mean that

m1 6¼ m2 6¼ . . . 6¼ mk, and the ANOVA test does not reveal which means are significantly

different. To discover this, we must use the Bonferroni test, or the more conservative Scheff�e
test (which does not reject the null hypothesis very easily), as these tests are more suitable than

the more liberal method in which multiple comparisons are made by Student’s t tests. It may

seem strange to use the term ‘analysis of variance’ for what is really a test of equality of the

means; this is due to the way in which the test is carried out, by dividing the variance of the

variable Y into two parts, as follows:

. the part due to the differences between groups (between-class variance);

. and the part due to random variations (within-class variance, also called ‘error’).

The strength of the relationship between X and Y is commonly measured by the R2,

defined thus:

R2 ¼ between-class sum of squares

total sum of squares
¼

Pk
i¼1 niðmi�mÞ2Pn
j¼1 ðyj�mÞ2 :

The relationship is perfect if R2¼ 1 and zero if R2¼ 0.
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The difference between the total sum of squares TSS and the between-class sum of squares

ESS (E for ‘explained’) is the within-class sum of squares RSS (R for ‘residual’), and these

three sums of squares are related by the equality

TSS ¼ ESSþRSS;

that is,

Xn
j¼1

ðyj�mÞ2 ¼
Xk
i¼1

niðmi�mÞ2 þ
Xk
i¼1

X
j:X¼xi

ðyj�miÞ2:

The variances are found in the usual way by dividing the sum of squares by the number of

degrees of freedom, which gives:

total variance ¼ TSS=ðn�1Þ;
between-class variance ¼ ESS=ðk�1Þ;
within-class variance ¼ RSS=ðn�kÞ:

The within-class variance is also equal to the sum of the variances in each class:X
i

Vi:

Another way of measuring the strength of the relationship between X and Y is to calculate

the F-ratio:

F ¼ between-class variance

within-class variance
:

The independence of X and Y is tested by formulating the null hypothesis H0 that all

the means mi are equal. If H0 is true, F must follow Fisher’s distribution, and to check

this we can compare the calculated value of F with the value found in the Fisher–Snedecor

distribution table, as a function of the chosen threshold and the degrees of freedom of

the between-class variance (k� 1) and the within-class variance (n� k): this is the Fisher–

Snedecor test. If the F-ratio exceeds the critical value of Fisher’s distribution, H0 must be

rejected and the residual variations are weak compared with the effect of the differences

between groups.

As a general rule, the Fisher–Snedecor test is used to demonstrate that a ratio of two

variances v1=v2 (v1> v2) is significantly greater than 1, for a specified significance level and

degrees of freedom (those of v1 and v2).

However, there are limitations on the conditions for using Fisher’s test for ANOVA. These

can be demonstrated if we write the general ANOVA model in another form. The value Yij of

observation j in group i is

Yij ¼ mþ ai þ eij;

where ai¼ mi� m and eij is a residual value which must meet the following conditions:
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. it is normally distributed in all the groups (Fisher’s test lacks robustness if normality is

not present);

. its mean is 0 in all the groups;

. its variance is equal in all the groups (homoscedasticity);

. the eij are idendepent for all i and j, which means that an observation must not be

dependent on others in the group, and that the observations in one group must not

depend on those in other groups.

Returning to the previous example, the salary must be normally distributed in the group of

men and the group of women, it must have the same variance in both groups, and the salary of

one individual must be independent of that of another individual.

In conclusion, we can say that ANOVA is generalized in two directions by dealing

with:

. m (> 1) independent nominal variables (m-way ANOVA);

. more than one continuous variable to be explained (MANOVA).

If more than one variable is explained simultaneously, this may reveal explanatory factors

which would not be detected by a number of ANOVAs carried out separately on each of the

variables to be explained.

A.2.14 The Cox semi-parametric survival model

In a survival analysis, the observations for each individual are repeated in time at the instants

t1, t2, . . ., tN. We examine the occurrence of an event (e.g. the death of a patient or the

departure of a customer) at time ti, which is modelled by the dependent variable defined

as follows:

. yk¼ 0 if k< i;

. yi¼ 1;

. there is no observation if k> i.

The event does not always occur in the period under investigation.We have yk¼ 0 for every

k�N if the event does not occur (and if the individual is observed until the end of the period). In

this case,we only know the lower bound of the time elapsing before the occurrence of the event,

andwe say that this data element is censored. The data element is also censored if the individual

ceases to be monitored before the end of the period and before the event occurs.

The aim of survival analysis is to explain the variable ‘length of survival’ in order to reveal

the factors promoting survival. Even if the data are censored (because the individual is still

alive and still present at the end of the period), they must be taken into account, since the

longest lifetimes are, by definition, the most censored. Therefore the aim is to find models that

can handle both censored and uncensored data.

The basic approach (the Kaplan–Meier model) is to calculate a non-parametric estimate of

the survival function: S(t)¼ Prob(length of life> t).
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Cox’s proportional hazards regression model (1972)1 is the most widely used method in

survival analysis. It enables us to add p independent variables (‘covariables’) and estimate

their coefficients in the survival function, and consequently their effect on the length of

survival (such variables may include sex, number of cigarettes smoked per day, etc.) This is a

semi-parametric model, with a parametric form for the effects of the covariables, and a non-

parametric form of the survival function.

For each individual i with covariables {xij}j, the survival function is expressed

as follows:

Sðt; xiÞ ¼ S0ðtÞ
exp

Pp

j¼0
bjxij

� �
;

where S0(t) is the basic survival function (‘basic hazard’), and xi0¼ 1 for every i. To find

the vector {bj} of regression coefficients, which is assumed to be independent of i, we

proceed as in logistic regression, by maximizing a likelihood function. There are several

methods of selecting the covariables (forward, backward, or stepwise), and the odds ratios

can be interpreted. As in regression, the covariables must be present in a larger number

than the observations, and they must not be strongly correlated; if they are, we can use the

Cox PLS model, an extension of the Cox model which bears the same kind of relation to

the basic model as PLS regression does to linear regression.2

The censored data are not used in the calculation of {bj}, but they play a part in the

calculation of So(t).

The term ‘proportional hazards’ refers to the basic assumption that two individuals

having different configurations of covariables have a constant hazard ratio over time. For

example, if two individuals are such that x1j¼ 1 and x2j¼ 0 for the jth covariable, and if

they coincide for the other covariables, the ratio S(t,x1)/S(t,x2) will be constant and equal

to exp(bj).

A.3 Statistical tables

A.3.1 Table of the standard normal distribution

Table A.2 shows the probability Pr(0�Z� z0): the first decimal place of z0 is read down the

leftmost column, and the second decimal place of z0 is read along the top row. For example, we

can see that Pr(0� Z� 0.53)¼ 0.2019.

A.3.2 Table of Student’s t distribution

Table A.3 shows the critical values of t, in other words the values ta such that Pr(t� ta)¼ a,
where a is the probability read along the top row, and the number of degrees of freedom is read

down the leftmost column. For example, for 6 degrees of freedom, the probability that

t� 1.943180 is 5%.

1 Cox, D. R. (1972) RegressionModels and Life Tables (withDiscussion). Journal of the Royal Statistical Society,

Series B, 34(2), 187–220.
2 Bastien, P. and Tenenhaus, M. (2001) PLS generalized linear regression: Application to the analysis of life time

data. In PLS and Related Methods, Proceedings of the PLEASE ’01 International Symposium, CISIA-CERESTA,

pp. 131–140.
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Table A.2 Standard normal distribution.

z0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

A.3.3 Chi-Square table

Table A.4 shows the critical values of w2, in other words the values ca such that Pr (w
2� ca)¼ a,

where a is the probability read along the top row, and the number of degrees of freedom is read

down the leftmost column. For example, for 6 degrees of freedom, the probability that

w2� 12.59159 is 5%.
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Table A.3 Student’s t distribution.

ta 0.25 0.10 0.05 0.025 0.01 0.005 0.0005

1 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192

2 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991

3 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240

4 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103

5 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688

6 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588

7 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079

8 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413

9 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869

11 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370

12 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178

13 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208

14 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405

15 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728

16 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150

17 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651

18 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216

19 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834

20 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495

21 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193

22 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921

23 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676

24 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454

25 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251

26 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066

27 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896

28 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739

29 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594

30 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460

1 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905

A.3.4 Table of the Fisher-Snedecor distribution at the 0.05
significance level

Table A.5 shows the critical values of the Fisher–Snedecor distribution F(n1; n2) at the 5%

significance level, in other words the values fa such that Pr(F(n1; n2)� fa)¼ 0.05. The number
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Table A.4 The w2 distribution.

ca 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

1 0.00004 0.00016 0.00098 0.00393 0.01579 2.70554 3.84146 5.02389 6.63490 7.87944

2 0.01003 0.02010 0.05064 0.10259 0.21072 4.60517 5.99146 7.37776 9.21034 10.59663

3 0.07172 0.11483 0.21580 0.35185 0.58437 6.25139 7.81473 9.34840 11.34487 12.83816

4 0.20699 0.29711 0.48442 0.71072 1.06362 7.77944 9.48773 11.14329 13.27670 14.86026

5 0.41174 0.55430 0.83121 1.14548 1.61031 9.23636 11.07050 12.83250 15.08627 16.74960

6 0.67573 0.87209 1.23734 1.63538 2.20413 10.64464 12.59159 14.44938 16.81189 18.54758

7 0.98926 1.23904 1.68987 2.16735 2.83311 12.01704 14.06714 16.01276 18.47531 20.27774

8 1.34441 1.64650 2.17973 2.73264 3.48954 13.36157 15.50731 17.53455 20.09024 21.95495

9 1.73493 2.08790 2.70039 3.32511 4.16816 14.68366 16.91898 19.02277 21.66599 23.58935

10 2.15586 2.55821 3.24697 3.94030 4.86518 15.98718 18.30704 20.48318 23.20925 25.18818

11 2.60322 3.05348 3.81575 4.57481 5.57778 17.27501 19.67514 21.92005 24.72497 26.75685

12 3.07382 3.57057 4.40379 5.22603 6.30380 18.54935 21.02607 23.33666 26.21697 28.29952

13 3.56503 4.10692 5.00875 5.89186 7.04150 19.81193 22.36203 24.73560 27.68825 29.81947

14 4.07467 4.66043 5.62873 6.57063 7.78953 21.06414 23.68479 26.11895 29.14124 31.31935

15 4.60092 5.22935 6.26214 7.26094 8.54676 22.30713 24.99579 27.48839 30.57791 32.80132

16 5.14221 5.81221 6.90766 7.96165 9.31224 23.54183 26.29623 28.84535 31.99993 34.26719

17 5.69722 6.40776 7.56419 8.67176 10.08519 24.76904 27.58711 30.19101 33.40866 35.71847

18 6.26480 7.01491 8.23075 9.39046 10.86494 25.98942 28.86930 31.52638 34.80531 37.15645

19 6.84397 7.63273 8.90652 10.11701 11.65091 27.20357 30.14353 32.85233 36.19087 38.58226

20 7.43384 8.26040 9.59078 10.85081 12.44261 28.41198 31.41043 34.16961 37.56623 39.99685

21 8.03365 8.89720 10.28290 11.59131 13.23960 29.61509 32.67057 35.47888 38.93217 41.40106

22 8.64272 9.54249 10.98232 12.33801 14.04149 30.81328 33.92444 36.78071 40.28936 42.79565

23 9.26042 10.19572 11.68855 13.09051 14.84796 32.00690 35.17246 38.07563 41.63840 44.18128

24 9.88623 10.85636 12.40115 13.84843 15.65868 33.19624 36.41503 39.36408 42.97982 45.55851

25 10.51965 11.52398 13.11972 14.61141 16.47341 34.38159 37.65248 40.64647 44.31410 46.92789

26 11.16024 12.19815 13.84390 15.37916 17.29188 35.56317 38.88514 41.92317 45.64168 48.28988

27 11.80759 12.87850 14.57338 16.15140 18.11390 36.74122 40.11327 43.19451 46.96294 49.64492

28 12.46134 13.56471 15.30786 16.92788 18.93924 37.91592 41.33714 44.46079 48.27824 50.99338

29 13.12115 14.25645 16.04707 17.70837 19.76774 39.08747 42.55697 45.72229 49.58788 52.33562

30 13.78672 14.95346 16.79077 18.49266 20.59923 40.25602 43.77297 46.97924 50.89218 53.67196
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Table A.5 The Fisher–Snedecor distribution at the 0.05 significance level.

1 2 3 4 5 6 7 8 9 10

1 161 200 216 225 230 234 237 239 241 242

2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95

90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93

200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88

500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85

1 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83

(continued )
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15 20 30 40 50 100 200 500 1
1 246 248 250 251 252 253 254 254 254

2 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5

3 8.70 8.66 8.62 8.59 8.58 8.55 8.54 8.53 8.53

4 5.86 5.80 5.75 5.72 5.70 5.66 5.65 5.64 5.63

5 4.62 4.56 4.50 4.46 4.44 4.41 4.39 4.37 4.37

6 3.94 3.87 3.81 3.77 3.75 3.71 3.69 3.68 3.67

7 3.51 3.44 3.38 3.34 3.32 3.27 3.25 3.24 3.23

8 3.22 3.15 3.08 3.04 3.02 2.97 2.95 2.94 2.93

9 3.01 2.94 2.86 2.83 2.80 2.76 2.73 2.72 2.71

10 2.85 2.77 2.70 2.66 2.64 2.59 2.56 2.55 2.54

11 2.72 2.65 2.57 2.53 2.51 2.46 2.43 2.42 2.40

12 2.62 2.54 2.47 2.43 2.40 2.35 2.32 2.31 2.30

13 2.53 2.46 2.38 2.34 2.31 2.26 2.23 2.22 2.21

14 2.46 2.39 2.31 2.27 2.24 2.19 2.16 2.14 2.13

15 2.40 2.33 2.25 2.20 2.18 2.12 2.10 2.08 2.07

16 2.35 2.28 2.19 2.15 2.12 2.07 2.04 2.02 2.01

17 2.31 2.23 2.15 2.10 2.08 2.02 1.99 1.97 1.96

18 2.27 2.19 2.11 2.06 2.04 1.98 1.95 1.93 1.92

19 2.23 2.16 2.07 2.03 2.00 1.94 1.91 1.89 1.88

20 2.20 2.12 2.04 1.99 1.97 1.91 1.88 1.86 1.84

21 2.18 2.10 2.01 1.96 1.94 1.88 1.84 1.83 1.81

22 2.15 2.07 1.98 1.94 1.91 1.85 1.82 1.80 1.78

23 2.13 2.05 1.96 1.91 1.88 1.82 1.79 1.77 1.76

24 2.11 2.03 1.94 1.89 1.86 1.80 1.77 1.75 1.73

25 2.09 2.01 1.92 1.87 1.84 1.78 1.75 1.73 1.71

26 2.07 1.99 1.90 1.85 1.82 1.76 1.73 1.71 1.69

27 2.06 1.97 1.88 1.84 1.81 1.74 1.71 1.69 1.67

28 2.04 1.96 1.87 1.82 1.79 1.73 1.69 1.67 1.65

29 2.03 1.94 1.85 1.81 1.77 1.71 1.67 1.65 1.64

30 2.01 1.93 1.84 1.79 1.76 1.70 1.66 1.64 1.62

40 1.92 1.84 1.74 1.69 1.66 1.59 1.55 1.53 1.52

50 1.87 1.78 1.69 1.63 1.60 1.52 1.48 1.46 1.45

60 1.84 1.75 1.65 1.59 1.56 1.48 1.44 1.41 1.40

70 1.81 1.72 1.62 1.57 1.53 1.45 1.40 1.37 1.36

80 1.79 1.70 1.60 1.54 1.51 1.43 1.38 1.35 1.34

90 1.78 1.69 1.59 1.53 1.49 1.41 1.36 1.33 1.31

100 1.77 1.68 1.57 1.52 1.48 1.39 1.34 1.31 1.30

200 1.72 1.62 1.52 1.46 1.41 1.32 1.26 1.22 1.21

500 1.69 1.59 1.48 1.42 1.38 1.28 1.21 1.16 1.14

1 1.67 1.57 1.46 1.39 1.35 1.24 1.17 1.11 1.00

Table A.5 (Continued )
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Table A.6 The Fisher–Snedecor distribution at the 0.10 significance level.

1 2 3 4 5 6 7 8 9 10

1 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76

50 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71

70 2.78 2.38 2.16 2.03 1.93 1.86 1.80 1.76 1.72 1.69

80 2.77 2.37 2.15 2.02 1.92 1.85 1.79 1.75 1.71 1.68

90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67

100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66

200 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63

500 2.72 2.31 2.09 1.96 1.86 1.79 1.73 1.68 1.64 1.61

1 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60

(continued )
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15 20 30 40 50 100 200 500 1
1 61.2 61.7 62.3 62.5 62.7 63.0 63.2 63.3 63.3

2 9.42 9.44 9.46 9.47 9.47 9.48 9.49 9.49 9.49

3 5.20 5.18 5.17 5.16 5.15 5.14 5.14 5.14 5.13

4 3.87 3.84 3.82 3.80 3.80 3.78 3.77 3.76 3.76

5 3.24 3.21 3.17 3.16 3.15 3.13 3.12 3.11 3.10

6 2.87 2.84 2.80 2.78 2.77 2.75 2.73 2.73 2.72

7 2.63 2.59 2.56 2.54 2.52 2.50 2.48 2.48 2.47

8 2.46 2.42 2.38 2.36 2.35 2.32 2.31 2.30 2.29

9 2.34 2.30 2.25 2.23 2.22 2.19 2.17 2.17 2.16

10 2.24 2.20 2.16 2.13 2.12 2.09 2.07 2.06 2.06

11 2.17 2.12 2.08 2.05 2.04 2.01 1.99 1.98 1.97

12 2.10 2.06 2.01 1.99 1.97 1.94 1.92 1.91 1.90

13 2.05 2.01 1.96 1.93 1.92 1.88 1.86 1.85 1.85

14 2.01 1.96 1.91 1.89 1.87 1.83 1.82 1.80 1.80

15 1.97 1.92 1.87 1.85 1.83 1.79 1.77 1.76 1.76

16 1.94 1.89 1.84 1.81 1.79 1.76 1.74 1.73 1.72

17 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.69 1.69

18 1.89 1.84 1.78 1.75 1.74 1.70 1.68 1.67 1.66

19 1.86 1.81 1.76 1.73 1.71 1.67 1.65 1.64 1.63

20 1.84 1.79 1.74 1.71 1.69 1.65 1.63 1.62 1.61

21 1.83 1.78 1.72 1.69 1.67 1.63 1.61 1.60 1.59

22 1.81 1.76 1.70 1.67 1.65 1.61 1.59 1.58 1.57

23 1.80 1.74 1.69 1.66 1.64 1.59 1.57 1.56 1.55

24 1.78 1.73 1.67 1.64 1.62 1.58 1.56 1.54 1.53

25 1.77 1.72 1.66 1.63 1.61 1.56 1.54 1.53 1.52

26 1.76 1.71 1.65 1.61 1.59 1.55 1.53 1.51 1.50

27 1.75 1.70 1.64 1.60 1.58 1.54 1.52 1.50 1.49

28 1.74 1.69 1.63 1.59 1.57 1.53 1.50 1.49 1.48

29 1.73 1.68 1.62 1.58 1.56 1.52 1.49 1.48 1.47

30 1.72 1.67 1.61 1.57 1.55 1.51 1.48 1.47 1.46

40 1.66 1.61 1.54 1.51 1.48 1.43 1.41 1.39 1.38

50 1.63 1.57 1.50 1.46 1.44 1.39 1.36 1.34 1.33

60 1.60 1.54 1.48 1.44 1.41 1.36 1.33 1.31 1.29

70 1.59 1.53 1.46 1.42 1.39 1.34 1.30 1.28 1.27

80 1.57 1.51 1.44 1.40 1.38 1.32 1.28 1.26 1.24

90 1.56 1.50 1.43 1.39 1.36 1.30 1.27 1.25 1.23

100 1.56 1.49 1.42 1.38 1.35 1.29 1.26 1.23 1.21

200 1.52 1.46 1.38 1.34 1.31 1.24 1.20 1.17 1.14

500 1.50 1.44 1.36 1.31 1.28 1.21 1.16 1.12 1.09

1 1.49 1.42 1.34 1.30 1.26 1.18 1.13 1.08 1.00

Table A.6 (Continued )
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of degrees of freedom of the numerator is read along the top row, and the number of degrees of

freedom of the denominator is read down the leftmost column. For example, for 10 degrees

of freedom in the numerator and 30 in the denominator, the probability that F(n1; n2)� 2.16

is 0.05.

A.3.5 Table of the Fisher-Snedecor distribution at the 0.10
significance level

Table A.6 shows the critical values of the Fisher–Snedecor distribution F(n1; n2) at the 10%
significance level, in other words the values fa such that Pr(F(n1; n2)� fa)¼ 0.10. The number

of degrees of freedom of the numerator is read along the top row, and the number of degrees

of freedom of the denominator is read down the leftmost column. For example, for

10 degrees of freedom in the numerator and 30 in the denominator, the probability that

F(n1; n2)� 1.82 is 0.10.
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Appendix B

Further reading

B.1. Statistics and data analysis

Alan Agresti: An Introduction to Categorical Data Analysis, Wiley, 2nd edn, 2007.

An excellent book which provides a survey of categorical (i.e. qualitative) data. Two chapters

are added in the second edition on the subject of correlated categorical data, which occur in

longitudinal studies with repeated measurements.

T.W. Anderson: An Introduction to Multivariate Statistical Analysis, Wiley-Interscience, 3rd

edn, 2003.

A classic from 1958, updated and still very useful. Not the easiest read, but rigorous and very

comprehensive, it covers clustering, factor analysis (PCA and MCA), classification, boot-

strapping, etc.

Jean-Paul Benz�ecri: Histoire et Pr�ehistoire de l’Analyse des Donn�ees, Dunod, new edn, 1982

(out of print).

A fascinating story, written in a sparkling style by a leading statistician who is also a thinker.

George Casella and Roger L. Berger: Statistical Inference, Duxbury Press, 2nd edn, 2001.

An excellent textbook, comprehensive and rigorous, for advanced students.

Christophe Croux, Jean-Jacques Droesbeke, Pierre-Louis Gonzalez, Christian Gourieroux,

Gentiane Haesbroeck, Michel Lejeune, Gilbert Saporta, and Michel Tenenhaus: Mod�eles
Statistiques pour Donn�ees Qualitatives, Éditions Technip, 2005.

The proceedings of a very interesting seminar organized by the Soci�et�e Française de

Statistique, on classification methods, logistic regression, the log-linear model, counting

models, generalized linear models, and PLS regression, with applications in medicine and

insurance. Worth reading to discover the state of the art on these subjects.

Data Mining and Statistics for Decision Making, First Edition. Stéphane Tufféry.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



Bradley Efron and Robert J. Tibshirani: An Introduction to the Bootstrap, Chapman &

Hall, 1994.

A reference work on the bootstrap method, clear and comprehensive (the first author devised

the method).

Brigitte Escofier and J�erôme Pag�es: Analyses Factorielles Simples et Multiples, Dunod,

4th edn, 2008.

A very comprehensive book, helpful for the reader who wishes to be able to read a

factor analysis.

Stanton A. Glantz and Bryan K. Slinker: Primer of Applied Regression and Analysis of

Variance, McGraw-Hill, 2000.

Avery full description of linear regression and analysis of variance, with an introduction to the

Cox semi-parametric survival models.

Joseph F. Hair, Bill Black, Barry Babin, Rolph E. Anderson, and Ronald L. Tatham:

Multivariate Data Analysis, Prentice Hall, 6th edn, 2005.

A real doorstop of a book (more than 900 pages), but full of excellent and accessible practical

information, without toomany equations. It provides examples of each type of analysis (factor

analysis, canonical analysis, MANOVA, multiple regression, discriminant analysis, conjoint

analysis, structural equations, etc.), with SAS and SPSS syntax, and an interpretation of the

outputs. It also covers data cleaning and missing values.

David J. Hand: Information Generation: How Data Rule Our World, Oneworld

Publications, 2007.

An excellent survey of statistics and its place in the modern world, written in a clear and

attractive style by a leading expert, of interest to statisticians and others.

David J. Hand: Statistics: A Very Short Introduction, Oxford University Press, 2008.

Avery useful introduction to statistics, detailed and concise, covering the basics of the subject,

from data collection to modelling and computing, via probability theory and inference.

David W. Hosmer and Stanley Lemeshow: Applied Logistic Regression, Wiley, 1989;

2nd edn, 2000.

A well-known work on logistic regression, with numerous examples from the field of

biostatistics. Starting from a basic knowledge of the linear model, this book provides a

remarkably clear explanation of the principles and applications of logistic regression.

Ludovic Lebart, Alain Morineau, and Marie Piron: Statistique Exploratoire Multidimension-

nelle: Visualisations et Inf�erences en Fouille de Donn�ees, Dunod, 4th edn, 2006.

One of the best titles on ‘French-style’ data analysis (factor analysis), also covering

developments in clustering, discriminant analysis, log-linear models, decision trees, neural

networks, validation methods, etc.

Kanti V. Mardia, J. T. Kent, and J. M. Bibby: Multivariate Analysis, Academic Press, 1980.

This book is less recent and does not cover subjects such as the bootstrap, but it is still

a standard work on multivariate analysis, noted for its clear and elegant presentation of

the subject.

Peter McCullagh and John A. Nelder: Generalized Linear Models, Chapman & Hall,

2nd edn, 1989.
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A fundamental treatise on generalized linear models. John Nelder was one of the inventors of

this method. Rather a challenging read, but of excellent quality.

R. H. Myers, D. C. Montgomery, and G. C. Vining: Generalized Linear Models with

Applications in Engineering and the Sciences, Wiley-Interscience, 2001.

A clear introduction to generalized linear models.

Patrick Na€ım, Pierre-Henri Wuillemin, Philippe Leray, Olivier Pourret, and Anna Becker:

R�eseaux Bay�esiens, Éditions Eyrolles, 3rd edn, 2007.

A reference work on Bayesian networks, written by specialists and practitioners in this field.

Jean-Pierre Nakache and Josiane Confais: Statistique Explicative Appliqu�ee, Éditions

Technip, 2003.

A recent book on the main predictive methods: linear discriminant analysis, logistic

regression and decision trees. The theory is described in a concise and detailed way, followed

by a variety of illuminating examples produced with the SAS and SPAD software.

Jean-Pierre Nakache and Josiane Confais: Approche Pragmatique de la Classification: Arbres

Hi�erarchiques et Partitionnements, Éditions Technip, 2004.
A recent and very comprehensive text which is to descriptive clustering methods as the

previous book is to predictive methods – an excellent reference work in a style characterized

by its thoroughness in the theoretical sections and an educational approach in the examples of

application, with many references to the recent literature, Internet sites and the latest versions

of software, mainly, but not exclusively, SAS and SPAD.

Olivier Pourret, Patrick Na€ım, and Bruce Marcot: Bayesian Networks: A Practical Guide to

Applications, John Wiley & Sons Ltd, 2008.

A general introduction to Bayesian networks, illustrated with 20 case studies in the fields of

medicine, science, engineering, robotics, finance, risk, etc.

Gilbert Saporta: Probabilit�es, Analyse des Donn�ees et Statistique, Éditions Technip,

2nd edn, 2006.

This is the standard work (in French), one to be kept handy at all times, offering a precise and

comprehensive treatment of the subject. It contains all the essentials of probability calcula-

tion, multidimensional data analysis (factor analysis, clustering) and statistics for decision

making (tests, estimation, regression and discrimination).

Michel Tenenhaus: La R�egression PLS: Th�eorie et Pratique, Éditions Technip, 1998.

Everything you need to know about PLS regression, used ever more widely in industry for

manipulating a large number of strongly collinear independent variables.

Sylvie Thiria, Olivier Gascuel, Yves Lechevallier, and St�ephane Canu: Statistique et

M�ethodes Neuronales, Dunod, 1997.
A collection of technical papers providing a very thorough survey of neural networks (several

papers on the multilayer perceptron), their application to problems of classification, predic-

tion and clustering, and Vapnik’s learning theory.

St�ephane Tuff�ery: Étude de Cas en Statistique D�ecisionnelle, Éditions Technip, 2009.
Based on a data set from the insurance sector, available on the publisher’s website, this book

applies the principles of statistics to a case study covering two classic problems, namely the

construction of customer segmentation, and the creation of a propensity score for the purchase
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of a product. The resources of the SAS software, especially SAS/STAT, are used to show that

rigour and efficiency can be combined.

LarryWasserman: All of Statistics: A Concise Course in Statistical Inference, Springer, 2004.

In just over 400 pages, this book provides an excellent overview of probability and statistics,

without assuming a large amount of previous knowledge on the reader’s part, and gives a

concise and clear introduction to the main principles, including the most recent ones such

as the bootstrap, support vector machines, Bayesian inference and Markov chain Monte

Carlo methods.

B.2. Data mining and statistical learning

Michael J. A. Berry and Gordon Linoff: Data Mining Techniques: for Marketing, Sales, and

Customer Relationship Management, John Wiley & Sons, 2nd edn, 2004.

A readable book on data mining, more useful for its examples than its technical content

(it does not cover factor analysis, discriminant analysis, logistic regression, or their more

recent developments).

Michael J. A. Berry and Gordon Linoff: Mastering Data Mining: The Art and Science of

Customer Relationship Management, John Wiley & Sons, 2000.

The second book on data mining by the same authors, with 20 case studies.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone:Classification and Regression Trees,

Wadsworth, 1984.

A basic work on decision trees, written by the inventors of CART.

Bertrand Clarke, Ernest Fokoue, and Hao Helen Zhang: Principles and Theory for Data

Mining and Machine Learning, Springer, 2009.

A recent reference work on data mining, methods of selecting variables, clustering,

regression, ensemble methods, etc., with numerous examples for which the R code

is provided.

Richard O. Duda, Peter E. Hart, and David G. Stork: Pattern Classification, Wiley-

Interscience, 2nd edn, 2000.

A new edition of the classic from 1973, also very well illustrated, accompanied by exercises,

covering numerous techniques ranging from neural networks to Markov models, taking in

mixture models for clustering, with interesting sections on the bias–variance dilemma,

overfitting and ensemble methods.

Paolo Giudici and Silvia Figini: Applied Data Mining: for Business and Industry, Wiley, 2nd

edn, 2009.

This book is aimed at a broad spectrum of readers interested in data mining, applied statistics,

databases and econometrics, providing a simple description of data mining in the 150-page

introductory section. The second part presents seven case studies, each ten pages long, in

the following fields: web mining, market basket analysis, credit risk, lifetime value, etc. The

question of software is considered and some of the case studies use R.

David J. Hand, Heikki Mannila, and Padhraic Smyth: Principles of Data Mining, MIT

Press, 2001.
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Avery well-written reference work, by experienced teachers of the subject, with rather fewer

details of the algorithms than the book by Hastie, Tibshirani and Friedman.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman: The Elements of Statistical

Learning: Data Mining, Inference and Prediction, 2nd edn, Springer, 2009.

A high-level work on the statistical aspects of data mining, written by renowned statisticians

who have invented several of the major data mining techniques. Both comprehensive and

thorough. A major work of reference. A further advantage of this book is that it can be read

while using the R package called ElemStatLearn which contains functions and databases

described in the text.

Simon Haykin: Neural Networks and Learning Machines, Prentice Hall, 3rd edn, 2008.

Avery comprehensive work on neural networks, multilayer perceptrons, radial basis function

networks, Kohonen maps (SOMs), support vector machines, etc.

Alan Julian Izenman:ModernMultivariate Statistical Techniques: Regression, Classification,

and Manifold Learning, Springer, 2008.

A recent book covering similar subjects to those discussed by Hastie, Tibshirani and

Friedman, but more accessible, suitable for students. It provides numerous examples and

uses R, S-PLUS and Matlab.

Olivia Parr Rud: Data Mining Cookbook, Wiley, 2000.

A practical guide with useful advice, accompanied with numerous examples of modelling

using SAS software. This is not a very recent book, so it does not cover the enhancements in

the latest versions of SAS, the outputs are not particularly attractive and the programming is

not always very sophisticated, but it is accessible and provides full details of the proposed

solutions. There is a version with a CD-ROM of SAS code included.

Brian D. Ripley: Pattern Recognition and Neural Networks, Cambridge University

Press, 2008.

A very good review of the state of the art and the theoretical bases of neural networks.

Vladimir N. Vapnik: The Nature of Statistical Learning Theory, Springer, 2nd edn, 1999.

A ‘historic’ survey of statistical learning theory by one of its main proponents, with a concise

description of his contribution, and an introduction to support vector machines (and to support

vector regression in the second edition). For readers interested in theory.

Vladimir N. Vapnik: Statistical Learning Theory, Wiley-Interscience, 1998.

A much longer and more demanding work than the previous one, dealing with the theoretical

bases of the concepts of learning, VC dimension and structural risk minimization, and

detailing the theory and practice of support vector machines.

Christopher Westphal and Teresa Blaxton: Data Mining Solutions: Methods and Tools for

Solving Real-World Problems, John Wiley & Sons, 1998.

A useful reference work, especially for those interested in visual methods.

Ian H. Witten and Eibe Frank: Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, 2nd edn, 2005.

Much appreciated for its clarity and simplicity as well as its practical aspects.

Xindong Wu and Vipin Kumar: The Top Ten Algorithms in Data Mining, Chapman & Hall/

CRC, 2009.
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A survey of the ‘top 10’ data mining algorithms. Chosen from the most important methods

identified in December 2006 by the IEEE International Conference on Data Mining

(ICDM),1 they are as follows: C4.5, CART, k-means, support vector machines, Apriori,

EM (expectation–maximization), PageRank, AdaBoost, k nearest neighbours and the naive

Bayesian classifier. Each of these is described and illustrated with practical examples.

B.3. Text mining

Ludovic Lebart and Andr�e Salem: Statistique Textuelle, Dunod, 1994.

Lebart, L., Salem, A., Berry, L. (1998). Exploring textual data, Kluwer, Dordrecht.

An enthralling classic account.

B.4. Web mining

Myl�ene Bazsalicza and Patrick Na€ım: Data mining pour le Web, Eyrolles, 2001.

A book with a strongly educational approach, which starts by discussing the basics of the

Internet and data mining and goes on to describe the statistical processing of web data.

Michael J.A. Berry and Gordon S. Linoff: Mining the Web, John Wiley & Sons, 2002.

The latest title from the well-known consultants of Data Miners Inc., Boston.

B.5. R software

John M. Chambers: Programming with R, Springer, 2008.

Written by one of the creators of the S language (on which R language is based), this book is

unquestionably the best resource for advanced programming in R. It starts with the basics and

ends by giving the reader all the information he needs to create his own packages.

Pierre-Andr�e Cornillon: Statistiques avec R, Presses Universitaires de Rennes, 2008.

This very well-produced book consists of two parts. The first part is a general course on R,

providing the basic principles, showing how data are manipulated and represented, and

outlining basic programming in R. The second part gives examples of the main statistical

analysis and modelling procedures, in the form of separate sections with several pages each.

The book is accompanied by exercises with answers.

Michael J. Crawley: Statistics: An Introduction Using R, John Wiley & Sons Ltd, 2005.

A basic work, very comprehensive, with numerous examples.

Michael J. Crawley: The R Book, John Wiley & Sons Ltd, 2007.

More than 900 pages on R, covering every aspect, from the basics to the standard statistical

tests, and then going on to more advanced models such as time series, survival analyses,

generalized linear models and generalized additive models.

1 There is an interesting article about the same ‘top 10’: XindongWu, Vipin Kumar, J. Ross Quinlan et al. (2008),

‘Top 10 algorithms in data mining’, Knowledge and Information Systems, 14(1), 1–37.
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Robert A. Muenchen: R for SAS and SPSS Users, Springer, 2009.

A well-designed book, useful for those familiar with SAS and SPSS, as it compares the

languages by creating a ‘Rosetta Stone’, with numerous programs written in all three

languages. So it is also useful for anyone wishing to compare SAS and SPSS with each

other. It also features a ‘trilingual’ glossary and further interesting information on the

publisher’s site. A new way of presenting R, which I can heartily recommend.

A full list of literature on R is available from: http://www.r-project.org/doc/bib/R-books.html

B.6. SAS software

Art Carpenter : Carpenter’s Complete Guide to the SAS Macro Language, SAS Publishing,

2nd edition, 2004.

The reference book on the subject, written by a recognized expert.

Ron Cody : Learning SAS by Example: A Programmer’s Guide, SAS Publishing, 2007.

It is a comprehensive book, clear and concise, whose level is higher than the The Little SAS

Book. Some exercises are corrected.

Ron Cody : SAS Functions by Example, SAS Publishing, 2nd edition, 2010.

A comprehensive guide to SAS functions, including what is new in 9.2. For each function,

it gives a brief description of its purpose, the syntax and clear examples with useful

explanations.

Olivier Decourt: Reporting avec SAS: Mettre en forme et diffuser vos r�esultats avec SAS 9 et
SAS 9 BI, Dunod, 2008.

A book on the graphic resources of SAS, describing SAS GRAPH, ODS and ODS

GRAPHICS. A very useful source, because graphic functionality has not always been the

strong point of SAS, and it still suffers from a poor reputation in this field, even though the

latest versions can produce excellent results.

Olivier Decourt and H�el�ene Kontchou Kouomegni: SAS: Maı̂triser SAS Base et SAS Macro,

SAS 9.2 et versions ant�erieures, Dunod, 2nd edn, 2007.

An excellent presentation, clear and precise, of SAS Base (and its macro language), including

the latest functionality.

Geoff Der, Brian S. Everitt : A Handbook of Statistical Analyses using SAS, Chapman and

Hall/CRC, 3d edition, 2008.

Avery good overview of what can be donewith SAS in statistics, from descriptive statistics to

survival analysis, through regression, analysis of variance, logistic regression, generalized

linear model, longitudinal data analysis, factor analysis and cluster analysis. With accompa-

nying exercises and examples of SAS macros.

Lora D. Delwiche and Susan J. Slaughter: The Little SAS Book: A Primer, SAS Publishing, 4th

edn, 2008.

An accessible, comprehensive book on the resources of SAS BASE, including the recent

functionality in Version 9, such as ODS GRAPHICS. Concise and supported with numerous

examples, it is a pleasure to read. However, it lacks detail in the areas of the macro language,

ODS and graphics (it does not cover GPLOT or GCHART).
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Stephen McDaniel and Chris Hemedinger: SAS for Dummies, John Wiley & Sons Ltd, 2nd

edn, 2010.

A basic reference.

S�ebastien Ringued�e: SAS Version 9.2: Introduction au d�ecisionnel: m�ethode et maı̂trise du

langage, Pearson Education, 2008.

In this serious and exhaustive book, S�ebastien Ringued�e, an academic partner of SAS,

provides the essential information (and more!) that will be needed to achieve ‘SAS Base

Programming for SAS�9’ certification, with accompanying exercises (the solutions are

available on the companion website).

B.7. IBM SPSS software

Arthur Griffith: SPSS for Dummies, John Wiley & Sons Ltd, 2010.

A basic reference.

Paul Kinnear and Colin Gray: IBM SPSS Statistics 18 Made Simple, Psychology Press, 2010.

A book that is accessible to novices, leading on to more complex matters such as statistical

tests, experimental design, regression, discriminant analysis and factor analysis, all illustrated

with examples.

Naresh Malhotra, Jean-Marc D�ecaudin, and Afifa Bouguerra: Recherche et �etudes Marketing

avec SPSS, Pearson Education, 2004.

A book with an accompanying CD-ROM, including many detailed examples. It provides an

introduction to new techniques such as conjoint analysis and multidimensional positioning.

B.8. Websites

Modulad magazine, a mine of practical information (on software, events, etc.) and very

interesting articles on statistics: www.modulad.fr/

The website of Philippe Besse, Professor at the University of Toulouse, providing very full

coverage of statistics and data mining: http://www.math.univ-toulouse.fr/�besse/

The website of Gilbert Saporta, Professor at CNAM, with a very rich content including many

study courses: http://cedric.cnam.fr/�saporta/

StatNotes Online Textbook – David Garson’s online resource, with much well-presented

information on all aspects of statistics and data analysis, with details of implementation in

IBM SPSS Statistics: http://www2.chass.ncsu.edu/garson/pa765/statnote.htm

The StatSoft site for statistics and data mining: www.statsoft.com/textbook/stathome.html

The website for the book The Elements of Statistical Learning (Hastie, Tibshirani and

Friedman), with further information, data, R packages, errata, etc.: http://www-stat.stanford.

edu/�tibs/ElemStatLearn/

The website for the book Introduction to Data Mining (Pang-Ning Tan, Michael Steinbach

and Vipin Kumar), Addison-Wesley, offering a wide range of resources (extracts, PowerPoint

slides, etc.): http://www-users.cs.umn.edu/�kumar/dmbook/index.php
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Re-sampling Methods in Statistical Modeling: a very good course devised by Professor

Bontempi, of the Free University of Brussels, on predictive models and contribution of

jackknife and bootstrap techniques, including ensemble methods such as bagging and

boosting: www.ulb.ac.be/di/map/gbonte/Stat104.html

The very comprehensive on-line help for the SAS software: http://support.sas.com/docu-

mentation/onlinedoc/

Olivier Decourt’s website, with a very interesting FAQ section on SAS, statistics and data

mining, including many concise and well-written descriptions of various technical aspects:

www.od-datamining.com/index.htm

Numerous resources on SPSS: www.spsstools.net/

The R software site: www.r-project.org/

The website of Lexicometrica magazine, where articles on text data mining can be down-

loaded: www.cavi.univ-paris3.fr/lexicometrica/index.htm

A course on web mining by Gregory Piatetsky-Shapiro: www.kdnuggets.com/web_mining_

course/

Real data to illustrate statistical methods, sorted by method (University of Massachusetts):

http://www.umass.edu/statdata/statdata/index.html

A very good glossary on statistics: http://dorakmt.tripod.com/mtd/glosstat.html

An eclectic blog written by Arthur Charpentier, Professor at the University of Rennes 1, about

statistics, probability, actuarial science, econometrics, R, and more: http://blogperso.univ-

rennes1.fr/arthur.charpentier/

Eric Weisstein’s World of Mathematics, an on-line mathematical encyclopaedia with more

than 11 000 entries and 5000 diagrams: http://mathworld.wolfram.com/
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Index

activation function, 218

adjusted coefficient of determination, 349

adjusted R2, 368

agglomerative hierarchical clustering, 253

akaike information criterion, 451

Anderson–Darling test, 55

ANOVA, 662

application score, 556

apriori algorithm, 289

arcing, 525

Arc-x4, 526

area under the ROC curve, 546

artificial ants, 513

association rules, 287

lift of, 288

asymptotic test, 652

attitudinal data, 96

attrition score, 556

augmentation method, 539

average linkage, 257

backward selection, 85, 396

bagging, 518–521

Bartlett test, 58

Basel II ratio, 557

Bayesian classification rule, 342

Bayesian information criterion, 451

Bayesian networks, 497–499

Bayesian statistics, 492

Bayes’ theorem, 492

behavioural mega-databases, 97

best linear unbiased estimator, 358

between-class variance, 662

between-cluster sum of squares, 244

bias–variance dilemma, 310

binarization, 80

binary logistic regression, 437

biomimetic algorithms, 513

BIRCH algorithm, 262

block level, 100

Bonferroni method, 326

boosting, 521–528

bootstrap, 516

Box–Cox transformation, 74

Box plot, 649

BRIDGE algorithm, 262

Burt table, 201

canonical correlation analysis, 658

CART tree, 321

categories of the variable, 27

Cattell’s scree test, 190

cauchit, 482

censored data, 664

central tendency characteristics, 648

centroid method, 257

CHAID tree, 325–327

chain effect, 254

Chuprov’s coefficient, 662

circle of correlation, 181

CLARA algorithm, 249

CLARANS algorithm, 249

clustering, 235

cluster sampling, 91

coefficient of determination, 365

coefficient of multiple correlation, 365

combined stepwise selection, 85

common log format, 638

complete linkage, 254

concordance tests, 458

conditional likelihood, 446

condition indices, 88

Condorcet criterion, 274

Condorcet’s paradox, 274

confidence index, 288

confidence interval for mean, 652

confidence interval of frequency, 654

confusion matrix, 541
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conjugate gradient descent, 224

conservative test, 651

contingency table, 45

contribution

of an individual, 186

of a variable, 183

cookies, 641

Cook’s distance, 375

correspondence analysis, 194

covariance, 177

covariate, 434

Cox–Snell R2, 455

Cox’s proportional hazards regressionmodel, 665

Cram�er’s coefficient, 661
credit bureau, 565

credit scoring history, 615–616

cross-validation, 306

w2distance, 195

w2 test, 659

C4.5 tree, 324

C5.0 tree, 324

cubic clustering criterion, 245

customer relationship management (CRM), 2

analytical CRM, 2

operational CRM, 2

data frame, 370

DBSCAN algorithm, 262

decision tree, 313

dendrogram, 253

density estimation methods, 258

dependent variable, 301

deviance, 449

discrete AdaBoost, 524

discretizing, 32

discriminant factor analysis, 333–338

discriminant linear function, 339

dispersion characteristics, 648

DISQUAL method, 353

divisive hierarchical clustering, 238

Durbin–Watson statistic, 374

dynamic clouds, 248

Efron-Tibshirani formula, 517

elastic net, 364

entropy, 318

equal (parallel) slopes model, 482

error function, 225

error rate, 304

error surface, 226

exact test, 652

extended log format, 638

FactoMineR package, 131

factor axis, 178

factorial plane, 178

factors, 434

in success of project, 23

FICO scores, 565

first name scoring method, 95

Fisher algorithm, 448

Fisher–Snedecor test, 663

Fisher test, 58

exact test, 659

fitness function, 512

fixed effects, 434

forward selection, 85, 396

frequency table, 44

fuzzy clustering, 238

GEE method, 480

generalized additive model, 491–492

generalized linear model, 484–487

generalized logit, 482

general linear model, 434

general regression neural networks, 224

genetic algorithms, 510–514

geocoding, 105

geographical information software, 102

geomarketing, 99

geometric predictive discriminant

analysis, 338–341

Gini index, 551

gradient back-propagation, 224

graphic forms, 630

grouped lasso, 365

heteroscedasticity, 58

hidden layer, 218

HOMALS, 160

homoscedasticity, 58

Hosmer–Lemeshow test, 455

Huygens’ formula, 244

hybrid clustering methods, 261

hypergeometric distribution, 659

illustrative

individual, 180

variable, 187

independence of two variables, 659

independent variable, 301

indicator matrix, 201

inductive techniques, 302
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information extraction, 629

information retrieval, 629

input layer, 217

interactions, 82

iterative reclassification, 540

Jarque–Bera test, 56

Jonckheere–Terpstra test, 70

Kaiser criterion, 190

Kaplan–Meier model, 664

Kendall’s tau, 658

k-means, 248

k-medoids, 249

k-modes, 249

k-nearest-neighbour method, 302

Kohonen map, 231

Kolmogorov–Smirnov test, 54

k-prototypes, 249

Kruskal–Wallis test, 69

kurtosis, 649

LARS procedure, 364

lasso, 363

leaps and bounds algorithm, 86

learning process

consistency, 306

learning rate, 226

lemmatization, 631

leptokurtic distribution, 649

Levenberg–Marquardt algorithm, 224

Levene test, 58

lexicometry, 627

lifetime value (LTV), 106

lift, 550

lift curve, 548

likelihood function, 446

Lilliefors test, 54

linear correlation coefficient (Pearson’s r), 656

LOESS regression, 430

logistic regression, 437

with correlated data, 479–481

on individuals with different weights, 479

logit model, 440

log-log model, 441

longitudinal data, 479

LOWESS regression, 430

Mahalanobis distance, 340

Mallows Cp, 415

Manhattan distance, 237

MANOVA, 664

margin (of a SVM), 502

market basket analysis, 287

Markov chain, 633

MARS algorithm, 330

maximum likelihood method, 446

MAXR selection method, 397

mean square error (MSE), 358

median test, 70

medoid, 249

memory-based reasoning, 302

Mesokurtic distribution, 649

mixed-effects, 435

moment, 226

Monte Carlo simulation methods, 516

MOSAIC, 101

moving centres, 247

multicollinearity, 88

multilayer perceptron, 225

multinomial logistic regression, 482–483

multiple correspondence analysis, 201

multiple imputation, 47

multiple linear regression, 359

multi-type data mining, 636

Nagelkerke’s R2, 455

naive Bayesian classifier, 492–497

neural clustering, 272

neural networks, 217

Newton–Raphson algorithm, 448

nomenclature of territorial units for statistics

(NUTS), 99

non-parametric test, 652

normalization, 73

normalized deviance, 456

normalized PCA, 177

normal law, 52

Normit model, 441

nosology, 236

oblique PCA, 192

odds ratio, 443–445

offset variable, 486

one-to-one marketing, 5

open requests, 633

optimal hyperplane, 502

ordered Twoing criterion, 317

ordinal logistic regression, 482

ordinary least squares, 357

orthogonal PCA, 192

output delivery system (ODS), 70
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output layer, 217

overdispersion, 457

overfitting, 310

overtraining, 310

PAM algorithm, 249

paragon, 249

parametric test, 652

passenger name record (PNR), 22

percentage of total inertia explained, 190

platykurtic distribution, 649

PLS logistic regression, 483–484

PLS regression, 397

PMML, 15

Poisson regression, 487–491

powerful test, 651

P-P (probability–probability) plot, 55

predefined requests, 633

prediction, 301

principal component, 179

principal component analysis, 176

probabilistic discriminant analysis, 342–345

probabilistic neural networks, 224

probit model, 441

promax PCA, 193

propensity score, 556

pseudo F, 245

pseudo t2, 246

psychographic data, 97

p-value, 651

quality of representation, 181

quartimax PCA, 192

QUEST tree, 322

radial basis function network, 227

random effects, 434

random forests, 521

real AdaBoost, 526

recency, frequency, monetary value (RFM)

analysis, 93

recovery score, 556

regression, 301

regressor, 366

regularization methods, 363

reject inference, 539–540

relational analysis, 273

relational data, 96

repeated measurements analysis, 480

residual plot, 372

residuals, 357

response curve, 551

ridge regression, 362

risk (behaviour) score, 556

ROC curve, 542–548

safe harbor privacy principles, 22

sample standard deviation, 653

saturated model, 448

Schwarz criterion, 451

scorecard, 565

scorecard, calculation, 599

segmentation, 236

self-organizing map (SOM), 231

semi-partial R2, 246

semisupervised learning, 230

sensitivity, 542

shape characteristics, 648

Shapiro–Wilk test, 55

sigmoid function, 219

significance level, 651

similarity aggregation, 273

simple imputation, 47

simple linear regression, 356

simple random sampling, 90

single linkage, 254

size effect, 184

skewness, 648

smoothing parameter, 259

Somers’ D statistic, 551

Spearman’s rank correlation coefficient, 657

specificity, 542

standardized residuals, 371

statdisc, 80

stepwise selection, 397

stratified sampling, 90

strong forms, 251

structural risk minimization, 309

studentized residuals, 372

student’s test, 653

stump, 521

stylometry, 627

‘subprime’ loans, 567

supervised learning, 217

supplementary

individual, 180

variable, 187

support index, 288

support vector machines, 501–510

support vector regression, 505

survival analysis, 664

systematic sampling, 90
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taxonomy

numerical, 236

of products, 291

temporal associations, 292

total sum of squares (or inertia), 243

transductive techniques, 302

transition matrix, 40

tree diagram, 253

Twoing criterion, 317

type 1 analysis, 489

type 3 analysis, 490

univariate statistics, 648

unsupervised learning, 217

unsupervised pattern recognition, 236

Vapnik-Chervonenkis dimension, 306

Vapnik’s learning theory, 308

VARCLUS method, 279

variance inflation factor, 88

varimax PCA, 193

Wald statistic, 448

Ward method, 257

web mining, 637

weighted least squares, 430

White test, 373

Wilcoxon–Mann–Whitney test,

66

Wilcoxon’s rank-sum statistic, 67

Wilks’ lambda, 342–349

Winsorization, 52

within-class variance, 662

within-cluster sum of squares, 244

Wong hybrid method, 258

Zipf’s law, 628

Z-score, 615
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